А. Я. Страков, М. В. Петрова, Н. Н. Тонких, А. И. Гурковский, Ю. Попелис, Г. П. Крейшман, С. В. Беляков

ДИБЕНЗОДИАЗЕПИНЫ В РЕАКЦИЯХ 2-АЦЕТИЛДИМЕДОНА С 3,4-ДИАМИНОБЕНЗОФЕНОНОМ

В реакциях 2-ацетилдимедона и 2-ацетил-3-метокси-5,5-диметилциклогекс-2-ен-1-она с 3,4-диаминобензофеноном получены 2-[1-(2-амино-5-бензоилфенил) амино] этилиден-5,5-диметил-1,3-циклогександион и 2-ацетил-3-(2-амино-5-бензоилфенил) амино-5,5-диметил-1,3-циклогекс-2-ен-1-он, которые при действии соляной кислоты циклизуются соответственно в гидрохлориды 8-бензоил- и 7-бензоил-3,3,11-триметил-2,3,4,5-тетрагидро-1Н-дибензо[b,e] [1,4] диазепин-1-онов Гидролитическое расщепление 8-бензоилпроизводного приводит к 2-ацетил-3-(2-амино-4-бензоилфенил) амино-5,5-диметилциклогекс-2-ен-1-ону. Подобное расщепление в 2-ацетил-3-(2-аминофенил) амино-5,5-диметилциклогекс-2-ен-1-он претерпевает и известный гидрохлорид 3,3,11-триметил-2,3,4,5-тетрагидро-1Н-дибензо-[b,e] [1,4] диазепин-1-она. Строение полученных продуктов подтверждено данными спектров ПМР и рентгеноструктурного анализа.

Конденсированные системы, включающие 1,4-диазепиновый цикл, привлекают внимание своими разнохарактерными и неожиданными превращениями [1—4]. Продолжая наши систематические исследования по синтезу диазепинов в реакциях 2-ацил-1,3-цикландионов с о-фенилендиамином [5—10], мы изучили взаимодействие 2-ацетилдимедона I и его енольного эфира II, полученного по [11], с 3,4-диаминобензофеноном III.

Ранее [12—16] было показано, что реакции 2-ацетил-1,3-цикландионов и их енольных эфиров — 2-ацетил-3-метоксициклогекс-2-ен-1-онов с азотистыми нуклеофилами являются региоспецифичными и осуществляются, в первом случае, по ацетильному карбонилу, а во втором — по тригональному атому С(3). Наличие в несимметричном диамине III двух потенциально реакционных центров предполагает возможность образования в реакциях как с 2-ацетилдимедоном I, так и с его енольным эфиром II двух изомерных продуктов конденсации. Согласно упрощенной оценке реакционной способности аминогрупп диамина III, ход реакции по 3-аминогруппе представляется все же более предпочтительным. Действительно, в результате обеих реакций нами было получено лишь по одному продукту. Ими были соответственно 2-[(2-амино-5-бензоилфенил)амино]этилиден-5,5-диметилциклогександион (IV) и 2-ацетил-3-(2-амино-5-бензоилфенил)амино-5,5-диметилциклогекс-2-ен-1-он (V) (схема).

Обработка енаминов IV и V соляной кислотой приводит к диазепиновым солям VI и VII соответственно. Нами обнаружено, что эти диазепиновые соли при обработке основаниями в относительно мягких условиях расщепляются по связи N—С(7). При этом из диазепиновой соли VI образуется 2-ацетил-3-(2-амино-4-бензоилфениламино)-5,5-диметилциклогекс-2-ен-1-он (VIII), а из соли VII — снова енамин V. Подобное расщепление имеет место и в случае диазепиновой соли XII, полученной как из енамина XI по методике [9], так при действии соляной кислоты на ацетил-3-(2-аминофенил)амино-5,5-диметилциклогекс-2-ен-1-он (X), который был синтезирован нами из енольного эфира II и о-фенилендиамина. Обработка диазепиновой соли XII NaHCO3 также сопровождается разрывом связи N—С(7) и образованием енамина X.

Строение всех синтезированных соединений подтверждено совокупностью спектральных данных и элементного анализа.

В ИК спектрах всех полученных енаминов (IV, V, VIII, X, XI) наблюдают две достаточно интенсивные полосы поглощения при 3478...3426 и 3370...3338 см⁻¹, соответствующие валентным колебаниям NH первичной аминогруппы. В области меньших частот проявляется уширенная и менее интенсивная полоса поглощения, обусловленная валентными NH колебаниями вторичной аминогрупы H-хелатного цикла. Более высокочастотное положение этой полосы (имн 3240..3245 см⁻¹) в ИК спектрах, также как и

Химические сдвиги ЯМР 13 С (м. д.) и величины прямых КССВ 15 N— 1 H (Гц) соединений IV, V, VIII, X, XI в растворах дейтерохлороформа

. Соеди- нение	C ₍₁₎	C ₍₃₎	C ₍₂₎	C _(4,6)	C ₍₅₎ .	C _(2Me)	C ₍₇₎	C ₍₈₎	C(COP h)	C(11)*	¹ J(¹⁵ N(NH2),H)	¹ /(¹⁵ NNH),H
							1				,	
įv	196,8	200,2	109,0	52,2, 53,6	30,1	28,3	174,5	19,7	194,4	115,0	86,1	85,7
γ,	172,7	194,8	109,2	51,2, 41,1	30,8	27,9	201,5	32,5	194,3	114,9	86,6	87,6
VIII	172,4	194,9	109,1	52,3, 41,2	30,9	27,9	201,7	32,6	195,8	117,2	82,9	87,5
X	173,0	194,9	108,9	52,3, 40,9	32,6	27,9	201,4	30,8		116,1	81,4	88,1
ΧI	196,6	199,8	108,6	52,1, 53,4	30,0	28,2	174,4	19,6		116,1	82,0	86,1
XII	182,7	194,3	108,7	50,3, 45,3	29,4	27,2	185,4	25,3				1 5

Сигналы остальных ароматических атомов углерода
С(9), С(10), С(12)С(23) наблюдаются в диапазоне 118,3...146,9 м. д.

