Е. В. Бабаев, К. Ю. Пасичниченко, Д. А. Майборода ГЕТАРЕНЫ С МОСТИКОВЫМ АТОМОМ АЗОТА

6*. АМБИДЕНТНЫЕ СВОЙСТВА ЯДРА ОКСАЗОЛО[3,2-а]ПИРИДИНИЯ В РЕАКЦИЯХ С НУКЛЕОФИЛАМИ: ПРОГНОЗ И ЭКСПЕРИМЕНТ

Изучена проблема амбидентного раскрытия пяти- и шестичленного циклов гетероароматического катиона оксазоло [3,2-а] пиридиния. Квантовохимический расчет методом SINDO1 энергий изомерных аддуктов этого катиона с нуклеофилами предсказывает предпочтительное образование С(9)-аддукта в случае ионов ОН и SH с раскрытием оксазольного фрагмента, тогда как для азотсодержащих нуклеофилов (NH2, NMe2) вероятна также атака и по атому С(5) с раскрытием пиридинового фрагмента. Экспериментально обнаружено, что этот катион подвергается раскрытию пятичленного цикла в реакции с NaSH, шестичленного — в реакции с пиперидином и раскрытию обоих циклов в реакции с аммиаком.

Известно, что ароматические катионы оксазоло [3,2-а] пиридиния (I) в реакциях с нуклеофилами (щелочь [2], первичные амины [3, 4], карбанионы [1, 5]) подвергаются раскрытию и рециклизации исключительно пятичленного оксазольного фрагмента (направление A, схема 1). Вместе с тем, в ряду аналогичных мостиковых катионов азолопиридиния (содержащих аннелированное по связи С—N ядро тиазола и других азолов) под действием широкого круга нуклеофилов наблюдалось раскрытие пиридиниевого фрагмента [6—8] (направление Б, схема 1).

Схема 1

Nu
$$X = S$$
; $Y = Z = C$
 $X = N$ (NR) ; $Y = Z = C$, N (NR)
 $X = C$; $Y = Z = C$, N (NR)

Способна ли система оксазоло [3,2-а] пиридиния к раскрытию шестичленного цикла и, в более широком смысле, к проявлению амбидентных свойств в реакциях с нуклеофилами? Для ответа на этот вопрос в настоящей работе предпринят теоретический анализ реакционной способности катиона I по отношению к реакциям присоединения различных нуклеофилов. Верификация полученных результатов, осуществленная экспериментально, позволила обнаружить первый пример раскрытия шестичленного цикла этого катиона, а также осуществить ряд не известных ранее рециклизаций, включающих стадию раскрытия пятичленного цикла.

Квантово-химический анализ реакционной способности катиона I проводился полуэмпирическим методом SINDO1 [9]. Распределение зарядов в катионе I приведено на схеме 2.

^{*} Сообщение 5 см. [1].

II-V a X = OH, $\delta X = SH$, $B X = NH_2$, $F X = NMe_2$

Распределение полных зарядов в катионе оксазоло [3,2-a] пиридиния I и структуры изомерных аддуктов катиона I с нуклеофилами

Хотя в катионе I и имеется несколько электронодефицитных центров (атомы $C_{(9)}$, $C_{(7)}$, $C_{(5)}$ и $C_{(2)}$), тем не менее наибольший положительный заряд сосредоточен на мостиковом атоме $C_{(9)}$, что не дает явных оснований для выводов об амбидентности этой системы по отношению к нуклеофильной атаке.

Селективность нуклеофильной атаки в катионе I можно выявить и другим способом: сопоставляя энергии изомерных аддуктов с нуклеофилом по различным положениям ядра. Такие расчеты были проведены для изомерных $C_{(9)}$ -, $C_{(7)}$ -, $C_{(5)}$ - и $C_{(2)}$ -аддуктов; в качестве нуклеофильных остатков были выбраны группы OH, SH, NH₂ и N(CH₃)₂ (см. табл. 1). Как видно, во всех случаях термодинамически наиболее стабильным оказывается $C_{(9)}$ -аддукт (структуры IIa—r), являющийся интермедиатом раскрытия пятичленного цикла (схема IA).

