Л. М. Алексеева, В. М. Любчанская, Т. И. Муханова, Е. К. Панишева, В. Г. Граник

ИССЛЕДОВАНИЕ МЕТОДОМ ЯМР ¹Н ДИЕНДИАМИНОВ – ИСХОДНЫХ СОЕДИНЕНИЙ В СИНТЕЗЕ ИНДОЛОВ И БЕНЗОФУРАНОВ ПО РЕАКЦИИ НЕНИЦЕСКУ

Проведены исследования методом ЯМР ¹Н диендиаминов — исходных соединений в синтезе индолов и бензофуранов по реакции Неницеску. Изучены протонирование диендиаминов, их конфигурационные и конформационные особенности.

Недавно мы установили, что нитродиендиамины I [1, 2] и диендиаминокетоны II [3, 4] могут быть исходными соединениями для синтеза бензофурановых и индольных производных по реакции Неницеску. Для нитродиендиаминов I при взаимодействии с *п*-бензохиноном (III) в реакции Неницеску доминирует образование замещенного бензофурана IV. Кроме того, бистретичный диендиамин Ia взаимодействует с хиноном по типу реакции 1,4-циклоприсоединения с образованием замещенных нафто-V и антрахинонов VI. Реакция нитродиендиамина I6, имеющего в δ -положении вторичную ариламиногруппу, с хиноном III также приводит к бензофурану IV, как основному продукту реакции. Лишь с помощью масс-спектрометрии обнаружено наличие производного индола VII; в этом случае зафиксировать образование продуктов 1,4-циклоприсоединения не удалось [2]:

Ia $R = R^1 = Me$; $\delta R = p\text{-MeOC}_{\delta}H_4$, $R^1 = H$; B R = Ph, $R^1 = H$

По-иному взаимодействуют с хиноном III диендиаминокетоны IIа,б. В этом случае в результате первичной реакции Неницеску образуются индольные интермедиаты VIII, которые вступают в новую конденсацию с хиноном III, что, в конечном итоге, приводит к бензофурилиндолам IX [3, 4]:

$$\begin{array}{c} \text{NHC}_6\text{H}_4\text{R-}p \\ \text{Me}_2\text{N--CH=-CH-COPh} \\ \text{IIa, 6} \end{array} \qquad \begin{array}{c} \text{HO} \\ \text{COPh} \\ \text{C}_6\text{H}_4\text{R} \\ \text{VIII} \end{array}$$

II a R = H; $\delta R = CI$

Наконец, диендиамин X, имеющий в δ -положении два заместителя — циано- и этоксикарбонильный, вообще не удалось ввести в реакцию Неницеску — наблюдалось осмоление реакционной массы, не сопровождавшееся, по-видимому, индольным (или бензофурановым) синтезом.

$$Me_2N$$
— CH = CH — $CH(NHC_6H_4OMe-p)$ = $C(CN)COOEt$

Целью настоящей работы явилось изучение протонирования диендиаминов I, II, X — взаимодействия, моделирующего, в известной степени, реакции с электрофильными реагентами, такими, как хинон III. Диендиамины представляют собой усложненную по сравнению с обычными енаминами систему, протонирование которой может протекать по атомам азота обеих аминогрупп, β - и δ -углеродным атомам, а в случае диендиаминокетонов — также и по атому кислорода карбонильной группы:

$$\begin{array}{c|c} & \alpha & \beta & N \\ N - CH = CH - C = CRR^{1} \end{array}$$

Кроме того, казалось, что изучение конфигурационных и конформационных особенностей строения исследуемых диендиаминов может дать дополнительную информацию для осмысления основных и побочных процессов, протекающих в ходе взаимодействия диендиаминов с хиноном.

Методом, использованным в настоящей работе для решения поставленных задач, явилась спектроскопия ЯМР 1 Н. Сопоставление спектров ЯМР 1 Н соединений Ia и I6 (Iв) в дейтерохлороформе со спектрами соединений Ia,в в CDCI3 с добавлением CF3COOH показывает, что протонирование избирательно протекает по δ -углеродному атому. Как видно из данных таблицы, вместо сигнала протона в δ -положении соединения Ia при 6.62 м. д. (1H, c, δ -CH) возникает сигнал протонов группы δ' -CH2, 5.94 м. д. (2H, c, δ -CH2), а остальные сигналы, как и следовало ожидать, сдвигаются в слабое поле. Аналогичная картина наблюдается и для других нитродиендиаминов и диендиаминокетонов (таблица). Так, для соединения II6 сигнал протона группы δ -CH при 5.91 (1H, c, δ -CH) при протонировании превращается в двухпротонный синглет протонов группы δ -CH2 при 4.64 м. д. Однозначное протонирование диендиаминов I и II в δ -положение обусловлено, по-видимому, значительно большей термодинамической стабильностью