Плины	связей	B	молекулах	соединений	X	и	VIII
/LIMITED	CDMSCM	ъ	MUSICKYJIAA	сосдинении	^	21	T ARK

Связь Молекула X		Молекула VIII	Связь	Молекула Х	Молекула VIII	
		· į		-		
$C_{(3)}$ — $N_{(1)}$	1,319(4)	1,338(3)	C ₍₁₀₎ —C ₍₉₎	1,394(4)	1,400(4)	
$C_{(3)}$ — $C_{(2)}$	1,412(4)	1,411(4)	C(11)—C(12)	1,374(5)	1,371(4)	
$C_{(3)}$ — $C_{(4)}$	1,498(5)	1,502(4)	C ₍₁₁₎ —C ₍₁₀₎	1,373(5)	1,395(4)	
$C_{(2)}$ — $C_{(7)}$	1,444(4)	1,458(4)	C(13)—C(14)	1,386(5)	1,375(4)	
$C_{(2)}$ — $C_{(1)}$	1,454(4)	1,448(4)	C ₍₇₎ —O ₍₂₎	1,247(4)	1,231(4)	
C ₍₁₎ —O ₍₁₎	1,239(4)	1,221(4)	C ₍₇₎ —C ₍₈₎	1,516(5)	1,504(4)	
$C_{(6)}$ — $C_{(1)}$	1,494(5)	1,503(5)	C ₍₁₂₎ —C ₍₁₇₎	~	1,490(4)	
$C_{(6)}$ — $C_{(5)}$	1,519(5)	1,521(5)	C ₍₁₇₎ —O ₍₃₎		1,225(3)	
$C_{(5)}$ — $C_{(4)}$	1,519(5)	1,522(4)	C(17)—C(18)	 :	1,486(4)	
$C_{(5)}$ — $C_{(16)}$	1,531(6)	1,529(5)	C ₍₁₈₎ —C ₍₂₃₎	– ,	1,383(4)	
$C_{(5)}$ — $C_{(15)}$	1,537(6)	1,515(5)	C(18)—C(19)		1,386(4)	
C(9)—C(10)	1,372(4)	1,402(4)	C(19)—C(20)	<u> </u>	1,388(6)	
C(9)—C(14)	1,382(4)	1,384(4)	C(20)—C(21)		1,361(6)	
C ₍₉₎ —N ₍₁₎	1,438(4)	1,430(3)	$C_{(21)}-C_{(22)}$		1,356(6)	
$C_{(10)}$ — $N_{(2)}$	1,388(4)	1,361(4)	C ₍₂₂₎ —C ₍₂₃₎	<u> </u>	1,384(5)	

слабопольный сдвиг NH-хелатного протона ($\delta_{\rm NH}$ 13,6..13,8 см $^{-1}$) в спектрах ПМР енаминов (V, VIII, X) по сравнению с 2-(1-аминоэтилиден) производными (IV, XI) ($\nu_{\rm NH}$ 3234...3225 см $^{-1}$ и $\delta_{\rm H}$ 14,6..14,5 м. д.) позволяют считать, что последние характеризуются более прочной ВМВС.

В ИК спектрах солей поглощение в области $3400..3200 \text{ см}^{-1}$ отсутствует, но вместо него наблюдается широкая интенсивная полоса в районе $2700..3000 \text{ см}^{-1}$, соответствующая поглощению ${}^{+}\text{NH}$.

Все синтезированные соединения сильно поглощают в области $1650..1500~{\rm cm}^{-1}$, что характеризует их как системы с протяженной цепью $p-\pi$ -сопряжения.

В результате проведенных реакций в нашем распоряжении оказалось три изомерных енамина (IV, V, VIII), полученных на базе 2-ацетилдимедона и 3,4-диаминобензофенона, и два изомерных енамина (X, XI), синтезированных на основе 2-ацетилдимедона и o-фенилендиамина. Соединения подобного типа являются потенциально таутомерными и могут существовать в растворе в нескольких таутомерных формах [17, 18]. В то же время, проведенные нами измерения КССВ $^{1}J_{(15N,1H)}$ показывают, что, как и в 3-амино-2-ацетилциклогексен-2-онах [17] и N-монозамещенных 2-аминометилениндандионах [19], величина константы спин-спинового взаимодействия в полученных нами енаминах наблюдается в диапазонах значений ($^{1}J_{(15N,1H)}$ 85,7..88,1 Гц), близких к их максимальным [20]. Это позволяет считать доказанной локализацию H-хелатного протона у атома азота N (7) (как это и изображено на схеме), тем самым исключая необходимость рассмотрения других возможных таутомерных форм.

Особенностью спектров ПМР полученных енаминов является то, что химические сдвиги метиленовых протонов $C_{(6)}$ и $C_{(4)}$ как 2-(1-аминоалкилиден)-, так и 3-амино-2-ацилпроизводных очень близки, и их различие не превышает 0.05 м. д. В то же время резонансное поглощение протонов первичной аминогруппы $(\delta_{\rm NH2}\ 3.85...4.44$ м. д.) в значительной степени

определяется наличием и местоположением бензоильной группы в ароматическом кольце. При этом слабопольное смещение $\delta_{\rm NH2}$ сигнала происходит в следующем порядке: X, XI ($\delta_{\rm NH2}$ 3,85 и 3,87 м. д.) —VIII ($\delta_{\rm NH2}$ 4,06 м. д.) —IV, V ($\delta_{\rm NH2}$ 4,35 и 4,44 м. д.). Сигналы протонов метильных групп С(8) ($\delta_{\rm CH3}$ 2,48 и 2,46 м. д.) в 2-(1-аминоалкилиден) производных (IV, XI) расположены в более сильных полях, чем в енаминах V, VIII, X ($\delta_{\rm CH3}$ 2,59 и 2,62 м. д.).

Еще одной отличительной особенностью спектров ПМР соединений IV и V, имеющих бензоильную группу в положении $C_{(13)}$, является дублет (3J 8,72 и 8,40 Γ п), принадлежащий протону $C_{(11)}$ Н и существенно отстоящий от остальных ароматических сигналов (δ 6,84 и 6,86 м. д.). В спектре соединения VIII, имеющего заместитель в положении $C_{(12)}$, сигнал этого протона смещен в сторону слабого поля (δ 7,27 м. д.) и представляет собой дублет с КССВ 1,3 Γ п.

Наиболее структурно информативным, по данным спектров ЯМР ¹³С. является резонансный сигнал атома углерода С(11), который в режиме регистрации без развязки от протонов имеет вид мультиплета, характер расщепления которого также позволяет надежно установить местоположение заместителя в ароматическом кольце. Так, в соединении X (в отсутствие замещения) сигнал углерода С(11) представляет собой дублет квартетов с константами спин-спинового взаимодействия (КССВ) $^1J_{(13C,1H)}=157,2$ и $J_{(13C,1H)} = 6.6$ Гц. Известно [21], что в ароматических соединениях вицинальные КССВ (${}^{5}J_{(13\text{C},1\text{H})}$ 5...10 Гц), как правило, существенно превышают геминальные и поэтому можно считать, что последний мультиплет обусловлен главным образом спин-спиновым взаимодействием с протонами первичной аминогруппы и протоном, расположенным у атома углерода С(13). Подобный карактер расщепления наблюдается и в соединении VIII, доказывая наличие заместителя у атома C(12). В соединениях IV и V, где имеет место замещение у атома C(13), сигнал углерода $C_{(11)}$ представлен двойным триплетом (${}^{1}J_{(13C,1H)} = 159,1$ и $J_{(13C,1H)} = 4,4$ $\Gamma_{\rm H}$), переходящим при дейтерозамещении протонов первичной аминогруппы в дублет с $^1J_{(13\text{C},1\text{H})}$ $\sim 159,1$ Гц с полушириной сигналов порядка 2,5 Гц.