Следующим по стабильности для всех рассмотренных случаев оказывается аддукт по положению $C_{(5)}$ (структуры IIIа—r), являющийся интермедиатом раскрытия шестичленного цикла (схема 1Б) (см. табл. 2).

Как видно из данных табл. 2, при переходе от О- и S-нуклеофилов к азотсодержащим группам (NH₂, NMe₂) разница в энергиях С(9) и С(5) аддуктов сглаживается, причем наиболее близки энергии изомерных аддуктов в случае диметиламиногруппы (структуры IIr и IIIr). В этой связи наиболее перспективными нуклеофилами, потенциально способными вызвать раскрытие шестичленного цикла (по схеме 1Б), могли бы явиться вторичные амины.

Заметим, что в известной реакции катиона I со щелочью [2] однозначно образуется продукт раскрытия пятичленного цикла — $N-(\beta$ -оксоалкил) пиридон-2 (по схеме 1A) в полном соответствии с приведенными расчетами. Тем не менее вторичные амины, как и простейшие обсуждаемые нуклеофилы

Таблица. 1 Полная энергия (а. и.) изомерных аддуктов катиона I с нуклеофилами

Нуклеофил (а—г), аддукт (II—V)	OH (a)	SH (6)	NH ₂ (B)	N(CH ₃) ₂ (r)	
				1	
II С ₍₉₎ -аддукт	-86,620425	-80,698696	-81,398581	-95,195569	
III С(5)-аддукт	-86,613322	-80,691706	-81,395822	-95,194263	
IV С(7)-аддукт	-86,600707	-80,686487	-81,384776	-95,183500	
V C ₍₂₎ -аддукт	-86,603989	-80,682971	-81,383291	-95,182777	

	Разница	В	эне	ргиях	(KKZ	ил/моль)	для	изомерн	ых	аддукто	В
по	отношен	INK	K	наибо	лее	стабилы	юму	аддукту	по	атому	C ₍₉₎

Нуклеофил (а—г), аддукт (II—V)	OH (a)	SH (б)	NH ₂ (B)	N(CH ₃) ₂ (r)	
		*.		• • •	
II C ₍₉₎ -аддукт	0	0	0	0	
III С(5)-аддукт	4,46	4,39	1,73	0,82	
IV С(7)-аддукт	12,37	7,66	8,66	7,57	
V C ₍₂₎ -аддукт	10,31	9,87	9,59	8,03	

(аммиак и гидросульфид-ион), широко используемые для трансформации кислородсодержащих гетероциклов, до сих пор не применялись в качестве реагентов, способных вызвать раскрытие (рециклизацию) оксазолопиридинов.

Нами найдено, что в реакции перхлората 2-фенилоксазоло [3,2-a] пиридиния (Ia) с раствором гидросульфида натрия в ДМФА гладко образуется N-фенацилпиридинтион-2 (VI) (выход 90%). Последний в кислой среде легко замыкает тиазолиевый цикл [2], образуя катион тиазолопиридиния VII.

Мы также обнаружили, что под действием пиперидина перхлорат 2-фенилоксазоло [3,2-a] пиридиния ([a]) подвергается раскрытию шестичленного фрагмента с образованием 1-пиперидил-4-(5-фенилоксазолил-2) бутадиена (VIII).

