С. А. Ямашкин, Н. Я. Кучеренко, М. А. Юровская

О СИНТЕЗЕ ПИРРОЛОХИНОЛИНОВ ИЗ 2,3-ДИМЕТИЛ-5-МЕТОКСИ-6-АМИНОИНДОЛА

Образование енаминокетонов, енаминокротоната и аминометиленмалоната из 2,3-диметил-5-метокси-6-аминоиндола протекает значительно труднее, чем в случае 7-метоксианалога. Такая же закономерность наблюдается при превращении енаминов в соответствующие пирролохинолины независимо от условий проведения циклизации.

Изучая влияние метоксильной группы в бензольном кольце 2,3-диметил-6-аминоиндолов на способность последних вступать в реакции конденсации с дикарбонильными соединениями с дальнейшей циклизацией, мы обнаружили [1], что метоксигруппа в положении 7 благоприятствует образованию как енаминов, так и соответствующих пирролохинолинов. Вызывает интерес поведение в аналогичных реакциях 2,3-диметил-5-метокси-6-аминоиндола (1). Мы установили, что аминоиндол I при нагревании с дикетонами образует соответствующие енамины IIa,6, а с ацетоуксусным эфиром в бензоле со следами уксусной кислоты — енаминокротонат IIв.

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{NH} \\ \text{NH} \\ \text{II} \\ \text{MeO} \\$$

Ha
$$R = R^1 = Me$$
; $\delta R = R^1 = Ph$; $B = Me$, $R^1 = OEt$

Аналогично, кипячение аминоиндола I с этоксиметиленмалоновым эфиром приводит к аминометиленмалонату IIг.

I EtO-CH=C
$$CO_2Et$$
 MeO Me Me Me Me C CO_2Et C CO_2Et C CO_2Et IIr

Во всех случаях использования соединения I для окончания реакции требуется более длительное нагревание, чем для 7-метоксианалога. Время превращений, спектральные и другие характеристики соединений II приведены в табл. 1.

Енаминокетоны IIа, б в трифторуксусной кислоте превращаются в соответствующие пирролохинолины IIIа, б с угловым сочленением колец. Однако в отличие от енаминокетонов с метоксигруппой в положении 7, для которых реакция заканчивается в течение 1,5...2 ч, для циклизации енамина IIа в пирролохинолин IIIа требуется кипячение в течение 14 ч (контроль хроматографический).

Условия получения и характеристики енаминов II

Соединение	Брутто-формула	<u>Найдено, %</u> Вычислено, %			<i>Т</i> пл, °С	R _f (система)	УФ спектр		Спектр ПМР, б, м. д.	Условия и продолжи-	Выход
		С	Н	М*	- 11111	(система)	λ_{\max}	ig ε	Chong That, O, In A	тельность реакции	%
Ца, 4-(2,3-диметил-5-метоксииндолил-6)аминопентен-3-он-2	C ₁₆ H ₂₀ N ₂ O ₂	70,16 70,56	7,10 7,40	272 272	183,5184,5	0,07 (A)	207, 225, 323	4,33, 4,29, 4,18	1,94 (3H, c, β -CH ₃); 2,01 (3H, c, α -CH ₃); 2,19 (3H, c, 3-CH ₃); 2,33 (3H, c, 2-CH ₃); 3,82 (3H, c, 0-CH ₃); 5,19 (1H, c, H _{DMH}); 6,99 (1H, c, 4-H); 7,05 (1H, c, 7-H); 10,37 (1H, c, 1-H); 12,17 (1H, c, H _{MMH})	а, 4 ч	33
Иб, 1,3-дифенил-3-(2,3-ди- метил-5-метоксииндо- лил-6)аминопропен-3-он-1	C ₂₆ H ₂₄ N ₂ O ₂	78,25 78,76	6,32 6,10	396 396	172173	0,53 (A)	207, 245 (пл), 303, 417	4,39, 4,23, 4,09, 4,02	2,15 (3H, c, 3-CH ₃); 2,25 (3H, c, 2-CH ₃); 3,90 (3H, c, OCH ₃); 6,07 (1H, c, H _{вин}); 6,43 (1H, c, 4-H); 6,93 (1H, c, 7-H); 7,70 (10H, м, 2C ₆ H ₅); 10,15 (1H, c, 1-H); 12,74 (1H, c, NH _{имин})	б, 4 ч	32
IIв, этиловый эфир β - [(2,3-диметил-5-метокси-индолил-6) амино] кротоновой кислоты	C ₁₉ H ₂₄ N ₂ O ₅	67,11 67,53	7,01 7,33	302 302	123124	0,48 (A)	214, 313	4,72, 4,23	*2 1,25 (3H, τ, OCH ₂ CH ₃ , J = 7 Γμ); 1,75 (3H, c, β -CH ₃); 2,07 (3H, c, 3-CH ₃); 2,18 (3H, c, 2-CH ₃); 3,66 (3H, c, OCH ₃); 4,06 (2H, κ, OCH ₂ CH ₃ , J = 7 Γμ); 4,50 (1H, c, H _{BMH}); 6,58 (1H, c, 4-H); 6,73 (1H, 7-H); 8,46 (1H, c, NH _{MMH}); 9,92 (1H, c, 1-H)	в, 9 ч	38
IIг, диэтиловый эфир N-(2,3-диметил-5-метокси-индолил-6)аминометиленмалоновой кислоты	C ₁₉ H ₂₄ N ₂ O ₅	63,20 63,32	6,63 6,71	360 360	159160	0,1 <i>5</i> (A)	210, 229, 285 (пл), 364	4,28, 4,25, 3,90, 4,28	1,27 (6H, м, 2CH ₂ CH ₃); 2,18 (3H, с, 3-CH ₃); 2,32 (3H, с, 2-CH ₃); 3,90 (3H, с, OCH ₃); 4,20 (4H, м, 2 <u>CH₂CH₃); 7,05 (1H, с, 7-H); 7,20 (1H, с, 4-H); 8,50 (1H, д, $H_{\text{ВИН}}$, $J=16$ Гη); 10,40 (1H, с, 1-H); 11,02 (1H, д, $NH_{\text{ИМИН}}$, $J=16$ Гη)</u>	ટ, 4 પ	67