катиона А по сравнению с катионом Б, вызванной существенно большей делокализацией положительного заряда в первом:

В то же время вполне очевидно, что электронная плотность в β -положении в основном состоянии выше, чем в δ -положении. Например, для соединения Ia в спектре ЯМР 1 Н наблюдаются сигналы (CDCl3): 4,64 (1H, д, β -CH) и 6,62 (1H, с, δ -CH), а для соединений IIa: 4,80 (1H, д, β -CH) и 5,91 м. д. (1H, с, δ -CH), что также свидетельствует в пользу такого заключения. На основании этого можно ожидать, что скорость протонирования по β -положению (и, конечно, N- и О-протонирование — см., например, [5]) выше, чем по δ -положению и конечный результат — δ -протонирование — обусловлен исключительно термодинамическим

Химические сдвиги (δ , м. д.) в спектрах ЯМР 1 Н оснований и протонированных форм диенаминов I, II

Соеди- нение	α-сн	β-сн	δ-сн	Cδ—N(Me) ₂	C ∂ —NHAr	R ¹	Растворитель
-							
Ia	7,30 д	4,64 д	6,62 c	3,01 уш. с	 	_	CDCl ₃
		$J = 12.2 \Gamma \mu$	0,0-0	3,14 c			
Ia ∙H ⁺	8,36 д	5,21 д	5,94 c	3,17 c;	_		CDCl ₃ + 2 _K
	J=12,2 Гц	$J=12.2~\Gamma \mathrm{m}$	(2H)	3,27 c;			CF ₃ COOH
				3,37 c;			
				3,43 с			
Ів	7,21 д		7,00 c	2,90 ш. с	12,2 уш. с	_	CDCl ₃
	$J=13,2 \Gamma \mu$	$J=13,2 \Gamma \mathrm{H}$	-		7,197,29		
· · · · · ·	0.10	5.55	5.70	2 02 - 2 40	M	. 1	CDCI : 2-
IB ·H +	$J = 12 \Gamma_{\rm H}$	5,55 д J = 12 Гц	(2H)	3,02 c 3,40	9,62 ш. с. 7,187,50		CDCl ₃ + 3 _K CF ₃ COOH
	J - 12 I II	J - 12 I H	(211)		7,107,30 M		Cr3COOII
IIa	*	4,80 д	5,91 c	2,86 c	13,4 уш. с	7 10 7 90	CDCla
IIa.		$J = 13.2 \Gamma_{\rm H}$		2,00 €	7,107,90	M	02013
	·				м		
$\text{IIa} \cdot \text{H}^+$	7.79 д	5,41 д	4,63 c	3,30 c	9,3 уш. с	7,248,00	CDCl ₃ + 10k
		$J = 12,4 \Gamma_{\rm H}$	(2H)		7,248,00	М	CF ₃ COOH
	:		-		М	·	
	7,26 д		5,91 c	2,89 c	13,4 уш. с		CDCl ₃
	$J=12,4 \Gamma \mu$	J = 12.4 Fg			7,207,90	M	
					M		65 G1 10
Н ⁺	7,81 д J = 12 Гц	5,42 д			9,00 уш. с		CDCl ₃ + 10 K
.н.	Ј=121ц	J=121H	(2H)	3,31 c	7,168,12	М	CF₃COOH
			21		7,106,12 M		
, , ,	ı	1	1			l .	

Сигнал протона попадает в область сигналов протонов фенильных заместителей.