 $NR_2H = пиперидин$

Строение полученного аминобутадиена было доказано совокупностью спектральных данных. В масс-спектре наблюдается пик молекулярного иона (формально соответствующий 1:1 аддукту исходного катиона с амином), а также интенсивный пик m/z 196 (потеря пиперидинового фрагмента), вероятно, отвечающий внутримолекулярной циклизации молекулярного иона VIII в катион Ia. В УФ спектре диена присутствуют интенсивная длинноволновая полоса поглощения при 382 нм, а в ИК спектре — карактеристичные для диенов частоты колебаний при 1628 см $^{-1}$. Спектр ПМР оксазолилбутадиена VIII аналогичен спектрам известных тиааналогов (α -амино- ω -тиазолилбутадиенов [8]). Наблюдаемые в спектре ПМР КССВ ($J_{12}=13,1;\ J_{23}=11,2;\ J_{34}=15,5\ \Gamma$ ц) позволяют приписать диену VIII геометрию mpanc-mpanc-типа. Наблюдаемое направление реакции является первым примером раскрытия шестичленного цикла в ароматической системе оксазоло [3,2-a] пиридиния и открывает путь синтеза ранее труднодоступных α -амино- ω -(оксазолил-2) бутадиенов. Заметим, что хотя бутадиен VIII

оказался нестабильным и с трудом поддается очистке, другие его аналоги, в частности полученные нами из 2-(*n*-нитрофенил) оксазолопиридиния, оказались вполне устойчивыми кристаллическими соединениями, синтез и свойства которых составят предмет отдельного сообщения.

Таким образом, различное поведение катиона Іа в реакции с гидросульфидом (раскрытие по схеме ІА) и в реакции со вторичным амином (раскрытие по схеме 1Б) качественно согласуется с данными проведенного расчета для модельного катиона І. По-видимому, незначительная разница в энергии С(5)- и С(9)-аддуктов в реакции катиона оксазоло [3,2-а] пиридиния со вторичным амином (см. табл. 2) оказывается достаточной для протекания процесса по схеме 1А с разрывом связи С(5)—N. Отсутствие продукта раскрытия пятичленного цикла в этом случае, вероятно, связано с возможной неустойчивостью цвиттер-ионного соединения, которое могло бы образовываться при разрыве связи С(9)—О в аддукте ІІг.

Полученные результаты не позволяли сделать однозначного прогноза о направлении протекания реакции катиона I с аммиаком. Нами найдено, что при действии на раствор катиона 2-фенилоксазоло [3,2-а] пиридиния в ДМФА газообразного аммиака реакция селективно протекает с образованием исключительно 2-фенил [1,2-а] имидазопиридина (IX) (выход 63%). Между тем, при растворении этого катиона в жидком аммиаке была выделена смесь того же имидазопиридина IX (продукта рециклизации пятичленного цикла) и небольшое количество оранжевого соединения, которому на основании совокупности спектральных данных (ЯМР, УФ и масс-спектра) было приписано строение продукта раскрытия шестичленного фрагмента катиона I, т. е. аминобутадиена X.

УФ, ПМР и масс-спектры аминобутадиена X весьма напоминают спектры пиперидилбутадиена VIII (см. Экспериментальную часть).

Обнаруженные схемы обмена кислородного гетероатома катиона I на атом серы (двухступенчатый процесс) и на атом азота («опе-рот» превращение), аналотичные реакции Юрьева в ряду пятичленных гетаренов, до сих пор не применялась в синтезах мостиковых тетероциклов VII и IX [10]. Касаясь препаративного аспекта этих рециклизаций, следует отметить, что оба процесса обмена гетероатомов оказались весьма чувствительными к присутствию следов воды. Так, при использовании в реакции с катионом Iа водных растворов сульфидов и гидросульфидов щелочных металлов или водного аммиака заметным побочным продуктом оказывался N-фенацилии-ридон-2, легко образующийся, как отмечалось, при щелочном гидролизе катиона I.

Таким образом, в зависимости от природы используемого нуклеофила катион I проявляет амбидентные свойства, подвергаясь раскрытию либо пятичленного цикла (растворы аммиака и гидросульфида), либо шестичленного (вторичный амин), либо, наконец, любого из циклов (жидкий NH₃).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Квантово-химический расчет проводили методом SINDO1 [9] (WS5, Theoretische Chemie, Hannover). ИК спектры сняты на приборе UR-20 в вазелиновом масле, УФ спектры — на приборе Varian-K325, спектры ПМР зарегистрированы на приборах АМ-400 и АС-200 Bruker; внутренний стандарт ТМС. Контроль протекания реакций осуществляли методом ТСХ на пластинках Silufol UV-254. Хроматографическое разделение проводили на колонках Silpearl.

