А. Н. Лыщиков, О. Е. Насакин, П. М. Лукин, А. Б. Золотой, А. И. Прохоров

СИНТЕЗ

2,12-ДИАРИЛ-4-(АРИЛМЕТИЛЕНАМИНО)-8-МЕТИЛ-5,6,10,11,11-ПЕНТАЦИАНО-1,3,8-ТРИАЗАТРИЦИКЛО[7,3,0,0^{3,7}]-ДОДЕКАН-4,6,9-ТРИЕНОВ ВЗАИМОДЕЙСТВИЕМ 2,5-ДИАРИЛ-3,3,4,4-ТЕТРАЦИАНОПИРРОЛИДИНОВ С ДИАЗОМЕТАНОМ

При метилировании 2,5-диарил-3,3,4,4-тетрацианопирролидинов диазометаном в среде диоксана синтезированы 2,12-диарил-4-(арилметиленамино)-8-метил-5,6,10,11,11-пентациано- 1,3,8-триазатрицикло[7,3,0,0^{3,7}]додекан-4,6,9-триены VIIа—в. Их строение доказано рентгеноструктурным исследованием монокристалла соединения VIIа.

Как было показано ранее, реакции 3,3,4,4-тетрацианопирролидинов I со спиртами и аминами протекают через первоначальное раскрытие пирролидинового цикла [1-3]. Также известно, что N-ацилированные аналоги соединений I к такому раскрытию устойчивы [4]. В то же время было представить свойства N-алкилированного 3,3,4,4интересно тетрацианопирролидина, так как известно свойство легкого раскрытия цикла аддуктов тетрацианоэтилена с виниловыми эфирами в полярных растворителях [5-7]. Однако при попытке метилирования диазометаном 2.5-лиарил-3.3.4.4-тетрацианопирролидинов I по азоту гетероцикла в таком апротонном растворителе, как 1,4-диоксан, было найдено новое направление взаимодействия соединений І. Реакция протекает с небольшим экзотермическим эффектом. Из реакционной смеси выделены 2,12-диарил-4-(арилметиленамино)-8-метил-5,6,10,11,11-пентациано-1,3,8-триазатрицикло [7,3,0,0^{3,7}]додекан-4,6,9-триены VIIа-в, строение которых установлено рентгеноструктурным исследованием монокристалла соединения VIIa (рисунок).

Основным фактором, приводящим к образованию такого сложного соединения как VII, является, по-видимому, первоначальное метилирование по атому азота в линейной форме II, образованию которой способствует диазометан. Метилирование кетениминного фрагмента делает процесс репиклизации пирролидина необратимым, в связи с чем появляется потенциальная возможность участия C=N связи альдимина метилированной формы III в дальнейших превращениях. Эта возможность реализуется присоединением второй молекулы линейной формы II. Цепь последующих формирование пирролинового, 1.3.5включающая циклизаций, триазинового и пиррольного циклов приводит к трициклу V. По-видимому, реакция протекает таким образом, что каждая последующая стадия предопределяется предыдущей. Далее в трицикле V происходит миграция заместителя к иминному атому азота, вероятно, по типу кляйзеновской перегруппировки с последующей стабилизацией в соединение VII посредством элиминирования молекулы альдимина, подобно тому, как было показано при взаимодействии пирролидинов I со спиртами и аминами [1-3].

Строение соединений VIIб, в установлено при сопоставлении их ИК спектров с ИК спектром соединения VIIa, а также по данным элементного анализа.

