### Е. В. Громачевская, Г. Д. Крапивин, В. Е. Заводник, В. Г. Кульневич

### ИССЛЕДОВАНИЯ В ОБЛАСТИ 4Н-3,1-БЕНЗОКСАЗИНОВ

#### 13\*. БРОМИРОВАНИЕ 1,2-ДИГИДРО-4Н-3,1-БЕНЗОКСАЗИНОВ

Проведено бромирование 2,4-замещенных 1,2-дигидро-4Н-бензоксазинов бромом в уксусной кислоте. Показано, что в зависимости от строения дигидробензоксазина и концентрации брома в реакционной смеси преимущественно образуются либо соответствующие 6,8-дибром-1,2-дигидробензоксазины, либо продукты дегидрирования последних — 6,8-дибромбензоксазины. Методом РСА изучена структура 6,8-дибром-2-(5-нитрофурил-2)-4,4-дифенил-1,2-дигидро-4H-3,1-бензоксазина. В кристалле обнаружено стэкинг-взаимодействие между нитрофурановым фрагментом одной молекулы и конденсированным бензольным кольцом другой.

В предварительном сообщении [2] на единичном примере показано, что бромирование 1,2-дигидро-4H-3,1-бензоксазинов протекает по аннелированному с гетероциклом бензольному кольцу с образованием дибромзамещенного, причем атомы брома вступают в *орто-* и *пара*-положения относительно аминной группировки, т. е. аналогично бромированию анилина. Были обнаружены также следовые количества другого продукта, о котором в [2] не сообщалось. С целью более глубокого изучения протекающих превращений в настоящей работе проведено бромирование ряда соединений, имеющих различные заместители в положениях 2 и 4 оксазинового фрагмента молекулы.

Исходные соединения (Ia—3) бромировались раствором брома в уксусной кислоте при 0...5 °С [3] при шестикратном избытке брома и при разных его концентрациях в реакционной смеси.



Ia,e—з, IIa, IIIa R = C<sub>2</sub>H<sub>5</sub>; I6,г—д, II6, Шб R = C<sub>6</sub>H<sub>5</sub>; Iв R = CH<sub>3</sub>; Ia,6, IIa,6, IIIa,6 R<sup>1</sup> = 5-нитрофурил-2; Iв, IIв R<sup>1</sup> = CCl<sub>3</sub>; Ir R<sup>1</sup> = CH<sub>3</sub>; Iд R<sup>1</sup> = C<sub>6</sub>H<sub>5</sub>; Ie R<sup>1</sup> = фурил-2; Іж R<sup>1</sup> = 5-метилфурил-2; Iз R<sup>1</sup> = 5-бромфурил-2

Установлено, что вне зависимости от концентрации брома гладко реагируют только производные, содержащие акцепторные заместители в положении 2 гетерокольца (трихлорметильный, нитрофурильный). Соединения, имеющие в положении 2 фурильный, 5-метил- и 5бромфурильный (Ie—з) остатки, в ходе реакции полностью осмолялись, видимо, под действием выделяющегося HBr. В случае соединений с электронодонорными заместителями (Ir и Iд) реакция не доходила до конца и большая часть исходного соединения выводилась из реакции в виде нереакционноспособных гидробромидов.

\* Сообщение 12 см. [1].

При низких концентрациях (2...3%) брома соединения Ia—в в основном превращаются в соответствующие 6,8-дибромпроизводные (IIa—в). При более высоких концентрациях брома в реакционной смеси появляются продукты дальнейшего превращения — дегидрирования, а при концентрациях брома 10% и выше эти продукты (IIIa,6) становятся основными. Иными словами, при высоких концентрациях бром окисляет продукты бромирования IIa,6 с образованием стабилизированных сопряжением соединений IIIa,6. Специально проведенными опытами показано, что введение 1,2-дигидропроизводных IIa,6 в концентрированный раствор брома в уксусной кислоте приводит к их быстрому окислению в соответствующие бензоксазины IIIa,6. Трихлорметильное производное IIв в этих условиях стабильно, возможно, потому, что дегидрирование не приводит к достаточно развитой системе сопряжения.