Исходный перхлорат 2-фенилоксазоло [3,2-a] пиридиния (Ia) [11] и использованные для сравнения N-фенацилпиридинтион-2 (VI) [2] и 2-фенилимидазо [1,2-a] пиридин (IX) [12] получены по описанным методикам.

Реакция катиона Ia с гидросульфидом натрия. Перхлорат 2-фенилоксазоло [3,2-a] пиридиния (Ia) (0,504 г, 1,7 ммоль) растворяют в 10 мл абсолютного ДМФА и к раствору добавляют 0,125 г (2,23 ммоль) NaSH. Смесь приобретает коричневый цвет. После 30 мин перемешивания смесь оставляют на ночь при комнатной температуре. Полученный прозрачный раствор выливают при перемешивании в 100 мл ледяной воды, выпавший осадок отфильтровывают, промывают водой и высушивают. Получают 0,35 г (90%) N-фенацилпиридинтиона-2 (VI), идентичного по свойствам ($T_{\Pi \Pi}$, хроматографическое поведение, спектр ИК) заведомому образну. ИК спектр: $1693 \, \text{см}^{-1}$ (C=0).

транс-транс-1-Пиперидино-4-(5-фенилоксазолил-2)бутадиен (VIII). К 0,2 г (0,68 ммоль) перхлората оксазолопиридиния Іа добавляют 1 мл пиперидина и перемешивают при комнатной температуре 2 ч. Затем добавляют 50 мл воды, выпавший аминобутадиен VIII (0,127 г, 67%) несколько раз промывают водой, сушат на воздухе. Вещество дополнительно очищают пропусканием через слой силикателя. Соединение VIII (вязкое аморфное вещество, разлагается при хранении) не дает удовлетворительного элементного анализа. Масс-спектр: m/z (I_{OTH} , %): 280 (34, M⁺), 196 (100, M⁺-C₅H₁₀N). УФ спектр в CHCl₃, λ_{max} (Ig ε): 268 (3,99); 281 (4,05); 382 (4,38) пл, 454 (3,44) нм. ИК спектр: 1628 см⁻¹ (C=C). Спектр ПМР (CDCl₃): 7,64...7,59, 7,41...7,35 (5H, м, 5-Ph); 7,25 (1H, с, H-оксазолил); 7,21 (1H, д. д, I_{23} = 11,2, I_{34} = 15,2 I_{11} , 3-H); 6,53 (1H, д. I_{12} = 13,1 I_{11} , 1-H); 5,97 (1H, д, I_{34} = 15,2 I_{11} , 4-H); 5,31 (1H, д. д, I_{12} = 13,1, I_{23} = 11,2 I_{11} , 2-H); 3,15...3,05 (4H, м, пиперидил); 1,82...1,44 м. д. (6H, м, пиперидил).

Реакция перхлората 2-фенилоксазоло [3,2-a] пиридиния с газообразным аммиаком. Перхлорат оксазолопиридиния Ia (0,165 г, 0,563 ммоль) растворяют в 15 мл абсолютного ДМФА и насыщают сухим аммиаком. Раствор оставляют на 1 сут, после чего выливают в 50 мл воды. Выпавший осадок отфильтровывают, промывают водой и высушивают. Получают 0,053 г вещества. Водный слой дополнительно экстрагируют хлороформом, экстракт упаривают, маслообразный остаток обрабатывают водой и получают дополнительно 0,016 г вещества. Суммарный выход 63 % 2-фенилимидазо [1,2-a] пиридина (IX), идентичного по свойствам ($T_{\rm III}$, хроматографическое поведение, спектр ИК) заведомому образцу.

