В. А. Макаров, В. А. Тафеенко, В. Г. Граник

ВЫСОКОПОЛЯРИЗОВАННЫЕ ЕНАМИНЫ

4*. НЕОБЫЧНАЯ ТРАНСФОРМАЦИЯ ПРОИЗВОДНЫХ α, α -ДИАМИНО- β -НИТРО- β -ЦИАНОЭТИЛЕНА В 4,6-ДИМЕТИЛАМИНО-5-НИТРОПИРИМИДИН

Обнаружена необычная трансформация α -бис (диметиламинометилен) амино- β -нитро- β -цианоенаминов под влиянием различных нуклеофильных агентов в 4,6-бисдиметиламино-5-нитропиримидин,структура которого доказана различными физико-химическими методами, включая рентгеноструктурный анализ. Предложена возможная схема данного превращения.

Недавно нами опубликованы новые данные о синтезе, химических свойствах [1] и спектральных особенностях [2] «push-pull» енаминов — α, α -диаминопроизводных β -нитро- β -цианоэтиленов. В частности установлено, что соединения этого типа способны вступать во взаимодействие с различными нуклеофилами с образованием новых енаминов или азагетероциклов. В продолжение этих исследований казалось интересным расширить круг нуклеофильных реагентов, способных реагировать с указанными высокополяризованными енаминами. Мы обнаружили, что нагревание α, α -бис (диметиламинометиленамино)- β -нитро- β -цианоэтилена (I) с бутилатом натрия приводит к смеси двух соединений. Первое из них — енамин (III), образующийся путем гидролиза одного из амидиновых фрагментов исходного I (под действием щелочи, возникающей из-за наличия следов воды в бутаноле) и реакций переаминирования промежуточного соединения (II) с участием диметиламина и аммиака:

Продукт II, выделенный с выходом 15%, идентифицирован сопоставлением его физических и спектральных свойств с заведомым образцом, синтезированным по известной методике [3]. Второму соединению, выход которого составил около 25%, на основании спектральных данных (см. экспериментальную часть) может быть приписана структура 4,6-бисдиметиламино-5-нитропиримидина (IV). Поскольку образование последнего крайне необычно, для окончательного доказательства строения этого соединения проведен PCA его монокристалла. На рисунке изображена

^{*} Сообщение 3 см. [2].

Проекция молекулы 4,6-бисдиметиламино-5-нитропиримидина

проекция молекулы 4,6-бисдиметиламино-5-нитропиримидина IV на плоскость, перпендикулярную оси, проходящей через атомы С(3), С(1). Такая проекция наилучшим образом показывает особенности пространственного строения пиримидинового цикла, который имеет конформацию «ванна». Действительно, отклонения атомов $C_{(3)}$, $C_{(1)}$ от среднеквадратичной плоскости (A), проведенной через атомы $C_{(2)}$, $N_{(2)}$, $C_{(4)}$, $N_{(1)}$, равны соответственно -0.3 Å и -0.1 Å, в то время как отклонение атомов, образующих плоскость A, не превышает 0.004(2) Å. Из рисунка видно, что нитрогруппа в значительной степени выведена из плоскости пиримидинового цикла и в то же время угол ее поворота составляет всего 19,4° с плоскостью, проходящей через атомы С(3), С(4), С(2), а обе диметиламиногруппы развернуты относительно плоскости A не более чем на 16,6°. Длины связей $C_{(3)}-N_{(3)}$ (1,404(3) Å), $C_{(4)}-N_{(5)}$ (1,328(3) Å), $C_{(2)}-N_{(4)}$ (1,335(3) Å) – значительно короче длин соответствующих связей O2N—CAr (1,468 Å) и (C2) N—CAr (1,425 Å), статистические значения которых приведены в работе [4]. Это указывает на сильное сопряжение как нитро-, так и диметиламиногрупп с ароматичиским пиримидиновым циклом (несмотря на определенный поворот этих группировок относительно друг друга из-за стерических взаимодействий).

Таким образом, можно с уверенностью утверждать, что вторым продуктом рассматриваемой реакции, образующимся из диамидина I и енамина II в присутствии бутилата натрия, является замещенный пиримидин IV^* .

^{*} Ряд элементов приведенной ниже схемы может быть легко отнесен к взаимодействию с бутилатом натрия, поэтому данная реакция специально не рассматривается.