^{*2} Масс-спектрометрически. В CCl4 относительно ГМДС.

IIIa $R = R^1 = Me$, $\delta R = R^1 = Ph$

Еще более длительного нагревания (20 ч) требует процесс образования пирролохинолина IIIIб из енамина IIб. Такая же закономерность наблюдается и для циклизации аминокротоната IIв в условиях реакции Вильсмейера.

Казалось бы, образование угловых пирролохинолинов при термической циклизации соединений Пв,г должно протекать гладко, так как оно предпочтительно даже в случае двух свободных о-положений [2]. Вопреки этому высокотемпературная циклизация соединения Пв (кипячение в дифениле) требует существенного увеличения времени реакции, что приводит к сильному осмолению. Это затрудняет выделение пирролохинолона ППв в чистом виде и о его образовании можно судить лишь качественно по данным ТСХ.

В случае енаминомалоната IIг также требуется более длительное нагревание, чем для соответствующего 7-метоксипроизводного, однако пирролохинолин IIIг удается выделить. Это связано, по-видимому, с несколько большей реакционной способностью соединения IIг, что позволяет снизить температуру циклизации (с 280 до 250 °C).

Шд

Физико-химические данные, подтверждающие строение полученных пирролохинолинов III, приведены в табл. 2.

Условия получения и характеристики пирролохинолинов III

Соединение	Брутто-формула	Найдено, %			<i>Т</i> пл, °С	<i>Rf</i> (система)	УФ спектр		Спектр ПМР, В. м. д.	Условия и продолжи- тельность	Выход,
		Вычислено, %									
		c -	Н	M*	-	(CHCICINIA)	λ_{\max}	lg €		реакции	
IIIa, 2,3,7,9- тетраметил-5-ме- токсипирроло [2, 3-f] хинолин	C ₁₆ H ₁₈ N ₂ O	75,70 75,56	6,99 7,13	254 254	256258	0,20 (Б)	210, 244, 286	4,24, 4,00, 4,37	2,24 (3H, c, 3-CH ₃); 2,47 (3H, c, 2-CH ₃); 2,62 (3H, c, 9-CH ₃); 2,91 (3H, c, 7-H); 4,02 (3H, c, OCH ₃); 7,19 (1H, c, 8-H); 7,22 (1H, c, 4-H); 10,20 (1H, c, 1-H)	∂, 14 ч	52
IIIб, 2,3-диме- тил-7,9-дифе- нил-5-метокси- пирроло [2, 3-f]хинолин	C ₂₆ H ₂₂ N ₂ O	82,03 82,51	5,40 5,86	378 378	191192	0,47 (A)	208, 270, 313	4,32, 4,02, 4,32	2,11 (3H, c, 3-CH ₃); 2,19 (3H, c, 2-CH ₃); 4,08 (3H, c, OCH ₃); 7,85 (12H, м, 4-, 8-H и 7-, 9-C ₆ H ₅)	∂, 20 ч	25
IIIв, 2,3,7-три- метил-5-меток- си-8-этокси- карбонилпирро- ло [2,3-f] хинолин	C ₁₈ H ₂₀ N ₂ O ₃	69,30 69,21	6,31 6,45	312 312	244245	0,76 (Б)	208, 240 (11.11), 257, 313	4,34, 4,20, 4,27, 4,23	1,40 (3H, τ, OCH ₂ CH ₃ , J = 7 Γμ); 2,27 (3H, c, 3-CH ₃); 2,40 (3H, c, 2-CH ₃); 2,90 (3H, c, 7-CH ₃); 4,00 (3H, c, OCH ₃); 4,41 (2H, κ, OCH ₂ CH ₃ , J = 7 Γμ); 7,30 (1H, c, 4-CH ₃); 9,13 (1H, c, 9-H); 11,60 (1H, c, 1-H)	е, 12 ч	36