Сравнительный анализ данных спектров ЯМР 13 С (табл. 1) 2-(1-аминоэтилиден) производных IV, X и енаминов V, VIII, XI показывает, что введение аминофункции в положение $C_{(3)}$ сопровождается существенным сильнопольным смещением сигналов $C_{(3)}$, $C_{(4)}$ и таким же слабопольным сдвигом сигналов $C_{(7)}$ и $C_{(8)}$; при этом химические сдвиги указанных атомов углерода достаточно характеристичны и также служат для идентификации указанных соединений.

Для окончательного подтверждения строения соединений VIII и X был проведен рентгеноструктурный анализ кристаллов этих веществ. На рис. 1 и 2 приведены пространствиные модели молекул VIII и X с обозначениями атомов. В табл. 2 и 3 даны значения длин связей и величины валентных углов в структурах молекул VIII и X. В обеих структурах обнаружена сильная внутримолекулярная водородная связь $N_{(1)}$ — $H_{(N1)}...O_{(2)}$. Длина этой связи составляет 2,594(4) Å ($H_{(N1)}...O_{(2)} = 1,88(3)$ Å, $N_{(1)}-H_{(N1)}...O_{(2)} = 137(3)$ °) в молекуле X и 2,572(3) Å $(H_{(N1)}...O_{(2)} = 1,78(3)$ Å, $N_{(1)}-H_{(N1)}...O_{(2)} =$ = 142(3)°) в молекуле VIII. Благодаря этой связи в молекулах образуется еще один шестичленный H-хелатный цикл $O_{(2)}$, $C_{(7)}$, $C_{(3)}$, $C_{(1)}$, $N_{(1)}$, $H_{(N1)}$, который практически копланарен с плоскостью димедонового фрагмента С(1), С(2), С(3), С(4), С(6). Атом С(5) выходит из этой плоскости на 0,691(4) и 0,687(4) Å в молекулах VIII и X соответственно. Относительно данной плоскости плоскость кольца $C_{(9)}$, $C_{(10)}$, $C_{(11)}$, $C_{(12)}$, $C_{(13)}$, $C_{(14)}$ развернута вокруг связи $N_{(1)}$ — $C_{(9)}$ на угол 70,0(1)° в X. В молекуле VIII величина данного угла составляет 108,3(1)°. Высокие значения углов обусловлены наличием в о-положении цикла аминогруппы, которая препятствует

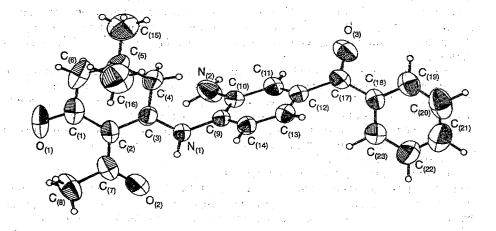
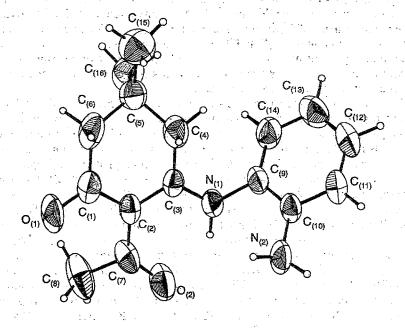



Рис. І. Пространственная модель молекулы VIII с обозначениями атомов и эллипсоидов тепловых колебаний

копланарности данных фрагментов. Большие углы разворота плоскостей способствуют разрушению сопряжения в системе. В связи с этим длина связи $C_{(9)}$ — $N_{(1)}$ (табл. 2) существенно выше длины связи $C_{(3)}$ — $N_{(1)}$. В молекуле VIII величина двугранного угла между ароматическим циклом $C_{(9)}$, $C_{(10)}$, $C_{(11)}$, $C_{(12)}$, $C_{(13)}$, $C_{(14)}$ и плоским фрагментом $O_{(3)}$, $C_{(17)}$, $C_{(12)}$, $C_{(18)}$ равна $39,0(1)^\circ$, а между последней плоскостью и фенильным кольцом $C_{(18)}$, $C_{(19)}$, $C_{(20)}$, $C_{(21)}$, $C_{(22)}$, $C_{(23)}$ двугранный угол составляет $24,9(2)^\circ$. Относительно невысокие значения последних частично сохраняют сопряжение, и связи $C_{(12)}$ — $C_{(17)}$, $C_{(17)}$ — $C_{(18)}$ можно рассматривать как полуторные.

 $\it Puc.~2.$ Пространственная модель молекулы X с обозначениями атомов и эллипсоидов тепловых колебаний

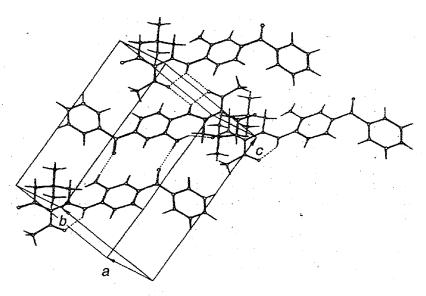


Рис. 3. Элементарная ячейка кристалла и система водородных связей соединения VIII

В молекуле VIII наблюдаются существенные вибрационные тепловые колебания атомов $C_{(15)}$ и $C_{(16)}$ (компоненты тензоров тепловых параметров для VIII и X могут быть получены от авторов), чем обусловлено некоторое занижение длин связей $C_{(5)}$ — $C_{(15)}$ и $C_{(5)}$ — $C_{(16)}$ [22]. Остальные значения длин связей близки к стандартным [23].

Кроме рассмотренной выше внутримолекулярной водородной связи в кристаллической структуре соединений VIII и X имеется система межмолекулярных водородных H-связей. Характеристики этих связей даны в табл. 4. В кристалле соединения X посредством водородных связей $N_{(2)}$ — $H_{(1,N2)}$... $O_{(1)}$ и $N_{(2)}$ — $H_{(2,N2)}$... $O_{(2)}$ образуются цепи, параллельные кристаллографическому направлению [221].

