Г. Г. Данагулян, Н. Г. Баласанян, М. Г. Залинян, А. В. Топчян, П. Б. Терентьев

СИНТЕЗ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ НЕКОТОРЫХ О-ПИРИМИДИНИЛКЕТОКСИМОВ

Взаимодействием замещенных хлорпиримидинов с натриевыми солями оксимов алифатических и алициклических кетонов получены О-(4,6-диметилпиримидинил-2)- и О-(2,4-диметилпиримидинил-6) кетоксимы. Реакцией 2-метил-4,6-дихлорпиримидина с солями кетоксимов синтезированы продукты моно- и дизамещения. Изучена биологическая активность синтезированных веществ.

Ранее мы сообщали о синтезе и превращениях некоторых замещенных пиримидинилоксимов метиларилкетонов [1]. Продолжая исследование этого ряда соединений, мы получили новые производные пиримидинил-2- и пиримидинил-6-кетоксимов алифатического ряда и изучили их биологическую активность.

Реакцией 2-хлор-4,6-диметил- и 2,4-диметил-6-хлорпиримидинов с натриевыми солями оксимов алифатических и алициклических кетонов в ДМФА получены (схема 1) соответствующие О-(4,6-диметилпиримидинил 2)- (Ia,в—е) и О-(2,4-диметилпиримидинил-б) оксимы кетонов IIa—д.

Схема 1

CH₃

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{1} = CI, R^{2} = CI$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

I, II $R^3 = CH_3$, a $R^4 = C_2H_5$; 6 $R^4 = C_3H_7$; B $R^4 = C_4H_9$; $R^4 = i - C_4H_9$; $R^4 = C_6H_{13}$; Ie $R^3 - R^4 = (CH_2)_4$

Взаимодействием 2-метил-4,6-дихлорпиримидина с натриевыми солями оксимов ацетона и метилэтилкетона, в зависимости от условий и соотношения реагентов, получены с высокими выходами либо продукты монозамещения — О-(2-метил-4-хлорпиримидинил-6) оксимы (III) (схема2) кетонов (при комнатной температуре и соотношении реагентов 1 : 1), либо бисаддукт — при нагревании дихлорпиримидина с трехкратным избытком соли оксима ацетона.

Продукт дизамещения может быть получен и прямым взаимодействием клорпиримидинилкетоксимов III с натриевой солью оксима кетона, что позволяет в зависимости от используемого кетоксима получать продукт дизамещения с одинаковыми оксимными группами либо бисаддукт с комбинированным сочетанием оксимных групп (схема 3).

Спектры ПМР всех синтезированных соединений содержат сигналы протонов пиримидинового ядра и оксимной группы, что подтверждает

$$\begin{array}{c} \text{CI} \\ \text{Na-O-N=C(R)CH}_3 \\ \text{H}_3\text{C} \\ \text{N}_3\text{C} \\ \text{N}_4\text{C} \\ \text{N}_5\text{C} \\ \text{N}_5\text{C} \\ \text{N}_7\text{C} \\ \text{N}_7\text{$$

образование продуктов конденсации. Симметричность пиримидинового остатка у соединений I проявляется в спектрах ПМР совпадением сигналов метильных групп в положениях 4 и 6, тогда как протоны гетарильных метильных групп в соединениях II отличаются своими химическими сдвигами. В спектрах соединений IIIa и V, содержащих фрагмент оксимной группы ацетона, сигналы алкильных групп проявляются отдельно — двумя синглетами. Аналогичная картина наблюдается в спектре диоксима IV, где отмечены два синглета метильных групп, интеграл каждой из которых соответствует шести протонам.

Na-O-N=C
$$CH_3$$

Na-O-N=C CH_3

Na-O-N=C CH_3

Na-O-N=C CH_3

Na-O-N=C CH_3

C1

Na-O-N=C CH_3

C1

Na-O-N=C CH_3

C1

R = CH_3 , C_6H_5

Как следует из анализа масс-спектров некоторых из синтезированных нами пиримидинилкетоксимов (табл. 1), основные направления распада их молекулярных ионов (схема 4) связаны с расщеплением связи N-О с сохранением заряда на иминном остатке — ионы Φ_1 , Φ_2 . Высокая устойчивость последних, вероятно, объясняется возможностью их стабилизации за счет электрофильной циклизации на соседний атом азота гетероцикла. Для масс-спектров соединений I и II характерны наличие ионов 107* и повышенная интенсивность пиков ионов 124 и 125, образующихся за счет переноса в молекулярном ионе одного или двух атомов водорода от алкильного радикала R на атом (атомы) азота пиримидинового ядра.