Структура синтезированных соединений однозначно подтверждается элементным составом и данными спектров (табл. 1, 2). Величина КССВ протонов конденсированного бензольного кольца (протоны H<sub>b</sub> и H<sub>c</sub>, табл. 2) подтверждает их взаимное мета-расположение, химический сдвиг этих протонов — их расположение относительно азотсодержащего заместителя. Переход от 1,2-дигидропроизводных Па,6 к соответствующим бензоксазинам III сопровождается появлением в ИК спектре интенсивной полосы поглощения группы C=N (1620...1630 см<sup>-1</sup>) и исчезновением полос валентных колебаний группы NH. В УФ спектрах происходит батохромный сдвиг полосы л, л-перехода (табл. 1), свидетельствующий об увеличении системы сопряжения. В масс-спектрах наряду с уменьшением на две единицы молекулярного иона массы происходит изменение характера ero фрагментации.

Мы обратили внимание на то, что бесцветные в растворе соединения IIa,6 кристаллизуются в окрашенные в желтый цвет кристаллы, причем окраска кристаллов не изменяется при многочисленных перекристаллизациях. Это позволяло предполагать некое специфическое межмолекулярное взаимодействие в кристалле, приводящее к образованию комплекса с переносом заряда и, как следствие, появлению окраски. Для выяснения характера этого взаимодействия и более тонкого изучения строения соединений II проведено рентгеноструктурное исследование монокристалла соединения II6, выращенного из спиртового раствора.

Проекция молекулярной модели соединения Шб представлена на рис. 1, координаты атомов, длины связей в молекуле и некоторые валентные и диэдральные углы приведены в табл. 3—5.





| Физико-химические | характеристики | синтезированных | соединений |
|-------------------|----------------|-----------------|------------|
|-------------------|----------------|-----------------|------------|

| Соеди- | Брутто-                           |                       | <u>Найдено</u><br>Вычислен | , <u>%</u><br>10, % |                       | <i>Т</i> <sub>ПЛ</sub> , °С | Rf   | УФ спектр (этанол), $\lambda_{\max}$ , | ИК спектр, <i>V</i> , см <sup>-1</sup>                            | м+   | Выход,<br>% |
|--------|-----------------------------------|-----------------------|----------------------------|---------------------|-----------------------|-----------------------------|------|----------------------------------------|-------------------------------------------------------------------|------|-------------|
| HENNE  | формузы                           | с                     | н                          | N                   | Hal                   |                             |      | nim (ig O)                             |                                                                   |      |             |
| IĮa    | $C_{16}H_{16}Br_2N_2O_4$          | $\frac{41,32}{41,77}$ | $\frac{3,52}{3,50}$        | <u>6,15</u><br>6,09 | <u>34,42</u><br>34,73 | 150152                      | 0,57 | 251 (4,04), 305 (4,10)                 | 3300 (NH); 1510, 1340 (NO <sub>2</sub> )                          |      | 68          |
| пе     | $\mathbf{C_{24}H_{16}Br_2N_2O_4}$ | $\frac{51,42}{51,83}$ | $\frac{2,53}{2,90}$        | <u>5,33</u><br>5,04 | $\frac{28,35}{28,73}$ | 173176                      | 0,65 | 252 (4,12), 310 (4,20)                 | 3390 (NH); 1520, 1350 (NO <sub>2</sub> )                          | 554* | 75          |
| Ив     | $C_{11}H_{10}Cl_3Br_2NO$          | $\frac{30,41}{30,10}$ | <u>2,39</u><br>2,28        | $\frac{3,40}{3,19}$ | <u>60,85</u><br>60,77 | 105106                      | 0,85 | 242 (3,99), 285 (3,49)                 | 3380 (NH)                                                         |      | 85          |
| IIļa   | $\mathbf{C_{16}H_{14}Br_2N_2O_4}$ | $\frac{41,58}{41,95}$ | $\frac{3,24}{3,08}$        | $\frac{6,35}{6,12}$ | <u>35,06</u><br>34,88 | 202204                      | 0,54 | 271 (4,07), 366 (4,18)                 | 1620 (C=N); 1510, 1330 (NO <sub>2</sub> )                         |      | 65          |
| шб     | $\mathbf{C_{24}H_{14}Br_2N_2O_4}$ | $\frac{51,62}{52,01}$ | $\frac{2,75}{2,55}$        | $\frac{5,28}{5,05}$ | $\frac{29,05}{28,84}$ | 231232                      | 0,60 | 268 (4,15), 368 (4,28)                 | $\begin{vmatrix} 1630 & (C=N); 1520, 1340 & (NO_2) \end{vmatrix}$ | 552* | 72          |

\* Значения m/z молекулярных ионов приведены для легких изотопов брома.