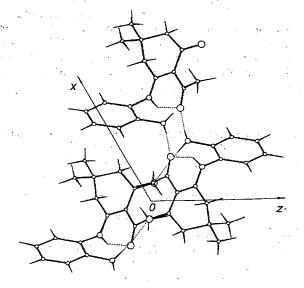


Рис. 4. Фрагмент проекции кристаллической структуры соединения X на плоскость (010) с указанием водородных связей

Угол	Молекула Х	Молекула VIII	Угол	Молекула Х	Молекула VIII
	*				
$N_{(1)}$ — $C_{(3)}$ — $C_{(2)}$	121,9(3)	122,0(3)	$N_{(2)}-C_{(10)}-C_{(11)}$	120,7(3)	121,4(3)
$N_{(1)}$ — $C_{(3)}$ — $C_{(4)}$	118,1(3)	115,9(2)	$C_{(12)}-C_{(11)}-C_{(10)}$	121,4(3)	122,4(3)
$C_{(2)}$ — $C_{(3)}$ — $C_{(4)}$	120,0(3)	122,1(3)	$C_{(13)}-C_{(12)}-C_{(11)}$	120,2(3)	119,6(3)
$C_{(3)}$ — $C_{(2)}$ — $C_{(7)}$	120,6(3)	119,1(3)	$C_{(11)}-C_{(12)}-C_{(17)}$	_ `	119,4(3)
$C_{(3)}$ — $C_{(2)}$ — $C_{(1)}$	118,2(3)	118,3(3)	$C_{(13)}-C_{(12)}-C_{(17)}$	_	121,0(3)
$C_{(7)}$ — $C_{(2)}$ — $C_{(1)}$	121,2(3)	122,0(3)	$C_{(12)}-C_{(13)}-C_{(14)}$	118,9(3)	119,4(3)
$O_{(1)}C_{(1)}C_{(2)}$	122,7(3)	123,8(4)	$C_{(9)}-C_{(14)}-C_{(13)}$	120,8(4)	120,7(3)
$O_{(1)}C_{(1)}C_{(6)}$	118,0(3)	117,5(3)	$O_{(2)}-C_{(7)}-C_{(2)}$	122,0(3)	121,5(3)
$C_{(2)}$ — $C_{(1)}$ — $C_{(6)}$	119,4(3)	118,7(3)	$O_{(2)}-C_{(7)}-C_{(8)}$	117,1(4)	117,0(4)
$C_{(1)}$ — $C_{(6)}$ — $C_{(5)}$	116,8(3)	114,5(3)	$C_{(2)}-C_{(7)}-C_{(8)}$	120,8(4)	121,4(4)
$C_{(4)}$ — $C_{(5)}$ — $C_{(6)}$	106,4(3)	106,1(3)	$O_{(3)}-C_{(17)}-C_{(18)}$	· —	120,4(3)
$C_{(4)}$ — $C_{(5)}$ — $C_{(16)}$	108,7(4)	108,4(3)	$O_{(3)}-C_{(17)}-C_{(2)}$		119,7(3)
$C_{(6)}$ — $C_{(5)}$ — $C_{(16)}$	110,3(3)	110,6(3)	$C_{(18)}-C_{(17)}-C_{(2)}$		119,9(3)
$C_{(4)}$ — $C_{(5)}$ — $C_{(15)}$	110,6(3)	111,9(3)	$C_{(23)}-C_{(18)}-C_{(19)}$		118,2(3)
$C_{(6)}$ — $C_{(5)}$ — $C_{(15)}$	110,3(4)	110,7(3)	$C_{(23)}-C_{(18)}-C_{(17)}$		122,5(3)
$C_{(16)}$ — $C_{(5)}$ — $C_{(15)}$	110,4(4)	109,0(4)	$C_{(19)}-C_{(18)}-C_{(17)}$		119,3(3)
$C_{(3)}-C_{(4)}-C_{(5)}$	113,3(3)	114,7(3)	$C_{(18)}-C_{(19)}-C_{(20)}$		120,0(4)
$C_{(10)}$ — $C_{(9)}$ — $C_{(14)}$	120,7(3)	121,1(2)	$C_{(21)}-C_{(20)}-C_{(19)}$	_	120,7(4)
$C_{(10)}$ — $C_{(9)}$ — $N_{(1)}$	118,9(3)	119,6(3)	$C_{(22)}-C_{(21)}-C_{(20)}$		120,0(4)
$C_{(14)}$ — $C_{(9)}$ — $N_{(1)}$	120,2(3)	119,2(2)	$C_{(21)}-C_{(22)}-C_{(23)}$	_	120,1(4)
$C_{(9)}$ — $C_{(10)}$ — $N_{(2)}$	121,2(3)	121,8(3)	$C_{(22)}-C_{(23)}-C_{(18)}$		120,9(3)
$C_{(9)}-C_{(10)}-C_{(11)}$	118,0(3)	116,7(3)	$C_{(3)}-N_{(1)}-C_{(9)}$	128,2(3)	125,0(3)

В кристаллах VIII система H-связей более разветвленная. Наряду с внутримолекулярной $N_{(1)}$ — $H_{(N1)}$... $O_{(2)}$ связью обнаружена межмолекулярная $N_{(1)}$ — $H_{(N1)}$... $O_{(2)}$ связь. Таким образом, атом водорода $H_{(N1)}$ участвует в вилочных H-связях, одна из которых является межмолекулярной, а другая — внутримолекулярной. Кроме того, в структуре VIII имеются другие H-связи $N_{(2)}$ — $H_{(1,N2)}$... $O_{(1)}$ и $N_{(2)}$ — $H_{(2,N2)}$... $O_{(3)}$. Благодаря межмолекулярным H-связям молекулы в кристалле объединяются в сети, которые в кристаллической решетке параллельны плоскости (100). Длины этих связей несколько превышают среднестатистическое значение 2,89 Å [24] для H-связей NH...O типа. Фрагменты кристаллических структур VIII и X с системами H-связей показаны на рис. 3 и 4.