Суммарная доля указанных ионов Φ_1 — Φ_4 (около 30% всех ионов) значительно меньше, чем у пиримидинилоксимов ароматических кетонов,

^{*} Здесь и далее для пиков ионов приведены величины m/z.

что говорит о меньшей селективности их распада под действием электронного удара. В масс-спектрах всех О-гетарилоксимов, также как и жирноароматических [1], отсутствуют ионы, указывающие на возможность в процессе распада перегруппировок, что наблюдалось ранее в спектрах других оксимов [2, 3].

Таким образом, анализ характера фрагментации соединений I и II однозначно доказывает их О-гетарилоксимную структуру.

При изучении биологической активности синтезированных соединений установлено, что вещества Іа,г, ІІа,в оказывают влияние на сопротивля-

Таблица 1

Интенсивность ников характеристических ионов в масс-спектрах соединений R—C(CH3)=N—O—Het

Соеди- нение	R	W _M	Φ1	Ф2	Ф3	
Ia	C ₂ H ₅	1,6	0,8	15,4	11,5	
IΒ	C ₄ H ₉	5,1	_	8,6	11,8	
Ir ·	i-C4H9	1,8	0,6	6,8	6,9	
Ie	$(R + CH_3) = (CH_2)_4$	4,2	10,1*	10,1	3,7	
$\Pi_{\mathbf{r}}$	i-C4H9	2,4	1,1	13,8	9,0	

Соеди- нение	m/z ₁₂₄	m/z ₁₂₅	m/z ₁₀₇	m/z96	R ⁺ (Φ ₄)	m/z ₄₂	
Ia	0,4	1	0,9	3,9	 ·	32,5	
IB .	4,2	—	0,7	3,1	5,0	23,6	
Ir	3,4	10,2	0,8	3,3	12,2	14,4	
Ie ·	1,8	3,3	1,2	10,0	8,8*2	1,1	
IIr	3,8	4,1	1,4	2,1	16,2		

^{*} $\sum (M - C_n H_{2n}), n = 2...3.$

^{*2} $\sum C_n H2_{n-1}$, n = 2, 3.

емость кровеносных сосудов мозга. Так, соединение Іа при внутрикаротидном введении в дозе 1 мкг/кг у кошек приводит к понижению сопротивляемости мозговых сосудов от 130 до 110 мм рт. ст. (на 15,4%) при продолжительности действия 10 мин, а при дозе 2 мкг/кг понижение составляет 35 мм рт. ст. (от 135 до 100), или на 26% ниже, при продолжительности 15 мин. Введение соединения Іг (5 мкг/кг) приводит к понижению сопротивляемости мозговых сосудов от 110 до 70 мм рт. ст. (36,4%), без существенных сдвигов со стороны системного давления. Соединение IIв в дозе 2 мкг/кг понижает сопротивление мозговых сосудов от 105 до 60 мм рт. ст. (43%), продолжительность действия 30 мин, однако большие дозы препарата токсичны и приводят к параличу дыхательного центра. Наиболее выраженное и продолжительное влияние на тонус мозговых сосудов и артериальное давление оказывает соединение IIa. В дозе 2 мкг/кг понижение сопротивляемости сосудов составляет от 120 до 70 мм рт. ст., или 41,7%, при продолжительности эффекта 45 мин. При повышении дозы до 1 мг/кг отмечается понижение сопротивляемости мозговых сосудов от 140 до 80 мм рт. ст. (42.9%) с кратковременным понижением артериального давления от 130 до 70 мм рт. ст., которое очень быстро восстанавливается (через 2...3 мин); перфузионное давление остается пониженным в течение еще 45 мин.

Соединения Ів и ІІг во всех исследуемых дозах проявляют высокую токсичность.