Таблица 2

Спектры ПМР синтезированных соединений

| Coe-         | Раство-                                                 |                                                                                                                                                                                                       | δ, м. д.                                               |              |                  |                  |                | кссв, Ги                                                                    |
|--------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|------------------|------------------|----------------|-----------------------------------------------------------------------------|
| ди-<br>нение | ритель                                                  | H <sub>R</sub>                                                                                                                                                                                        | HR <sup>1</sup>                                        | Ha           | Нb               | Н <sub>с</sub>   | NH             |                                                                             |
| Iļa          | CDCl <sub>3</sub>                                       | 0,62 (т, 3H, CH <sub>2</sub> CH <sub>3</sub> ) и 1,85 (кв, 2H, CH <sub>2</sub> CH <sub>3</sub> );<br>0.90 (т, 3H, CH <sub>2</sub> CH <sub>3</sub> ) и 1,96 (кв, 2H, CH <sub>2</sub> CH <sub>3</sub> ) | 6,72 (д, 1Н, β'-Н), 7,30 (д,<br>1Н, β-Н)               | 5,68 c       | 7,44 д           | 7,00 д           | 4,77<br>(уш.с) | $J_{CH2CH3} = 6,5,$<br>$J \beta \beta' = 4,0, J_{bc} = 3,0$                 |
| Цб           | CDCl <sub>3</sub>                                       | 7,207,35 (м, 10Н, 2 × С6Н5)                                                                                                                                                                           | 6,78 (д. 1H, $\beta'$ -H), 7,42 (д.<br>1H, $\beta$ -H) | 5,72 д       | 7,58 д           | 6,78 д           | <b>4,98</b> д  | $J_{\rm NHHa} = 3.0, \ J \beta \beta' = 4.0, \ J_{\rm bc} = 3.0$            |
| Пв<br>Ща     | CDCl <sub>3</sub><br>(CD <sub>3</sub> ) <sub>2</sub> CO | 1,51 (т, 3H, CH <sub>3</sub> ), 1,60 (т, 3H, CH <sub>3</sub> )<br>0,60 (т, 6H, 2 × CH <sub>2</sub> CH <sub>3</sub> ), 1,80 (кв, 4H,<br>2 × CH <sub>2</sub> CH <sub>3</sub> )                          | 7,74 (д, 1Н, β'-Н), 7,77 (д,<br>1Н, β-Н)               | 5,01 c<br>.— | 7,41 д<br>7,87 д | 7,14 д<br>7,60 д | 5,33           | $J_{bc} = 3,0$<br>$J_{CH2CH3} = 7,2, J\beta\beta' = 4,0,$<br>$J_{bc} = 3,0$ |
| шб           | CDCl <sub>3</sub>                                       | 7,157,36 (м, 10Н, 2 × С6Н5)                                                                                                                                                                           | * 6,72 (д, 1Н, β'-Н)                                   | ·            | 7,80д            | 7,36 д           | ·              | $J\beta\beta' = 4,0, J_{\rm bc} = 3,0$                                      |

1393

\* Сигнал β-Η протона маскируется мультиплетом ароматических протонов.