фактором. Учитывая, что при взаимодействии диендиаминов с хиноном зафиксированы исключительно продукты б-электрофильной атаки, рассмотренные данные могут свидетельствовать либо о том, что первая стадия этого процесса — реакция Михаэля — обратима, либо что eta-атака хинона приводит к малоустойчивым интермедиатам, трансформирующимся в смолообразные соединения, а не индольные и (или) бензофурановые производные*. В пользу того, что атака хинона по β -положению диендиаминов не приводит к синтезу целевых гетеробициклов, свидетельствует изучение протонирования диендиамина X, который не дает продуктов реакции Неницеску при взаимодействии с хиноном III. В спектре ЯМР ¹Н этого соединения в CDCl₃ наблюдаются сигналы 1,32 (т) и 4,21 (к) группы COOEt; 2.82 (vm. c, NMe₂); 7.51 (μ , $J = 13.2 \Gamma \mu$, α -CH); 4.50 (μ , $J = 13.2 \Gamma \mu$, β -СН); 3,80 (с, ОМе); 7,96 (A₂B₂-система, С₆H₄); 10,94 м. д. (с, NH). При добавлении СГ3СООН большая часть сигналов сдвигается в слабое поле, возникают сигналы при 3,50 и 3,70 (N^{T} Me₂), 8,36 (α -CH) и, главное, сигнал группы CH_2 при $4{,}03$ м. д. (2H, ш. с, β - CH_2), указывающий на β -протонирование енамина X^{*2} . Этот сигнал практически отсутствует при использовании в качестве протонирующего агента CF3COOD (возникновение группы CD_2). Таким образом, β -протонирование диендиаминов действительно препятствует протеканию реакции Неницеску по обычным направлениям.

$$H^+$$
 $H^ H^ H^-$

Вопрос о том, почему для нитродиендиаминов в ходе реакции Неницеску реализуется, в основном, бензофурановый, а для диендиаминокетонов — индольный синтез, следует обсуждать исходя из структуры интермедиатов этой реакции. Хорошо известно [6, 7], что на первом этапе взаимодействия хинонов с енаминами образуются так называемые гидрохинон-аддукты, в нашем случае это соединения XI, XII, дальнейшая судьба которых зависит от стереохимических и электронных факторов.

$$HO \longrightarrow 0$$

$$HO \longrightarrow 0$$

$$V \longrightarrow 0$$

$$V$$

 *2 При протонировании соединения X возникают и дополнительные сигналы, возможно, за счет гидролитических или других процессов, часто наблюдаемых для енаминов в кислой среде.

^{*} Однозначный ответ на этот вопрос осложнен тем обстоятельством, что для реакции Неницеску вообще характерны достаточно сильное осмоление и относительно низкие выходы целевых соединений.

Для нитродиендиаминов в образующихся гидрохинон-аддуктах XI за счет мощного электроноакцепторного эффекта нитрогруппы в у-положении локализован значительный положительный заряд, вследствие чего происходит быстрая атака по этому положению пары электронов оксигруппы с образованием интермедиата XIII, превращающегося в производное бензофурана IV [1, 3]. Кроме того, обеднение электронами замещенного гидрохинонового кольца (за счет того же эффекта группы NO2) препятствует его окислению в хинон-аддукт и, таким образом, ингибирует возможность индольного синтеза для этой системы. Заметим, что окисление для нитроенаминов не наблюдалось и ранее [8, 9]. Для диендиаминокетонов ситуация иная: в этом случае снижение электроноакцепторного влияния заместителя приводит, с одной стороны, к замедлению образования фуранового кольца и, с другой — к ускорению окисления до хинон-аддукта XIV с дальнейшей индольной циклизацией в соединение VIII [2, 4].

Взаиморасположение заместителей и двойных связей в диендиаминах I, II установлено с помощью спектроскопии ЯМР 1 Н. Для решения этой проблемы применялся гомоядерный эффект Оверхаузера (ЯЭО), позволяющий установить взаиморасположение отдельных группировок в системе. Так, для нитродиендиамина Iа насыщение сигнала при 7,30 м. д., относящегося к протону α -H, приводит к отклику сигнала 6,62 м. д. (δ -H) (ЯЭО 10...11%), т. е. эти протоны сближены в пространстве. Аналогично реагирует дублет при 7,30 м. д. на подавление синглета 6,62 м. д. При подавлении сигналов N-метильных групп 3,02 м. д. (уш. с) и 3,14 м. д. (с) ЯЭО наблюдается для β -протона 4,64 м. д. (д, β -CH) — 24% и α -протона 7,30 м. д. — 10%. Таким образом, пространственное расположение группировок в соединении Iа выглядит следующим образом (структура XV):