Соединение Іг обладает антивирусной активностью против вируса гриппа, Пв — проявляет умеренный эффект в отношении вируса осповакцины, ППб — против вируса венесуэльского энцефаломиелита лошадей (МПК 100 мкг/1 мл).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР зарегистрированы на приборе Varian T-60 в CCl4 и в CDCl3, внутренний стандарт ТМС. Масс-спектры сняты на приборе LKB-2091 при энергии ионизации 70 эВ, с прямым вводом вещества в ионный источник и автоматической обработкой данных на ЭВМ. Для хроматографии в тонком слое использовали пластинки Silufol UV-254, в качестве элюента применяли систему бензол—ацетон, 3:1, проявляли парами йода и реактивом Эрлиха.

О-(4,6-Диметилпиримидинил-2)- и О-(2,4-диметилпиримидинил-6) оксимы кетонов (Іа,в—е, ІІа—д). (Общая методика). К 2,5 г (0,11 моль) натриевой суспензии в 300 мл абсолютного эфира добавляют по каплям в течение 30 мин раствор 0,12 моль соответствующего оксима в 100 мл абсолютного эфира. Смесь перемешивают до полного исчезновения металлического натрия (10...12 ч), отгоняют эфир и к остатку доливают 50 мл ДМФА. После перемешивания в течение 15 мин и полного растворения натриевой соли оксима декантируют от остатков непрореагировавшего натрия, доливают раствор 14,3 г (0,1 моль) соответствующего хлорпиримидина в 30 мл ДМФА, причем во избежание осмоления не допускают повышения температуры выше 35 °С. Перемешивают при комнатной температуре 2...3 ч и оставляют на ночь. Отгоняют досуха ДМФА в вакууме при температуре 45...50 °С, охлаждают, доливают 20 мл воды, экстрагируют хлороформом (2×100 мл) и сушат сульфатом магния. После отгонки хлороформа остаток перегоняют в вакууме (табл. 2).

О-(2-Метил-4-хлорпиримидинил-6) оксимы ацетона и метилэтилкетона (Ша,б). Аналогично предыдущему из 0,69 г (0,03 моль) натриевой суспензии в 50 мл абсолютного эфира и 0,03 моль оксима ацетона (2,2 г) или метилэтилкетона (2,6 г) получают натриевую соль оксима, к которой без отгонки эфира доливают при охлаждении (10...12 °C) раствор 4,9 г (0,03 моль) 2-метил-4,6-дихлорпиримидина в 40 мл ДМФА, далее перемешивают при комнатной температуре 15...18 ч. После удаления при пониженном давлении растворителей к остатку доливают 50 мл воды и экстрагируют хлороформом. Экстракт сушат сульфатом магния. Отгоняют растворитель и остаток сублимируют при 85...100 °C/6 мм рт. ст. (соединение Ша) либо перегоняют в атмосфере инертного газа (соединение Шб) (табл. 2).

2-Метил-4,6-(диизопропилидениминокси) пиримидин (IV). А. К натриевой соли оксима ацетона, полученной из 1,38 г (0,06 моль) металлического натрия и 4,4 г (0,06 моль) оксима