Образование производного пиримидина IV в ходе рассмотренной выше реакции побудило нас исследовать также взаимодействие соединения I с диэтилацеталем диметилформамида (V). Последний, как известно, представляет собой равновесную смесь:

$$Me_2N$$
 Me_2N
 $+$
 $OEt + EtO$
 V

Другими словами, как и в случае реакции с бутилат-анионом, начало процесса может быть обусловлено взаимодействием амидина I с этилат-анионом. Следует отметить, что образующийся диметиламин при действии избытка ацеталя V легко превращается в аминаль (VI), который, как известно, диссоциирует с возникновением диметиламид-аниона [5].

$$V \xrightarrow{NHMe_2} H \xrightarrow{Me_2N \xrightarrow{*} NMe_2} + Me_2N \xrightarrow{*} VI$$

Высокая нуклеофильность последнего, возможно, является важнейшим фактором, обеспечивающим трансформацию цианогруппы в амидиновую, а последующее переаминирование далее необратимо приводит к производному пиримидина IV. Существенно, что нагревание бисамидина I в ацетале V приводит к соединению IV с выходом >95% без каких-либо примесей. Следует также указать, что и другие «push-pull» енамины в этих условиях с высокими выходами трансформируются в нитропиримидин IV . В частности, выход последнего при нагревании α -диметиламино- α -(диметиламинометилен) амино- β -нитро- β -цианоэтилена (VII) в ацетале V составляет 90%.

Мы полагаем, что общая схема рассмотренных процессов взаимодействия диамидинов I и VII с ацеталем V может быть представлена следующим образом:

В ацетале V всегда содержится некоторое количество этанола и заряженные промежуточные частицы в значительной мере протонированы. Кроме того, при проведении этой реакции наблюдается достаточно заметное выделение диметиламина. Однако его присутствие недостаточно для

Некоторые валентные расстояния в структуре 4,6-бисдиметиламино-5-нитропиримидина

Связь	Длина, Å	Связь	Длина, Å	Связь	Длина, Å
O ₍₁₎ —N ₍₃₎	1,245(2)	O(2)-N(3)	1,246(2)	N(5)—C(4)	1,328(3)
N(5)—C(8)	1,457(3)	N(5)—C(7)	1,465(3)	N(3)—C(3)	1,404(3)
N(4)—C(2)	1,335(3)	N(4)—C(6)	1,453(3)	$N_{(4)}$ — $C_{(5)}$	1,459(3)
N(1)—C(4)	1,355(3)	$N_{(1)}-C_{(1)}$	1,319(3)	N(2)—C(2)	1,352(3)
$N_{(2)}-C_{(1)}$	1,325(3)	$C_{(3)}-C_{(4)}$	1,440(3)	C(3)—C(2)	1,431(3)

Таблица 2

Некоторые валентные углы (ω) в структуре 4,6-бисдиметиламино-5-нитропиримидина

Атомы	∅ , град.	Атомы	ω, град.
C(4)—N(5)—C(8)	123,0(2)	C ₍₄₎ —N ₍₅₎ —C ₍₇₎	121,1(2)
$C_{(7)}-N_{(5)}-C_{(8)}$	115,3(2)	$O_{(1)}-N_{(2)}-O_{(2)}$	120,8(2)
$O_{(1)}-N_{(3)}-C_{(3)}$	119,7(2)	$O_{(2)}-N_{(2)}-C_{(3)}$	119,4(2)
$C_{(2)}$ — $N_{(4)}$ — $C_{(6)}$	123,5(2)	$C_{(2)}-N_{(4)}-C_{(5)}$	120,4(2)
$C_{(4)}-N_{(1)}-C_{(1)}$	115,6(2)	$C_{(2)}$ — $N_{(2)}$ — $C_{(1)}$	115,5(2)
$N_{(3)}-C_{(3)}-C_{(2)}$	121,3(2)	$N_{(3)}-C_{(3)}-C_{(4)}$	120,1(2)
$C_{(4)}-C_{(3)}-C_{(2)}$	115,1(2)	$N_{(5)}-C_{(4)}-N_{(1)}$	117,2(2)
$N_{(5)}-C_{(4)}-C_{(3)}$	124,1(2)	$N_{(1)}-C_{(4)}-C_{(3)}$	118,7(2)
$N_{(4)}-C_{(2)}-N_{(2)}$	116,5(2)	$N_{(4)}-C_{(2)}-C_{(3)}$	124,3(2)
$N_{(1)}-C_{(1)}-N_{(2)}$	129,4(2)		

протекания пиримидиновой циклизации. Это было специально показано на примере, в котором диметиламин пропускали в кипящий раствор диамидина I в ДМФА. В этом случае не наблюдалось образования пиримидина IV, а с выходом, близким к количественному, выделен α -амино- α -диметиламино- β -нитро- β -цианоэтилен II. С другой стороны, при наличии ацеталя V диметиламин, как указывалось выше, может быть источником диметиламиданиона.