Шд, 2,3-диметил-9-гидрокси-5-метокси-8этокси- қарбонилпирроло [2,3-f] хинолин	C ₁₇ H ₁₈ N ₂ O ₄	64,51 64,96	5,15 5,77	314 314	235237	0,52 (Б)	210, 233, 260, 333	4,16, 4,29, 4,35, 3,89	1,33 (3H, т, CH ₂ CH ₃ , <i>J</i> = 7 Fn); 2,34 (3H, с, 3-CH ₃); 2,52 (3H, с, 2-CH ₃); 4,02 (3H, с, OCH ₃); 4,30 (2H, к, <u>CH₂CH₃</u> , <i>J</i> = 7 Fn); 7,28 (1H, с, 4-H); 8,52 (1H, с, 7-H); 11,00 (1H, с, OH); 11,40 (1H, с, 1-H)	ж, 30 мин	30

^{*} Масс-спектрометрически.

Обобщая полученные экспериментальные данные, можно сказать, что образоание енаминокетонов, аминокротоната и аминометиленмалоната из 2,3-диметил-5-метокси-6-аминоиндола затруднено по сравнению с 7-метоксианалогом, видимо, за счет уменьшения нуклеофильности амина І. В еще большей степени метоксигруппа в положении 5 снижает реакционную способность положения 7 индольного ядра в реакциях циклизации с образованием пиридинового цикла. Однако, несмотря на более жесткие условия проведения циклизации и более низкие выходы, 2,3-диметил-5-метокси-6-аминоиндол может быть использован для получения пирролохинолинов заведомо углового строения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР зарегистрированы на приборе AC-200P (Bruker) в ДМСО- D_6 , внутренний стандарт ТМС. УФ спектры измерены на спектрофотометре Specord в этаноле. Масс-спектры получены на масс-спектры измерены на спектрофотометре Specord в этаноле. Масс-спектры получены на масс-спектрометре Varian MAT-112. Контроль за чистотой выделенных соединений проводили хроматографически на Silufol UV-254 в системах: бензол—этилацетат, 10:1 (A); этилацетат—метанол, 10:1 (Б). Енамины II и пирролохинолины III получены по методикам, описанным в работе [1]. Условия образования енаминов из аминоиндола I: a — кипячение с ацетилацетоном, δ — нагревание с дибензоилметаном при 170...180 °C, ϵ — кипячение с ацетоуксусным эфиром в бензоле со следами уксусной кислоты, ϵ — кипячение в трифторуксусной кислоте, ϵ — кипячение в хлороформе с реактивом Вильсмейера, κ — кипячение в даутерме. Соединения IIа, δ , в, III δ , в, д перекристаллизовывют из смеси гептана с бензолом, соединения IIг, IIIа, г — из водного спирта. Константы, спектральные и другие характеристики, а также условия и время проведения реакций приведены в табл. 1 и 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ямашкин С. А., Кучеренко Н. Я., Юровская М. А. // ХГС. 1997. № 1. С. 75.
- 2. Ямашкин С. А., Юдин Л. Г., Кост А. Н. // ХГС. 1983. № 4. С. 493

Мордовский государственный педагогический институт им. М. Е. Евсевьева, Саранск 430007

Московский государственный университет им. М. В. Ломоносова, Москва 119899 Поступило в редакцию 19.03.97