Таблица 4 Геометрические характеристики межмолекулярных водородных связей в структурах X и VIII

Связь	Длина NO, Å	Длина НО; Å	Угол NHO, °	Симметрия атома О
-	• .			
	C	оединение Х	_	
N(2)—H(1,N1)O(2)	3,096(4)	2,12(3)	175(3)	3-x, $-1/2+y$, $5/2-z$
N(2)—H(2,N2)O(1)	3,054(4)	2,21(4)	162(3)	2-x, -y, 2-z
	. Coe	единение VIII	•	
$N_{(1)}$ — $H_{(N1)}$ $O_{(2)}$	3,029(3)	2,37(3)	128(3)	1-x, 1-y, 2-z
N(2)—H(1,N2)O(3)	3,054(4)	2,25(3)	169(3)	1-x, 1-y, 1-z

 $\label{eq:Tabnula} \mbox{ Tabnula 5}$ Координаты атомов в молекуле соединения VIII

	ординаты атомов в м	T -	<u> </u>
Атом	х	у	z
		0.0010(0)	0.0141(2)
C ₍₃₎	0,3009(4)	0,3218(3)	0,9141(2)
C ₍₂₎	0,3234(4)	0,2284(3)	1,0088(2)
C ₍₁₎	0,2677(4)	0,0959(4)	1,0302(2)
C ₍₆₎	0,1846(5)	0,0675(4)	0,9514(3)
C ₍₅₎	0,0816(4)	0,2269(4)	0,8766(2)
C ₍₄₎	0,2023(5)	0,3030(5)	0,8388(2)
C(9)	0,3426(4)	0,5363(3)	0,7922(2)
C ₍₁₀₎	0,4428(4)	0,4662(3)	0,7210(2)
C ₍₁₁₎	0,4171(4)	0,5743(4)	0,6311(2)
C ₍₁₂₎	0,3048(4)	0,7423(4)	0,6133(2) 0,6860(2)
C ₍₁₃₎	0,2087(4)	0,8092(4)	0,0800(2)
C ₍₁₄₎	0,2282(4)	0,7055(4)	1,0811(2)
C ₍₇₎	0,4055(4)	0,2634(4)	1,1851(3)
C ₍₈₎	0,4005(7)	0,1933(7)	0,9190(4)
C ₍₁₅₎	-0,0688(6)	0,3482(6)	1 ' ' '
C ₍₁₆₎	0,0184(7)	0,1830(7)	0,7944(4)
C ₍₁₇₎	0,2822(4)	0,8491(4)	0,5155(2)
C ₍₁₈₎	0,2559(4)	1,0272(4)	0,5019(2)
C ₍₁₉₎	0,1758(5)	1,1421(4)	0,4179(3) 0,4037(3)
C ₍₂₀₎	0,1515(6)	1,3085(5)	0,4708(3)
C ₍₂₁₎	0,2083(6)	1,3602(5)	0,4708(3)
C ₍₂₂₎	0,2907(5)	1,2484(5)	0,5687(2)
C ₍₂₃₎	0,3132(5)	1,0826(4)	0,8861 (2)
N ₍₁₎	0,3647(3)	0,4337(3)	0,7369(2)
N(2)	0,5541 (4)	0,2995(4)	1,0601(1)
O ₍₂₎	0,4757(3)	0,3573(3)	1,1080(2)
O ₍₁₎	0,2904(4)	0,0002(3)	0,4468(1)
O ₍₃₎	0,2863(3)	0,7891 (3) 0,438(4)	0,4408(1)
H(N1)	0,425(4)	0,267(4)	0,693(2)
H _(2,N2)	0,608(4)	0,231(4)	0,799(2)
H _(1,N2)	0,597(4)	0,530(3)	0,583(2)
H(C11)	0,486(4) 0,122(4)	0,925(4)	0,673(2)
H _(C13) H _(C14)	0,154(3)	0,756(3)	0,831(2)
	0,134(4)	1,095(4)	0,376(2)
H(C19)	0,089(6)	1,379(6)	0,345(3)
H _(C20)	0,185(5)	1,481(6)	0,462(3)
H _(C21)	0,340(5)	1,272(5)	0,600(3)
H(C22)	0,383(5)	1,007(4)	0,623(3)
H(C23)	0,383(5)	-0,002(5)	0,910(3)
H _(1,C6)	0,117(5)	0,020(5)	0,977(3)
H(2,C6)	0,117(3)	0,410(5)	0,792(3)
H _(1,C4)	0,279(5)	0,239(5)	0,793(3)
H _(2,C4)	0,294(5)	0,192(4)	1,201(3)
H _(1,C8)	0,294(5)	0,071(6)	1,204(3)
H(2,C8)	0,475(6)	0,248(5)	1,223(3)
H _(3,C8) H _(1,C15)	-0,031(6)	0,368(6)	0,978(4)
	-0,129(6)	0,448(6)	0,869(4)
H _(2,C15)	-0,168(7)	0,294(7)	0,948(4)
H(3,C15)	-0,168(7)	0,294(7)	0,745(3)
H(1,C16)	0,123(6)	0,098(6)	0,764(3)
H(2,C16)	-0,060(5)	0,138(5)	0,704(3)
H(3,C16)	-0,000(3)	1 0,130(3)	1 0,017(0)

Координаты атомов в молекуле соединения Х

Атом	x	у	. z
C ₍₃₎	1,1045(3)	0,0298(2)	1,1981(2)
C ₍₂₎	1,0608(3)	0,1077(2)	1,1154(2)
C(1)	0,8991(4)	0,1114(3)	1,0313(3)
	0,7783(4)	0,0534(4)	1,0492(3)
C ₍₆₎	0,7783(4)	0,0128(3)	1,1646(3)
C(5)	0,9833(4)	-0,0411(3)	1,2022(3)
C ₍₄₎ C ₍₉₎	1,3121(3)	-0,0565(2)	1,3631(2)
C(10)	1,4052(3)	-0,1389(2)	1,3640(2)
	1,4734(4)	-0,2021(3)	1,4577(3)
C(11)	1,4473(4)	-0,1839(3)	1,5464(3)
C(12)	1,3537(5)	-0,1016(3)	1,5447(3)
C(13)	1,2876(4)	-0,1010(3)	1,4528(3)
C ₍₁₄₎	1,1750(4)	0,1800(3)	1,1135(2)
C ₍₇₎		0,1800(3)	1,0443(4)
C ₍₈₎	1,1252(7)	0,2797(3)	1,2413(4)
C ₍₁₅₎	0,8401(6)	-0,0690(6)	1,1632(5)
C(16)	0,7090(6) 1,2511(3)	0,0148(2)	1,2711(2)
N(1)	* * * *	-0,1554(3)	1,2770(2)
N(2)	1,4381(4)	0,1671(2)	1,1731(2)
O ₍₂₎	1,3176(3)	0,1600(2)	0,9438(2)
O(1)	0,8564(3)	0,1000(2)	1,020(3)
H _(1,C6)	0,679(4)	-0,011(3)	1,005(3)
H _(2,C6)	0,749(4)	-0,011(3)	1,273(3)
H(1,C4)	1,023(4)	-0,008(2)	1,154(3)
H(2,C4)	0,974(4)	0,051(2)	1,260(2)
H(N1)	1,319(4)		1,289(3)
H _(1,N2)	1,511(4)	-0,213(3) -0,142(3)	·
H _(2,N2)	1,358(4)	l.	1,214(3) 1,459(2)
H(C11)	1,540(3)	-0,258(2) -0,236(3)	1,611(3)
H _(C12)	1,508(4)	-0,238(3)	1,606(3)
H _(C13) .	1,331(4)		1,448(2)
H _(C14)	1,226(3)	0,019(2)	
H _(1,C8)	1,212(5)	0,326(3)	1,073(3)
H _(2,C8)	1,027(6)	0,311(4)	1,043(4)
H(3,C8)	1,107(6)	0,258(4)	0,974(4)
H _(1,C15)	0,734(5)	0,135(3)	1,221(3)
H _(2,C15)	0,884(5)	0,071 (4)	1,315(4)
H(3,C15)	0,919(5)	0,159(3)	1,245(3)
H _(1,C16)	0,609(6)	-0,037(3)	1,131(3)
H(1,C16)	0,728(6)	-0,092(4)	1,230(4)
H(1,C16)	0,701(6)	-0,128(4)	1,110(4)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на приборе Specord-75 в вазелиновом масле. Запись спектров ЯМР 1 Н и 13 С проводили для растворов полученных соединений в дейтерохлороформе, дейтеродиметилсульфоксиде или смеси указанных растворителей на спектрометре Bruker AM-360 на частотах 360 и 90,52 МГц, соответственно, при температуре 303 К. Химические сдвиги приведены в шкале по отношению к ТМС. Отнесение сигналов атомов углерода сделано с учетом характера расщепления в спектрах монорезонанса, интенсивности сигналов и значений КССВ (13 С, 1 H).