| Атом            | x        | у        | . Z      | U      |
|-----------------|----------|----------|----------|--------|
|                 |          |          |          |        |
| Br(1)           | 5374(1)  | 4000(1)  | 6374(1)  | 62(1)  |
| Br <sub>2</sub> | 8426(1)  | 1783(1)  | 6262(1)  | 53(1)  |
| O(1)            | 5482(2)  | 2615(2)  | 1911(3)  | 34(1)  |
| O(2)            | 3458(2)  | 3831 (2) | 2394(3)  | 40(12) |
| O(3)            | 2016(3)  | 5331 (3) | 1066(4)  | 98(2)  |
| O(4)            | 1967(3)  | 4702(3)  | 2863(5)  | 84(2)  |
| N(1)            | 5079(3)  | 3265(3)  | 3749(3)  | 41 (1) |
| N(2)            | 2313(4)  | 4837(3)  | 1859(5)  | 60(2)  |
| C(1)            | 6093(4)  | 3171(3)  | 5514(4)  | 37(2)  |
| C(2)            | 6871 (3) | 2859(3)  | 6087(4)  | 39(2)  |
| C(3)            | 7366(3)  | 2233(3)  | 5475(4)  | 37(2)  |
| C(4)            | 7099(3)  | 1919(3)  | 4305(4)  | 31 (2) |
| C(5)            | 6317(3)  | 2234(3)  | 3725(4)  | 31(1)  |
| C(6)            | 5993(3)  | 1889(3)  | 2442(4)  | 31 (2) |
| C(7)            | 4703(3)  | 2824(3)  | 2624(4)  | 37(2)  |
| C(8)            | 5812(3)  | 2885(3)  | 4337(4)  | 34(2)  |
| C(9)            | 4228(3)  | 3502(3)  | 1858(4)  | 35(2)  |
| C(10)           | 4373(4)  | 3833(4)  | 719(5)   | 49(2)  |
| C(11)           | 3645(4)  | 4412(4)  | 499(5)   | 51 (2) |
| C(12)           | 3131(3)  | 4384(3)  | 1516(5)  | 42(2)  |
| C(13)           | 5315(3)  | 935(3)   | 2445(4)  | 30(2)  |
| C(14)           | 5302(3)  | 258(3)   | 3350(4)  | 35(2)  |
| C(15)           | 4732(4)  | -619(3)  | 3232(4)  | 42(2)  |
| C(16)           | 4157(4)  | -816(4)  | 2224(5)  | 48(2)  |
| C(17)           | 4147(4)  | -145(4)  | 1319(5)  | 51 (2) |
| C(18)           | 4730(3)  | 728(4)   | 1426(4)  | 45(2)  |
| C(19)           | 6820(3)  | 1815(3)  | 1561 (4) | 32(2)  |
| C(20)           | 7268(3)  | 998(3)   | 1546(4)  | 36(2)  |
| C(21)           | 7982(4)  | 887(4)   | 713(5)   | 47(2)  |
| C(22)           | 8262(3)  | 1592(4)  | -130(5)  | 53(2)  |
| C(23)           | 7841(4)  | 2412(4)  | -111(4)  | 51 (2) |
| C(24)           | 7124(3)  | 2523(4)  | 740(4)   | 42(2)  |

# Координаты атомов ( Å $\times$ $10^4$ ) и температурные факторы ( Å $\times$ $10^3$ ) соединения Пб\*

. . . .

Star Star

\* Координаты водородных атомов не приведены и могут быть получены у авторов.

| Связь                                        | d, Å                 | Связь                                       | d, Å                 |
|----------------------------------------------|----------------------|---------------------------------------------|----------------------|
| $\frac{Br(1)-C(1)}{Br(2)-C(2)}$              | 1,900(5)             | $N_{(2)} - C_{(12)}$                        | 1,439(7)             |
| $O_{(1)} - C_{(6)}$                          | 1,453(5)             | $C_{(1)} - C_{(2)}$<br>$C_{(1)} - C_{(8)}$  | 1,390(6)             |
| $O_{(1)}-C_{(7)}$<br>$O_{(2)}-C_{(9)}$       | 1,406(5)<br>1,365(6) | $C_{(2)}-C_{(3)}$<br>$C_{(3)}-C_{(4)}$      | 1,374(7)<br>1,389(6) |
| O(2)C(12)                                    | 1,359(6)             | $C_{(4)} - C_{(5)}$                         | 1,392(6)             |
| $O_{(3)}$ $N_{(2)}$ $O_{(4)}$ $N_{(2)}$      | 1,225(7)             | $C_{(5)} - C_{(6)}$<br>$C_{(5)} - C_{(8)}$  | 1,408(6)             |
| N(1)C(7)<br>N(1)C(8)                         | 1,445(6)<br>1,384(6) | $C_{(6)} - C_{(13)}$<br>$C_{(7)} - C_{(9)}$ | 1,542(6)<br>1,498(7) |
| $N_{(1)} - C_{(8)}$<br>$C_{(11)} - C_{(12)}$ | 1,384(6)<br>1,324(7) | $C_{(7)} - C_{(9)}$<br>$C_{(9)} - C_{(10)}$ | 1,498(7)<br>1,337(7) |
| C(6)C(19)                                    | 1,522(6)             | $C_{(10)}-C_{(11)}$                         | 1,417(8)             |

Длины связей (Å) в молекуле соединения Пб\*

\* Длины связей бензольных колец могут быть получены у авторов.