Реакция перхлората 2-фенилоксазоло [3,2-a] пиридиния с жидким аммиаком. В пробирку с 0,8 г перхлората оксазолопиридиния Іа при охлаждении жидким азотом конденсируют аммиак до объема 5 мл. Температуру смеси поддерживают не выше -35 °C в течение 1 сут, после чего температуру повышают до комнатной. Полученную оранжево-красную смесь несколько раз экстрагируют хлороформом, растворитель отгоняют. Полученное вещество (оранжевое масло, 0,435 г) растворяют в бензоле и подвергают хроматографированию (Silpearl, градиентное элюирование смесью бензол—ацетон от 3:1 до 1:2). Собирают основную фракцию (R_f 0,7, бензол—ацетон, 1:1, из которой после отгонки растворителя получают 0,208 г (40%) 2-фенилимидазо [1,2-a] пиридина (IX). Из второй фракции выделяют 0,033 г (5%) 1-амино-4-(5-фенилоксазолил-2) бутадиена (X) (оранжевые иглы, $T_{\Pi\Pi}$ 157...159 °C). Масс-спектр: m/z (I_{OTH} , %): 212 (41, M^+), 196 (100, M^+ –NH3). УФ спектр в СНС13, λ_{\max} (1g ε): 275 (3,75); 348 (3,80); 435 (4,05) нм. Спектр ПМР (ДМСО-D6—CDC13, 1: 1): 7,71...7,62, 7,50...7,30 (5H, м, 5-Ph); 7,34 (1H, с, H-оксазолил); 7,19 (1H, д. д, J_{23} = 11,1, J_{34} = 15,2 Γ_{Π} , 3-H); 6,64 (1H, д, J_{12} = 12,8 Γ_{Π} , 1-H); 6,21 (1H, д, J_{34} = 15,2 Γ_{Π} , 4-H); 5,78 (1H, д. д, J_{12} = 12,8, J_{23} = 11,1 Γ_{Π} , 2-H); 3,70...3,30 м. д. (2H, шир. м, 1-NH2).

Авторы выражают признательность профессору К. Jug (Hannover) и фонду Volkswagen Stiftung за предоставленную возможность проведения SINDO1 расчетов.

Финансирование работы проводилось фондом РФФИ (грант 96-03-32953) и Центром фундаментального естествознания, Санкт-Петербург (грант 95-0-9.4-222).

СПИСОК ЛИТЕРАТУРЫ

- 1. Бабаев Е. В., Боженко С. В. // ХГС. 1997. № 1. С. 141.
- 2. Pauls H., Krohnke F. // Chem. Ber. 1976. Bd 109. S. 3653.
- Bradsher C. K., Brandau R. D., Boilek J. E., Hough T. L. // J. Org. Chem. 1969. Vol. 34. — P. 2129.
- 4. Katritzky A. R., Zia A. // J. Chem. Soc. Perkin I. 1982. N 11. P. 131.
- Бабаев Е. В., Боженко С. В., Майборода Д. А. // Изв. РАН. Сер. хим. 1995. № 11. С. 2298.
- 6. Messmer A., Hajos Gy., Timari G. // Tetrahedron. 1992. Vol. 48. —P. 8451.
- 7. Майборода Д. А., Бабаев Е. В. // ХГС. 1995. № 11. С. 1445.
- 8. Hajos Gy., Messmer A. // J. Heterocycl. Chem. 1984. Vol. 21. P. 809.
- 9. Jug K., Iffert R., Schulz R. // Int. J. Quantum. Chem. 1987. Vol. 32. P. 265.
- Comprehensive Heterocyclic Chemistry / Eds. A. R. Katritzky, C. W. Rees. —Oxford: Pergamon, 1984. — Vols. 1—8.
- 11. Bradsher C. K., Zinn M. F. // J. Heterocycl. Chem. 1967. Vol. 4. P. 66.
- 12. Tschitschibabin A. E. // Ber. 1926. Bd 59. S. 2048.

Московский государственный университет им. М. В. Ломоносова, Москва 119899

Поступило в редакцию 25.12.96