Регистрация констант $^1J_{(15\text{N},1\text{H})}$ осуществлена на упомянутом выше спектрометре по инверсной методике, предложенной в работе [25].

Монокристаллы соединения X, состава $C_{16}H_{20}N_{2}O_{2}$, выращенные из этанола, моноклинные; пространственная группа — Р $2_{1/c}$. Параметры элементарной ячейки следующие: a=9,682(3), b=12,682(3), c=13,743(2)Å, $\beta=117,58(2)$ °, V=1489,4(6) Å³, Z=4, F(000)=548, $\mu=0,08$ мм⁻¹, $D_{\rm X}=1,215(1)$ г см⁻³.

Монокристаллы соединения VIII, состава $C_{23}H_{24}N_2O_3$, выращенные из метанола, принадлежат к триклинной сингонии и характеризуются следующими кристаллографическими параметрами: a=8,798(3), b=9,013(2), c=14,473(2) Å, $\alpha=77,16(2)$, $\beta=87,59(3)$, $\gamma=64,18(2)$ °, V=1005,3(5) Å³, Z=2, Z=1,1000, Z=1,1

Интенсивности 1964 (для X) и 2648 (для VIII) независимых отражений измерены на автоматическом четырехкружном дифрактометре Syntex P2 $_1$ (МоК α -излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование, 2θ max = 45°). В расчетах использовано 1255 (X) и 1765 (VIII) отражений с $|F| > 4.0\sigma(F)$. Структуры расшифрованы по методике [26] и уточнены полноматричным МНК с анизотропными температурными факторами. Все атомы водорода локализованы разностным синтезом и уточнены изотропно. Окончательные значения фактора расходимости равны 0,0546 для X и 0,0547 для VIII. При проведении расчетов использован комплекс программ AREN [27]. Координаты атомов в структурах X и VIII даны в табл. 5 и 6.

2-[1-(2-Амино-5-бензоилфенил) амино] этилиден-5,5-диметил-1,3-циклогександион (IV). Кипятят 0,46 г (2,5 ммоль) 2-ацетилдимедона и 0,54 г (2,5 ммоль) 3,4-диаминобензофенона в 20 мл этанола 0,5 часа. Осадок вещества IV, образующийся во время кипячения реакционной смеси, отфильтровывают и перекристаллизовывают из этанола. Выход 0,70 г (74%). $T_{\rm ПЛ}$ 168...169 °C. ИК спектр: 1635, 1622, 1590, 1580, 1560, 1515, 3478, 3370, 3234 см⁻¹. Спектр IMP в CDCl₃: 1,07 (6H, c, 2CH₃); 2,41 (2H, c, CH₂); 2,47 (2H, c, CH₂); 2,48 (2H, c, CH₃), 4,35 (2H, уш. c, NH₂); 6,84 (1H, д, J = 8,72 Γ П; =CH); 7,44...7,51 (3H, м, аром.); 7,69...7,74 (2H, м, аром.); 14,61 (1H, уш. c, NH). Найдено, %: С 73,20; H 6,31; N 7,30. C₂₃H₂₄N₂O₃. Вычислено, %: С 73,38; H 6,43; N 7,44.

3-(2-Амино-5-бензоилфениламино)-2-ацетил-5,5-диметилциклогекс-2-ен-1-он (V). А. К раствору 0,49 г (2,5 ммоль) 2-ацетил-3-метокси-5,5-диметилциклогекс-2-ен-1-она, полученного по [16], в 2 мл безводного метанола прибавляют раствор 0,54 г (2,5 ммоль) 3,4-диаминобензофенона в 5 мл безводного метанола и смесь оставляют на 48 ч при 20 °C. Выпавший осадок отфильтровывают, кипятят 5 мин в 30 мл метанола с активированным углем. К горячему фильтрату добавляют несколько капель воды и охлаждают. Получают 0,69 г (73%). $T_{пл}$ 199...202 °C. Дает депрессию температуры плавления с соединением IV.

Б. К раствору 0,20 г (0,5 ммоль) диазепиновой соли VII в 10 мл этанола доливают 10 мл 5% водного раствора NaHCO3. Выпавший осадок отфильтровывют и перекристаллизовывают из водного этанола. Выход 0,12 г (63%). $T_{\Pi\Pi}$ 194...196 °C. Не дает депрессии температуры плавления с образцом вещества, полученным по методу А. ИК спектр: 1652, 1635, 1602, 1560, 3425, 3342, 3242 см⁻¹. Спектр ПМР в CDCl₃: 1,03 (6H, c, 2CH₃); 2,31 (2H, c, CH₂); 2,36 (2H, c, CH₂); 2,59 (3H, c, CH₃); 4,44 (2H, уш. c, NH₂); 6,86 (1H, д, J = 8,4 Гп, аром.); 7,45...7,58 (5H, м, аром.); 7,69...7,73 (2H, м, аром.); 13,64 (1H, NH). Найдено, %: С 73,30; H 6,28; N 7,25. С₂₃H₂₄N₂O₃. Вычислено, %: С 73,38; H 6,43; N 7,44.