Молекулярная структура соединения VIIa (длины связей, Å): N(1)—C(1) 1,377(5), N(1)—C(4) 1,347(4), N(1)—C(9) 1,476(6), N(2)—C(5) 1,343(6), N(2)—C(8) 1,463(5), N(2)—C(9) 1,454(5), N(3)—C(4) 1,374(4), N(3)—C(5) 1,372(5), N(3)—C(19) 1,460(5), N(4)—C(1) 1,374(6), N(4)—C(10) 1,256(5), N(5)—C(17) 1,141(7), N(6)—C(18) 1,146(7), N(7)—C(20) 1,154(7), N(8)—C(21) 1,124(6), N(9)—C(22) 1,138(7), C(1)—C(2) 1,380(7), C(2)—C(3) 1,424(7), C(2)—C(17) 1,406(6), C(3)—C(4) 1,380(6), C(3)—C(18) 1,397(7), C(5)—C(6) 1,356(6), C(6)—C(7) 1,520(6), C(6)—C(20) 1,386(7), C(7)—C(8) 1,579(7), C(7)—C(21) 1,470(6), C(7)—C(22) 1,467(7), C(8)—C(23) 1,496(7), C(8)—H(8) 0,98(1), C(9)—C(29) 1,508(6), C(9)—H(9) 0,97(1), C(10)—C(11) 1,439(7), C(10)—H(10) 0,87(1)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных соединений осуществлялся методом TCX на пластинках типа Silufol UV-254, проявитель — УФ облучение, пары иода. ИК спектры сняты на спектрометре UR-20 в тонком слое (суспензия в вазелиновом масле). Рентгеноструктурное исследование выполнено на дифрактометре РЭД-4 (СиК α -излучение, μ (СиК α) = 5,8 мм⁻¹).

2,12-Диарил-4-(арилметиленамино)-8-метил-5,6,10,11,11-пентациано-1,3,8-триазаприцикло[7,3,0,0^{3,7}] додекан-4,6,9-триены (VIIa—в). Через сустензию 10 ммоль 2,5-диарил-3,3,4,4-тетрацианопирролидина I в 30 мл 1,4-диоксана при перемешивании и охлаждении водой пропускают диазометан до полного растворения исходного пирролидина I и отсутствия его в реакционной массе. После этого разбавляют полученный раствор насыщенным водным раствором хлорида натрия. Отделяют выделившуюся при разбавлении темную маслообразную массу, которая закристаллизовывается при растирании в 2-пропаноле. Полученный осадок отфильтровывают, промывают пропанолом-2 и перекристаллизовывают (табл. 1). Масс-спектр соединения VIIa, *m/z* (относительная интенсивность, %): 555(1), 528(43), 425(6), 352(4), 324(56), 310(11), 281(23), 255(6), 222(76), 104(100), 77(39) (приведены пик молекулярного иона и 10 наиболее интенсивных пиков осколочных ионов).

Рентгеноструктурное исследование трицикла VIIa. Основные кристаллографические данные: моноклинные, C₃₄H₂₁N₉ · C₃H₇NO, $d_{\text{выч}} = 1,27 \text{ г/cm}^3$; a = 14,940(3), b = 27,057(5), c = 9,010(2) Å; $\alpha = \beta = 90^\circ$, $\gamma = 116,64(2)^\circ$, V = 3255,5 Å³, Z = 4, пространственная группа Р 2₁/b. Интенсивности 2670 отражений с $I > 3\sigma(I)$ измерены в диапазоне углов 2 $\Theta < 109,5^\circ$. Структура молекулы расшифрована прямым методом наименьших квадратов в полноматричном приближении с учетом анизотропии неводородных атомов и изотропии атомов H до $R_f = 0,059$ (программа SHELX 86 и SHELX 76). Рисунок молекулы получен по программе ELLIDS [8].

Таблица 1

Характеристика соединений VIIа-в

Соеди- нение	Брутто- формула	Найдено, %			Вычислено, %		
		с	н	N	с	н	N
VIIa VII6 VIIB	C34H21N9 C37H27N9 C34H18Cl3N9	73,61 74,45 62,11	3,81 4,32 2,66	22,73 21,11 14,23	73,50 74,36 61,97	3,81 4,55 2,75	22,69 21,09 19,13

	R	ИК спе	Выход,		
т _{пл.} , «С		$\nu_{\rm C=N}$	$\nu_{C=N}$	$\nu_{C=C}$	%
283285 (разл.) Разл. > 370 180181 (разл.)	H 4-H3CC6H4 3-ClC6H4	2235, 2225, 2205 2235, 2225, 2205 2235, 2210	1610 1610 1610	1590 1590 1585	54 17 15