В элементарной ячейке кристалла имеются четыре симметрически независимые молекулы, но поскольку их геометрия неотличима, на рис. 1 показан общий вид одной из них. Как видно из табл. 4, в молекуле Шб нет сильно искаженных связей, по длине отличающихся от стандартных. Конденсированный бензольный цикл плоский (плоскость *1*, среднее отклонение не превышает 0,0046 Å). Аннелированный с ним 1,2-дигидрооксазиновый фрагмент имеет конформацию искаженной твист-ванны. Параметры деформации, рассчитанные по [4], составляют: S = 0,84,  $\theta = 58^{\circ}$ ,  $\varphi = 107^{\circ}$ . Атомы N<sub>(1)</sub> и O<sub>(1)</sub> выходят по одну сторону плоскости *1* на 0,1058 и 0,5368 Å, а атомы C<sub>(6)</sub> и C<sub>(7)</sub> — по другую соответственно на 0,0313 и 0,1174 Å. Атом водорода H<sub>(1N)</sub>, нитрофурановый и бензольный C<sub>(13)</sub>...C<sub>(18)</sub> циклы располагаются на псевдоэкваториальных, а атом H<sub>(7)</sub> и фенильная группа C<sub>(19)</sub>...C<sub>(24)</sub> — на псевдоаксиальных связях.

Плоский фурановый цикл (нитрогруппа лежит в плоскости фуранового кольца) почти идеально заслоняет связь  $C_{(7)}$ — $O_{(1)}$  (торсионный угол  $O_{(1)}$ — $C_{(7)}$ — $C_{(9)}$ — $C_{(10)}$  равен 5,2°). В результате возможен внутримолекулярный контакт  $O_{(1)}$ … $H_{(10)}$  (2,676 Å), фиксирующий такое взаиморасположение.

Таблица 5

| Угол                            | φ, град. | Угол                                          | arphi, град. |  |
|---------------------------------|----------|-----------------------------------------------|--------------|--|
| O(1)-C(6)-C(5)                  | 107,0(3) | $O_{(1)}-C_{(6)}-C_{(5)}-C_{(8)}$             | 24,2         |  |
| $C_{(6)} - C_{(5)} - C_{(8)}$   | 119,3(4) | $C_{(6)}-C_{(5)}-C_{(8)}-N_{(1)}$             | -4,9         |  |
| C(5)-C(8)-N(1)                  | 120,2(4) | C(5)-C(8)-N(1)-C(7)                           | 13,8         |  |
| C(8)-N(1)-C(7)                  | 118,3(4) | $C_{(8)}$ — $N_{(1)}$ — $C_{(7)}$ — $O_{(1)}$ | -42,7        |  |
| N(1)-C(7)-O(1)                  | 108,4(3) | $N_{(1)}-C_{(7)}-O_{(1)}-C_{(6)}$             | 66,5         |  |
| $C_{(7)} - O_{(1)} - C_{(6)}$   | 113,7(3) | $C_{(7)} - O_{(1)} - C_{(6)} - C_{(5)}$       | -56,1        |  |
| $C_{(13)} - C_{(6)} - C_{(14)}$ | 124,0(4) | $O_{(1)}-C_{(7)}-C_{(9)}-C_{(10)}$            | 5,2          |  |

## Некоторые валентные ( $\phi$ ) и торсионные ( $\theta$ ) углы в молекуле соединения IIб

Расположение фенильных заместителей у атома  $C_{(6)}$ , на наш взгляд, удобно описать углами их поворота относительно условной плоскости, проведенной через атомы  $C_{(5)}$ ,  $C_{(6)}$  и  $O_{(1)}$  (плоскость 2). Бензольный цикл  $C_{(13)}...C_{(18)}$  повернут относительно плоскости 2 на 49,5° в одну сторону, а бензольное кольцо  $C_{(19)}...C_{(24)}$  на 62,5° — в другую. В результате оба фенильных заместителя практически взаимно перпендикулярны (угол между их плоскостями равен 86,5°), причем атом  $H_{(20)}$  находится на расстоянии 2,43 Å от плоскости бензольного кольца  $C_{(13)}...C_{(18)}$ , что, видимо, и приводит к сильному искажению валентного угла  $C_{(19)}-..C_{(6)}-C_{(13)}$  (до 124°).