•					Характе	ристика с	оединений	ı—v		
Соеди- нение	Брутго- формула	Bi	Найдено, % ычислено, °	%	Т _{КИП} , °С/мм рт. ст.	n_D^{20}	d4 ²⁰	R _f	Спектр ПМР, δ , м. д.	Выхо,
.*		С	Н	N	(T _{ПЛ} , °C)					
1	2	3	4	5	6	7	8	9	10	11
Įa	C ₁₀ H ₁₅ N ₃ O	62,37 62,15	8,05 7,82	21,50 21,74	118119/4	1,5190	1,0415	0,35	1,24 (3H, т, <u>CH</u> 3CH ₂); 2,1 (3H, с, CH ₃ -C=N); 2,31 (6H, с, 4-и 6-CH ₃); 2,35 (2H, к, CH ₂ -CH ₃); 6,6 (1H, с, 5-H)	82
Ів	$C_{12}H_{19}N_3O$	64,91 65,13	8,48 8,65	19,14 18,99	122124/2	1,5120	1,0185	0,40	0,711,64 (9H, M, C4H9); 2,0 (3H, c, CH3C=N); 2,38 (6H, c, 4- µ 6-CH3); 6,69 (1H, c, 5-H)	80
Ir	C ₁₂ H ₁₉ N ₃ O	65,40 65,13	8,89 8,65	19,21 18,99	115116/1	1,5140	1,0228	0,42	1,151,7 (7H, M, CH(CH ₃) ₂); 1,8 (3H, c, CH ₃ -C=N); 1,85 (2H, д, CH ₂ -CH(CH ₃) ₂); 2,35 (6H, c, 4- µ 6-CH ₃); 6,72 (1H, c, 5-H)	79
Ід	$C_{14}H_{23}N_3O$	67,68 67,44	9,55 9,30	16,66 16,85	145147/2			0,45	1,051,85 (13H, c, C ₆ H ₁₃); 1,8 (3H, c, CH ₃ -C=N); 2,30 (6H, c, 4- \(\mu\) 6-CH ₃); 6,65 (1H, \(\cdot\), 5-H)	80
.Ie	C ₁₁ H ₁₅ N ₃ O	64,51 64,37	7,49 7,37	20,64 20,47	(7173)	. .:		0,43	1,41,6 (4H, м, 3'-CH ₂ и 4'-CH ₂); 1,82,0 (4H, т, 2'-CH ₂ и 5'-CH ₂); 2,3 (6H, с, 4- и 6-CH ₃); 6,4 (1H, с, 5-H)	44
IĮa	C ₁₀ H ₁₅ N ₃ O	62,40 62,15	7,97 7,82	$\frac{21,51}{21,74}$	120/4	1,5130	1,0384	0,5	1,15 (3H, τ, CH ₃ CH ₂); 2,0 (3H, c, CH ₃ -C=N); 2,3 (2H, κ, CH ₂ CH ₃); 2,32 (3H, c, 2-CH ₃); 2,4 (3H, c, 4-CH ₃); 6,77 (1H, c, 5-H)	82
116	C ₁₁ H ₁₇ N ₃ O	63,89 63,74	8,50 8,27	20,04 20,27	98/2	1,5080	1,0375	0,55	1,21,8 (5H, м, <u>CH₂CH₂CH₂</u>); 2,0 (3H, с, <u>CH₃-C=N</u>); 2,28 (2H, к, <u>CH₂CH₂CH₃); 2,36 (6H, с, 2-и 4-CH₃); 6,82 (1H, с, 5-H)</u>	80
Пв	C ₁₂ H ₁₉ N ₃ O	64,87 65,13	8,74 8,65	19,75 18,99	134135/4	1,5035	0,9613	0,56	1,151,75 (9H, M, C4H9); 1,9 (3H, c, CH3-C=N); 2,38 (3H, c, 2-CH3); 2,40 (3H, c, 4-CH3); 6,85 (1H, c, 5-H)	83

1	2	3	4	. 5	6	7	8	9	10	11
IIr	C ₁₂ H ₁₉ N ₃ O	64,84 65,13	8,41 8,65	18,78 18,99	127/5	1,5022	1,0025	0,55	1,131,80 (9H, M, C ₄ H ₉); 1,80 (3H, c, CH ₃ -C=N); 2,40 (3H, c, 2-CH ₃); 2,43 (3H, c, 4-CH ₃); 6,85 (1H, c, 5-H)	85
Ид	C ₁₄ H ₂₃ N ₃ O	67,65 67,44	9,09 9,30	16,62 16,85	132/2	1,4990	0,9848	0,50	1,11,9 (13H, M, C ₆ H ₁₃); 1,9 (3H, c, CH ₃ -C=N); 2,25 (3H, c, 2-CH ₃); 2,3 (3H, c, 4-CH ₃); 6,80 (1H, c, 5-H)	82
IIĮa	C ₈ H ₁₀ ClN ₃ O	47,87 48,13	5,18 5,05	$\frac{21,24}{21,05}$	85100/6 субл. (7879)		- 	0,75	1,95 (3H, c, CH ₂); 2,07 (3H, c, CH ₃); 2,5 (3H, c, 2-CH ₃); 6,83 (1H, c, 5-H)	75
Шб	C ₉ H ₁₂ ClN ₃ O	50,42 50,59	5,41 5,66	19,50 19,65	111112/3 (3035)			0,77	1,1 (3H, T, <u>CH</u> ₃ CH ₂); 2,0 (3H, c, CH ₃ C=N); 2,3 (2H, K, <u>CH</u> ₂ CH ₃); 2,45 (3H, c, 2-CH ₃); 7,0 (1H, c, 5-H)	57
· IV	$C_{11}H_{16}N_4O_2$	55,80 55,92	6,65 6,82	$\frac{23,57}{23,71}$	132134/2 (103105)			0,57	1,9 (6H, c, CH ₃); 1,98 (6H, c, CH ₃); 2,30 (3H, c, 2-CH ₃); 6,66 (1H, c, 5-H)	65
V	C ₁₆ H ₁₈ N ₄ O ₂	64,24 64,41	5,91 6,08	$\frac{18,95}{18,78}$	(175176)			0,67	1,95 (3H, c, (CH ₃) ₂ C=N); 1,98 (3H, c, (CH ₃) ₂ C=N); 2,32 (3H, c, CH ₃ -C=N); 2,40 (3H, c, 2-CH ₃); 6,9 (1H, c, 5-H); 7,37,6 (5H, м, C ₆ H ₅)	67
	•									
							· · · · · · · · · · · · · · · · · · ·			