Атом	x	у	Z	Атом	x	у	z
N(1)	0,1624(2)	0,0612(1)	0,4387(3)	N(2)	0,2814(2)	0,1157(1)	0,6090(3)
N(3)	0,2098(2)	0,1565(1)	0,4512(3)	N(4)	0,1000(2)	-0,0345(1)	0,4069(3)
N(5)	-0,1138(3)	-0,0373(2)	0,1289(4)	N(6)	-0,0074(3)	0,1392(2)	0,1552(4)
N(7)	0,2834(3)	0,2877(2)	0,7166(4)	N(8)	0,2509(3)	0,1699(2)	1,0455(4)
N(9)	0,5331(3)	0,2532(2)	0,8604(4)	C(1)	0,0943(3)	0,0134(2)	0,3713(4)
C(2)	0,0363(3)	0,0285(2)	0,2805(4)	C(3)	0,0715(3)	0,0867(2)	0,2963(4)
C(4)	0,1495(3)	0,1051(1)	0,3940(4)	C(5)	0,2646(3)	0,1592(2)	0,5758(4)
C(6)	0,3038(3)	0,2004(2)	0,6774(4)	C(7)	0,3500(3)	0,1812(2)	0,8011(4)
C(8)	0,3414(3)	0,1241(2)	0,7435(4)	C(9)	0,2523(3)	0,0663(2)	0,5188(4)
C(10)	0,0444(3)	-0,0804(2)	0,3491(4)	C(11)	0,0516(3)	-0,1306(2)	0,3809(4)
C(12)	0,1200(3)	-0,1310(2)	0,4820(4)	C(13)	0,1283(3)	-0,1785(2)	0,5084(4)
C(14)	0,0692(4)	-0,2260(2)	0,4398(5)	C(15)	0,0011(4)	-0,2266(2)	0,3400(5)
C(16)	-0,0082(3)	-0,1796(2)	0,3133(4)	C(17)	-0,0460(3)	-0,0074(2)	0,1951(4)
C(18)	0,0291 (3)	0,1167(2)	0,2207(4)	C(19)	0,2917(3)	0,2480(2)	0,6934(4)
C(20)	0,2917(3)	0,2480(2)	0,6934(4)	C(21)	0,2938(3)	0,1742(2)	0,9399(4)
C(22)	0,4539(3)	0,2210(2)	0,8329(4)	C(23)	0,4403(3)	0,1241(2)	0,7174(4)
C(24)	0,5043(3)	0,1563(2)	0,6084(4)	C(25)	0,5950(3)	0,1556(2)	0,5890(4)
C(26)	0,6223(3)	0,1236(2)	0,6744(5)	C(27)	0,5597(3)	0,0918(2)	0,7829(5)
C(28)	0,4678(3)	0,0922(2)	0,8050(4)	C(29)	0,3316(3)	0,0681(2)	0,4124(4)
C(30)	0,3633(3)	0,1053(2)	0,2952(4)	C(31)	0,4404(3)	0,1090(2)	0,2077(4)
C(32)	0,4843(3)	0,0750(2)	0,2312(5)	C(33)	0,4528(3)	0,0375(2)	0,3429(5)
C(34)	0,3756(3)	0,0335(2)	0,4347(4)				

Координаты атомов в молекуле соединения VIIa

Работа выполнена при финансовой поддержке НТП «Тонкий органический синтез» (грант ФТ-22).

СПИСОК ЛИТЕРАТУРЫ

- 1. Насакин О. Е., Лыщиков А. Н., Лукин П. М., Булай А. Х., Тафеенко В. А., Шарбатян П. А. // ХГС. — 1991. — № 11. — С. 1502.
- Насакин О. Е., Лыщиков А. Н., Лукин П. М., Тафеенко В. А., Булай А. Х., Медведев С. В. // ХГС. — 1992. — № 10. — С. 1325.
- 3. Насакин О. Е., Лыщиков А. Н., Лукин П. М., Тафеенко В. А. // ХГС. 1992. № 11. С. 1472.
- 4. Насакин О. Е., Лыщиков А. Н., Лукин П. М., Булай А. Х. // ХГС. 1994. № 3. С. 353.
- 5. Williams J. K., Wiley D. M., McKusik B. C. // J. Amer. Chem. Soc. 1962. Vol. 84. P. 2210.
- 6. Huisgen R., Schug R., Steiner G. // Angew. Chem. 1974. Jg. 84. S. 47.
- 7. Karle I., Flippen J., Huisgen R., Schug R. // J. Amer. Chem. Soc. 1975. Vol. 97. — P. 5285.
- 8. Чехлов А. Н. // Кристаллография. 1981. Т. 26. С. 596.

Чувашский государственный университет им. И. Н. Ульянова, Чебоксары 428015 Поступило в редакцию 28.07.97