В кристалле нитрофурановый цикл одной молекулы располагается практически параллельно конденсированному бензольному кольцу другой молекулы (рис. 2, угол между плоскостями 0,8°). Расстояние между



Рис. 2. Взаимное расположение фрагментов молекулы Шб в месте межмолекулярного контакта

центрами колец 3,55 Å предполагает возможность перекрывания их *π*-систем (стэкинг-взаимодействие).Учитывая, что электроноакцепторная нитрогруппа понижает энергетический уровень НСМО *π*-системы фуранового кольца, а донорная алкиламиногруппа повышает энергетический уровень ВЗМО бензольного кольца, можно предполагать, что именно это стэкинг-взаимодействие обеспечивает электронный переход, проявляющийся в желтой окраске кристаллов соединения II6.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны в виде суспензии в вазелиновом масле на приборе Specord IR-71. Спектры ПМР получены на спектрометрах Tesla BS-467 A (60 МГц, внутренний стандарт ГМДС) и Varian HA-100D (100 МГц). Электронные спектры поглощения сняты на спектрофотометре Specord M-40 в спирте. Масс-спектры получены на спектрометре LKB-2091 при прямом вводе вещества в ионный источник при энергии ионизирующих электронов 70 эВ и температуре 50 °C. TCX проводили на пластинках Silufol UV-254, элюент бензол, проявитель пары йода.

Рентгеноструктурное исследование. Моноклинные светло-желтые кристаллы соединения Пб, выращенные из спиртового раствора, имеют следующие параметры элементарной ячейки: a = 14,024(3), b = 14,177(2), c = 10,973(2) Å,  $\gamma = 97,91(1)^\circ, V = 2153,81(1,2)$  Å<sup>3</sup>, 1396  $\rho = 1,66 \text{ г/см}^3$ , пространственная группа P2<sub>1/a</sub>, Z = 4. Параметры элементарной ячейки и интенсивности 1753 независимых отражений с  $I > 3 \sigma(I)$  получены на автоматическом дифрактометре Nicolet P1 (МоК $\alpha$ -излучение,  $\theta/2\theta$ -сканирование,  $\sin\theta/\text{WL}(\text{max}) = 0,5385$ ). Структура расшифрована прямым методом с помощью комплекса программ SHELXTL [5] и уточнена в анизотропном (изотропном для атомов водорода) приближении до факторов расходимости R = 0,024 и  $R_w = 0,025$ .

Соединения Іа-з синтезировали по методике [6].

6,8-Дибром-2-(5-нитрофурил-2)-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазин (Пб). К раствору 0,95 г (2,4 ммоль) 2-(5-нитрофурил-2)-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазина (Іб) в 45 мл ледяной уксусной кислоты при охлаждении (ледяная баня) добавляют по каплям 2,46 г (15,4 ммоль) брома и затем перемешивают 1 ч при комнатной температуре. Выпавшие кристаллы продукта отделяют фильтрацией, дополнительные количества продукта из реакционной смеси высаживают водой, промывают слабым раствором бисульфита натрия и сушат на воздухе. Очищают хроматографированием на колонке (сорбент силикагель марки L 40/100, элюент бензол).

Аналогично получают соединения Па,в.

6,8-Дибром-2-(5-нитрофурил-2)-4,4-дифенил-4H-3,1-бензоксазин (Шб). К раствору 0,95 г (2,4 ммоль) 2-(5-нитрофурил-2)-4,4-дифенил-1,2-дигидро-4H-3,1-бензоксазина (Іб) в 10 мл ледяной уксусной кислоты при охлаждении (ледяная баня) добавляют по каплям 2,46 г (15,4 ммоль) брома и затем перемешивают 1 ч при комнатной температуре. Продукт из реакционной смеси высаживают водой, промывают слабым раствором бисульфита натрия и сушат на воздухе, очищают хроматографированием как указано выше.

Аналогично получают соединение Ша.

Выходы и характеристики соединений Ша-в, Ша,б представлены в табл. 1, 2.

### СПИСОК ЛИТЕРАТУРЫ

- Громачевская Е. В., Косулина Т. П., Квитковский Ф. В., Кульневич В. Г. // ХГС. 1997. — № 6. — С. 841.
- Громачевская Е. В., Логинова В. О., Ковалева А. А. // Химия и технология фурановых соединений: Межвуз. сб. науч. тр. Краснодар. политехн. ин-та. — Краснодар, 1987. — С. 45.
- 3. Pat. 2053900 GB / A. Berge, G. Niels, P. Herbert. // C. A. 1981. Vol. 94. 121077.
- 4. Зефиров Н. С., Палюлин В. А. // ДАН. 1980. Т. 252. С. 111.
- Sheldrick G. M. // Computational crystallography. N. Y.; Oxford: Oxford Univ. Press, 1982. — P. 506.
- 6. Громачевская Е. В., Кульневич В. Г., Косулина Т. П., Пустоваров В. С. // ХГС. 1988. № 6. С. 842.

Кубанский государственный технологический университет, Краснодар 350072

Поступило в редакцию 04.12.96