ацетона, приготовленного по описанной выше общей методике, доливают раствор 3,26 г (0,02 моль) 2-метил-4,6-дихлорпиримидина в 20 мл ДМФА. Нагревают 5...6 ч при 50...60 °С, далее растворитель отгоняют при пониженном давлении. К остатку доливают 100 мл хлороформа, фильтруют, экстракт сульфатом магния. Отгоняют хлороформ, остаток перегоняют в вакууме (табл. 2).

- Б. К полученной взаимодействием 3,65 г (0,05 моль) оксима ацетона с 1,035 г (0,045 моль) натриевой суспензии в 80 мл абсолютного эфира натриевой соли оксима ацетона после удаления эфира доливают 25 мл ДМФА и далее раствор 4 г (0,02 моль) оксима Ша в 25 мл ДМФА. Наблюдается повышение температуры. Смесь оставляют на ночь, отгоняют растворитель, доливают 30 мл воды, осадок отфильтровывают. Сушат на воздухе. Перекристаллизовывают из воды. Выход 3,9 г (83%).
- O-(2-Метил-4-изопропилидениминоксипиримидинил-6) оксим ацетофенона (V). А. К натриевой соли оксима ацетофенона, полученной из $0,46\,\mathrm{r}$ (0,02 моль) металлического натрия и $2,7\,\mathrm{r}$ (0,02 моль) оксима ацетофенона, доливают раствор $4\,\mathrm{r}$ (0,02 моль) оксима Ша в $25\,\mathrm{mn}$ ДМФА. Нагревают $6\,\mathrm{u}$ при $50...60\,^{\circ}$ С, далее при пониженном давлении отгоняют растворитель, к остатку доливают $50\,\mathrm{mn}$ воды, выпавший осадок отфильтровывают, промывают гексаном, перекристаллизовывают из смеси бензол—ацетон, 4:1.
- Б. Аналогично из 0.012 моль натриевой соли оксима ацетона и 2.6 г (0.01 моль) О-(2-метил-4-хлорпиримидинил-6) оксима ацетофенона [1] в 20 мл ДМФА получают 1.9 г (64%) соединения V (табл. 2).

Работа выполнена в рамках научной темы (шифр 96-559), субсидируемой из источников государственного централизованного финансирования Республики Армения, а также при финансовой поддержке Международного научного фонда (грант MVT 000).

СПИСОК ЛИТЕРАТУРЫ

- Данагулян Г. Г., Баласанян Н. Г., Терентьев П. Б., Залинян М. Г. // ХГС. 1989. № 12. — С. 1644.
- 2. Terentiev P. B., Kost A. N., Lange J. // Org. Mass Spectrom. 1974. Vol. 9. P. 1022.
- 3. Hennion J. D., Kingston D. G. J. // Org. Mass Spectrom. 1978. Vol. 13. P. 431.

Ереванский институт народного хозяйства, Ереван 375025 Поступило в редакцию 13.01.97

Московский государственный университет им. М. В. Ломоносова, Москва 119899