Гидрохлорид 3,3,11-триметил-8-бензоил-2,3,4,5-тетрагидро-1H-дибензо[b,e][1,4]диазепин-1-она (VI). Растворяют 0,38 г (1 ммоль) енамина IV в 40 мл этанола, нагревают до 50...60 °С, добавляют 4 мл конц. HCI и оставляют на сутки в холодильнике. Отфильтровывают и на фильтре ярко-красные кристаллы промывают диэтиловым эфиром. Выход 0,32 г (81%). $T_{\Pi\Pi}$ 247...249 °С. ИК спектр: 1600, 1645, 1615, 1605, 1580, 1550, 1520, 2750...2880 см⁻¹. Спектр ПМР в CDCl₃ + DMCO: 1,03 (6H, c, 2CH₃); 2,29 (2H, c, CH₂); 2,54 (3H, c, CH₃); 2,78 (2H, c, CH₂); 7,44 (1H; д, J = 7,9 Гц, аром.); 7,51...7,66 (5H, м, аром.); 7,64 (1H, д. т, J = 7,7, 1,2 Гц, аром.); 7,72 (2H, м, аром.); 11,73 (1H, уш. c, NH); 12,68 (1H, уш. c, NH). Найдено, %: C 69,75; H 5,70; N 7,20; CI 9,10. C₂₃H₂₃CIN₂O₃. Вычислено, %: C 69,95; H 5,87; CI 8,98; N 7,09.

Гидрохлорид 3,3,11-триметил-7-бензоил-2,3,4,5-тетрагидро-1H-дибензо[b,e][1,4]диазепин-1-она (VII). Растворяют 0,38 г (1 ммоль) енамина V в 20 мл этанола при 20 °С, добавляют 2 мл конц. HCl и оставляют на сутки. Отфильтровывают выпавшие красные кристаллы диазепиновой соли VII и промывают на фильтре диэтиловым эфиром. Фильтрат упаривают на роторном испарителе при 20 °С до 5...7 мл, оставляют еще на сутки. Образовавшиеся дополнительно кристаллы VII отфильтровывают и промывают диэтиловым эфиром. Общий выход 0,24 г (61%). $T_{\text{ПЛ}}$ 232...234 °С. Дает депрессию температуры плавления с диазепиновой солью VI. ИК спектр: 1685, 1665, 1645, 1620, 1590, 1575, 1540, 1520, 2980...2500 см $^{-1}$. Спектр ПМР в CDCl₃ + DMSO,

1,06 (6H, c, 2CH₃); 2,28 (2H, c, CH₂); 2,64 (5H, c, CH₃ + CH₂); 7,44...7,53 (5H, м, аром.); 7,64 (1H, д. т, J = 7,4 и 1,2 Гц, аром.); 7,72...7,76 (2H, м, аром.); 11,17 (1H, уш. с, NH); 13,32 (1H, уш. с, NH). Найдено, %: С 69,75; H 5,70; Cl 9,10; N 7,20. С₂₃H₂₃ClN₂O₃. Вычислено, %: С 69,95; H 5,87; Cl 8,98; N 7,09.

2-Ацетил-3-(2-амино-4-бензоилфенил) амино-5,5-диметил-1,3-циклогександион (VIII). Взвесь 0,20 г (0,50 ммоль) диазепиновой соли VI в 10 мл воды при перемешивании нагревают до 60...70 °C и продолжают перемешивание при этой температуре до полного обесцвечивания реакционной смеси. Осадок VIII отфильтровывают и перекристаллизовывают из этанола. Выход 0,15 г (80%). $T_{\Pi\Pi}$ 181...183 °C. ИК спектр: 1660, 1635, 1605, 1580, 1555, 1510, 3450, 3362, 3245 см⁻¹. Спектр ПМР в CDCI₃: 1,02 (6H, c, 2CH₃); 2,33 (2H, c, CH₂); 2,39 (2H, c, CH₂); 2,62 (3H, c, CH₃); 4,06 (2H, уш. c, NH₂); 7,06 (1H, д. д, J = 1,3 и 7,9 ги, аром.); 7,16 (1H, д. д, J = 7,9 и 1,3 ги, аром.); 7,27 (1H, д, J = 1,3 ги, аром.); 7,49 (2H, т, J = 7,3 ги, аром.); 7,60 (1H, т, J = 7,3 ги, аром.); 7,81 (2H, д, J = 7,3 ги, аром.), 13,79 (1H, уш. c, NH). Найдено, %: C 73,5; H 6,30; N 7,26. C₂₃H₂₄N₂O₃. Вычислено, %: C 73,38; H 6,43; N 7,44.

3-(2-Аминофенил) амино-2-ацетил-5,5-диметил-1,3-циклогександион (X). А. К раствору 0,49 г (2,5 ммоль) 2-ацетил-3-метокси-5,5-диметилциклогекс-2-ен-1-она в 2 мл безводного метанола прибавляют раствор 0,27 г (2,5 ммоль) o-фенилендиамина в 6 мл безводного метанола и оставляют на 48 ч при 20 °C. Растворитель удаляют на роторном испарителе, осадок перекристаллизовывают из сухого бензола. Выход 0,59 г (77%). $T_{\Pi\Pi}$ 119...120 °C.

Б. Растворяют при 20 °С 0,58 г (2 ммоль) диазепиниевой соли X в 50 мл воды и при той же температуре в течение 10 мин медленно прикапывают 10 мл 5% водного раствора NaHCO3. Бесцветный осадок отфильтровывают и перекристаллизовывают из этанола. Выход 0,45 г (83%). $T_{\rm пл}$ 118...120 °С. Образцы, полученные по обоим методам, депрессии температуры плавления не дают. ИК спектр: 1660, 1640, 1600, 1578, 1560, 1510, 3420, 3370, 3240 см $^{-1}$. Спектр Π MP в CDCl3: 0,99 (6H, c, 2CH3); 2,31 (2H, c, CH2); 2,34 (2H, c, CH2); 2,62 (3H, c, CH3); 3,85 (2H, уш. c, NH2); 6,77 (1H, д. т, J=7,4 и 1,3 Γ ц, аром.); 6,81 (1H, д. т, J=8,1 и 1,3 Γ ц, аром.); 6,95 (1H, д. д, J=7,4 и 1,3 Γ ц, аром.); 7,17 (1H, д. т, J=1,3 и 8,1 Γ ц, аром.); 13,59 (1H, уш. c, NH). Найдено, %: С 70,43; H 7,45; N 10,17 С $_{16}$ H20N2O2. Вычислено, %: С 70,56; H 7,40; N 10,29.