Представляется вероятным, что полученные данные интересны в теоретическом отношении и открывают определенные перспективы для синтеза 5-нитропиримидинов, содержащих различные третичные аминные остатки в положениях 4,6-пиримидинового кольца.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрофотометре Perkin-Elmer для суспензий в вазелиновом масле. Спектры ПМР регистрировали на спектрометре Oxford Unity 400, внутренний стандарт ТМС. Масс-спектры получены на спектрометре Varian SSQ-700 с вводом вещества непосредственно в ионный источник. Контроль за чистотой продуктов и ходом реакций осуществляли с помощью ТСХ на пластинках Silufol UV-254.

Ренттеноструктурное исследование соединения IV. Монокристаллы IV светло-желтого цвета получены медленным испарением его раствора в ацетале ДМФА. Параметры элементарной ячейки и трехмерный набор интенсивностей определяли на четырехкружном автоматическом дифрактометре CAD-4: a=8,961 (2), b=13,104(2), c=8,957(2), $\beta=101,87$ (2). V=1029,3 Å 3 . $D_{\rm calc}=1,34$. Федоровская группа $P2_1/n$, Z=4. Использовалось $MoK\alpha$ -излучение, графитовый монохроматор, ω -сканирование. Параметры элементарной ячейки определены методом автоиндицирования и уточнены по 25 отражениям в области 2θ 12...16°.

Мотив структуры найден с использованием прямых методов, реализованных в программе MULTAN комплекса программ SDP.

Уточнение позиционных и тепловых параметров неводородных атомов молекулы проведено в полноматричном анизотропном приближении. Атомы водорода локализованы из разностного синтеза Фурье и уточнены в изотропном приближении. Всего в процессе эксперимента в области 2θ 0... 52° определено 2152 отражения; 1401 из них с $|F| > 3\sigma$ использовались в МНК.

Окончательный $R_{\text{фактор}} = 0,036$. Обозначения атомов молекулы указаны на рисунке, валентные углы и длины связей в табл. 1 и 2 соответственно.

4,6-Диметиламино-5-нитропиримидин (IV). А. Раствор 2 г (8,4 ммоль) соединения I в 7 мл ацеталя V кипятят 30 мин и выдерживают 4 ч при комнатной температуре. Избыток ацеталя V отгоняют в вакууме, к остатку добавляют 3 мл этанола, смесь выдерживают в холодильнике \sim 16 ч, после чего отфильтровывают 1,6 г (98%) соединения IV. $T_{\Pi \Pi}$ 161...163 °C (этанол—вода) [6]. ИК спектр: 1565, 1460, 1445, 1255, 1063 см⁻¹. Спектр ПМР (ДМСО-D₆): 7,86 (1H, c, CH); 3,68 м. д. (6H, c, 2NMe₂). Масс-спектр, m/z: 211. Найдено, %: С 45,50; Н 6,25; N 33;09. Св H_{13} N5O₂. Вычислено, %: С 45,49; Н 6,16; N 33,17.

При аналогичной обработке соединения II (реакционную массу кипятят 45 мин) продукт реакции IV получают с выходом 70%.

Б. При интенсивном перемешивании растворяют 2 г (25 ммоль) NaOH в 15 мл бутилового спирта. К полученному раствору добавляют 0,8 г (2,4 ммоль) соединения I, реакционную массу нагревают до кипения и кипятят 5 мин. Охлажденную реакционную смесь разбавляют 30 мл этанола и подкисляют 9% HCl/MeOH до pH 6...7. Выпавший осадок NaCl отфильтровывают, фильтрат упаривают, остаток кристаллизуют из изопропанола. Получают 0,05 г (15%) соединения Π , $T_{\Pi \Pi}$ 191...193 °C [3], а после упаривания маточного раствора — 0,17 г (25%) соединения Π

СПИСОК ЛИТЕРАТУРЫ

- 1. Макаров В. А., Седов А. Л., Анисимова О. С., Граник В. Г. // ХГС. 1996. № 6. С. 811.
- 2. Соловьева Н. П., Макаров В. А., Граник В. Г. // XГС. 1997. № 1. С. 89.
- 3. Clark J., Gelling I., Southon I. W., Morton M. S. // J. Chem. Soc. 1970. N 3. —P. 498.
- Allen F. H., Kennard O., Watson D. G., Brammer L., Orpen A. G., Taylor R. // J. Chem. Soc. Perkin Trans. II. — 1987. — N 1. — P. 1.
- 5. Simchen G., Hoffmann H., Bredereck H. // Chem. Ber. 1968. Bd 101. S. 51.
- 6. Clark J., Gelling I., Neath G. // Chem. Commun. 1967. Vol. 17. P. 859.

Центр по химии лекарственных средств (ЦХЛС-ВНИХФИ), Москва 119815

Поступило в редакцию 11.10.96