2-[1-(2-Аминофенил) амино] этилиден-5,5-диметил-1,3-циклогександион (XI) получен по методике работы [10]. ИК спектр: 1645, 1638, 1605, 1572, 1555, 1510, 3445, 3362, 3225 см $^{-1}$. Спектр ПМР в CDCl₃: 1,07 (6H, c, 2CH₃); 2,43 (4H, c, 2CH₂); 2,46 (3H, c, CH₃); 3,87 (2H, уш. с, NH₂); 6,74 (1H, д. т, J = 7,4 и 1,3 Γ ц, аром.); 6,77 (1H, д. д, J = 8,1 и 1,3 Γ ц, аром.); 6,94 (1H, д. д, J = 8,1 и 1,3 Γ ц, аром.); 7,11 (1H, д. т, J = 8,1 и 1,3 Γ ц, аром.); 14,47 (1H, уш. с, NH).

Гидрохлорид 3,3,11-триметил-2,3,4,5-тетрагидро-1H-дибензо[b,e][1,4]диазепин-1-она (XII). К раствору 0,30 г (1,1 ммоль) 3-(2-аминофенил) амино-2-ацетил-5,5-диметилциклогекс-2-ен-1-она в 5 мл этанола добавляют 1 мл конц. НСI и оставляют на сутки в холодильнике. Гидрохлорид отфильтровывают и промывают на фильтре диэтиловым эфиром. Выход темно-красных кристаллов XII 0,20 г (63%). $T_{\rm HJ}$ 263...265 °C. Депрессию температуры плавления с гидрохлоридом, полученным из 2-[1-(2-аминофенил) амино] этилиден-5,5-диметил-1,3-циклогександиона XI по [9] не дает. ИК спектр: 1700, 1655, 1620, 1600, 1580, 1540, 1510, 3000...2800 см $^{-1}$. Спектр ПМР в ДМСО: 0,97 (6H, c, 2CH₃); 2,23 (2H, c, CH₂); 2,43 (3H, c, CH₃); 2,65 (2H, c, CH₂); 7,07 (1H, д. д, J = 7,8 и 1,7 Гц, аром.); 7,21 (1H, д. т, J = 1,7 и 7,8 Гц, аром.), 7,27 (1H, д. т, J = 7,8 и 1,7 Гц, аром.); 11,17 (1H, уш. c, NH).

СПИСОК ЛИТЕРАТУРЫ

- 1. Колос Н. Н., Орлов В. Д., Ариса Д., Шишкин О. В., Стручков Ю. Т., Воробьева Н. П. // XГС. 1996. № 1. С. 87.
- 2. Колос Н. Н., Шишкин О. В., Орлов В. Д., Стручков Ю. Т. // ХГС. 1995. № 4. С. 551.
- 3. Орлов В. Д., Колос Н. Н., Кирога Х., Калуски З., Фигас Э., Потехин К. А. // XГС. 1992. № 4. С. 506.
- 4. Okamoto Y., Takagi K. // J. Heterocycl. Chem. 1987. Vol. 24. P. 885
- Страков А. Я., Петрова М. В., Дишс А., Стракова И. А., Лахвич О. Ф. // ХГС. 1995. № 3. — С. 336.
- 6. Страков А. Я., Стракова И. А., Петрова М. В. // Latv. kim. žurn. 1991. N 1. С. 95.
- 7. Страков А. Я., Стракова И. А., Петрова М. В. // Latv. kim. žurn. 1990. N 6. C. 747.
- 8. Страков А. Я., Шульца М. Т. // Изв. АН ЛатвССР. Сер. хим. 1972. $\mathbb{N}^{\!\scriptscriptstyle 0}$ 3. С. 355.

- 9. Страков А. Я., Линаберг Я. Я., Страутзеле М. Т., Лауцениеце Д. // Изв. АН ЛатвССР. Сер. хим. 1968. № 6. С. 722.
- 10. Страков А. Я., Страутзеле М. Т., Лауцениеце Д. // Изв. АН ЛатвССР. Сер. хим. 1968. № 6. С. 704.
- 11. Ахрем А. А., Моисеенков А. М., Лахвич Ф. А., Криворучко В. А. // Изв. АН СССР. Сер. хим. 1969. N^2 9. С. 2013.
- 12. Ахрем А. А., Моисеенков А. М., Андабурская М. Б. // Изв. АН СССР. Сер. хим. 1971. № 3. С. 594.
- 13. Ахрем А. А., Моисеенков А. М., Лахвич Ф. А., Поселенов А. И., Иванова Т. М. // Изв. АН СССР. Сер. хим. 1971. \mathbb{N} 2. С. 371.
- 14. Ахрем А. А., Моисеенков А. М., Андабурская М. Б. // Изв. АН СССР. Сер. хим. 1969. № 12. С. 2848.
- Ахрем А. А., Моисеенков А. М., Лахвич Ф. А., Андабурская М. Б., Мхитарян А. В. // Изв. АН СССР. Сер. хим. — 1969. — № 5. — С. 1196.
- Страков А. Я., Брутане Д. В., Моисеенков А. М., Ахрем А. А. // Изв. АН ЛатвССР. Сер. хим. 1970. № 5. С. 610.
- 17. Богданов В. С., Негребецкий В. В., Кореневский В. А., Моисеенков А. М., Лахвич Ф. А., Ахрем А. А. // Изв. АН СССР. Сер. хим. 1971. $\mathbb N 2$ 3. С. 550.
- 18. Петрова М. В., Негребецкий В. В., Рекис А. Х., Страков А. Я., Паулиныи Я. Я., Гудриниеце Э. Ю. // Latv. kim. žurn. — 1992. — N 5. — С. 608.
- 19. Лиепиньш Э. Э., Петрова М. В., Паулиньш Я. Я., Гуделе И. Я., Гудриниеце Э. Ю. // Изв. АН ЛатвССР. Сер. хим. 1987. № 4. С. 495.
- 20. Dudek G. O., Dudek E. P. // J. Chem. Soc. Chem. Commun. 1965. N 19. P. 464.
- Marshall J. L. // Methods in Stereochemical Analysis. Vol. 2. P. 44; Verlag Chemie International Inc., 1983.
- 22. Busing W. P., Levy H. A. // Acta crystallogr. 1964. Vol. 17. P. 142.
- 23. Allen F. H., Kennard O., Watson D. G., Bremmer L., Orpen A. G., Taylor R. // J. Chem. Soc. Perkin Trans. II. 1987. N 12. P. S1.
- 24. Kuleshova L. N., Zorkii P. M. // Acta crystallogr. 1981. Vol. B37. P. 1363.
- Liepins E, Birgele I., Tomsons P., Lukevics E. // Magn. Res. Chem. 1985. Vol. 23. P 485
- 26. *Мишнев А. Ф., Беляков С. В.* // Кристаллография. 1988. Т. 23. С. 835.
- 27. *Адрианов В. И.* // Кристаллография. 1987. Т. 32. С. 228.

Рижский технический университет, Рига LV-1658

Поступило в редакцию 30.10.96

Латвийский институт органической химии, Рига LV-1006

Университет Цинииннати, Огайо, США