Подобная картина наблюдается и для диендиаминокетона ІІб: при подавлении сигнала протона группы NH при 13,73 м. д., отклик наблюдается для о-протонов n-хлорфенильного ядра (A₂B₂-система) с 7,27 м. д. — 5%, подавление сигнала 7,84 м. д. (д, α -CH) вызывает ЯЭО для сигнала δ -CH при 6,17 м. д. (c) — 10%. Далее даны: подавляющий сигнал, сигнал, для которого наблюдается ЯЭО, и его величина: 6,17 (с, δ -CH); 7,84 (д, α -CH), 12%; 6,17 (c, δ -CH); 7,49 (o-протоны С $_{6}$ Н $_{5}$), 8%; 4,81 (д, β -CH, J = 13,2 Γ ц); 7,27 (o-протоны A₂B₂-системы), 6%; 4,81 (д, β -CH); 2,91 (уш. c, NMe₂), 6%; 2,91 (NMe_2) ; 4,81 (β -CH), 9%; 2,91 (NMe₂); 7,84 м. д. (α -CH), 7%. Полученные результаты наилучшим образом согласуются со структурой XVI. Основанная на данных ЯЭО пространственная структура нитроендиаминов XV хорошо согласуется с возможностью 1,4-циклоприсоединения нитроендиамина Іа к хинону III. В то же время такая реакция встречает, по-видимому, значительные стерические препятствия для диендиаминокетонов Иа,б из-за бензоильного, а в переходном состоянии и ариламинного остатка. То же относится, вероятно, и к соединению Іб и к 1-n-толиламино-3-n-метоксифениламино-4-нитробутадиену (XVII), для которых 1,4-циклоприсоединение зафиксировано. Для полноты картины методом ЯЭО изучено

пространственное строение и в протонированных формах енаминов — под формулами ниже приведены подавляемые сигналы и сигналы, проявляющие ЯЭО:

OMe
$$CI \longrightarrow H NO_{2}$$

$$H \longrightarrow H$$

СDCl3+10 капель CF3COOH (наблюдается еще одна, минорная протонированная по δ -положению форма с другой конформацией, определить которую точно не удалось). 5,74 м. д. (2H, c, CH2), 8,42 м. д. (к, α -CH), 14%

CDCl₃ + 4 капли CF₃COOH 4,62 м. д. (2H, с, CH₂), 7,85 м. д. (д, J = 12 Гц, α -CH), 18%. 4,62 м. д. (CH₂), 8,00 м. д. (o-протоны C₆H₅), 12%

Другими словами, взаиморасположение связей и заместителей в протонированных формах сходны с таковыми в основных состояниях диендиаминов.

В заключение некоторые соображения о различиях поведения диендиаминов и соответственно замещенных енаминов в реакции Неницеску. Известно, что β -нитроенамины типа XVIII (X = NO₂) при взаимодействии с хиноном III дают не только бензофураны, но и 6-оксииндолы [8]. Как подчеркнуто выше, для нитродиендиаминов I более характерен бензофурановый синтез. Образование 6-оксииндолов объяснено [8] атакой енамина по углеродному атому C=O хинонов с образованием весьма стерически нагруженной системы XIX.

I $R = CH = CHNMe_2$ XVIII R = H, Me $(X = NO_2)$ R = H, Ме для енаминов (XVIII) $R = CH = CH - NR^{\frac{1}{2}}$ для диендиаминов (I) (X = NO₂)

Увеличение объема заместителя R для нитродиендиаминов и приводит, по нашему мнению, к минимизации индольного синтеза на их основе.

Для енаминокетонов, наоборот, скорее характерно образование 5-оксибензофурановых, чем 5-оксииндольных производных [10]. Можно полагать, что в диендиаминокетонах введение дополнительного электронодонорного заместителя — енаминового фрагмента — существенно облегчает процесс окисления гидрохинон-аддуктов типа XIV до хинон-аддуктов XV и, тем самым, сдвигает процесс в сторону индолизации [2, 4].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н зарегистрированы на спектрометре Unity Plus 400 (МГц) (Varian), внутренний стандарт ТМС. Вещества растворяли в $0.5 \, \mathrm{cm}^{3}$ CDCl₃, записывали спектр, затем в этот раствор добавляли от 3 до $10 \, \mathrm{капель}$ СF₃COOH и сразу же записывали спектр. В качестве стандарта использовали CDCl₃ (7,26 м. д.).

Настоящая работа выполнена благодаря гранту от $P\Phi\Phi U$ (96-03-32225).

СПИСОК ЛИТЕРАТУРЫ

- Lyubchanskaya V. M., Alekseeva L. M., Granik V. G. // Mendeleev Communications. 1995. N 2. — P. 68.
- 2. Mukhanova T. I., Alekseeva l. M., Anisimova O. S., Granik V. G. // Mendeleev Communications. 1995. N 2. P. 69.
- 3. Любчанская В. М., Алексеева Л. М., Граник В. Г. // Хим.-фарм. журн. 1995. № 9. С. 44.
- Муханова Т. И., Алексеева Л. М., Анисимова О. С., Граник В. Г. // Хим.-фарм. журн. 1995. — № 9. — С. 47.
- 5. Граник В. Г., Киселев С. С., Соловьева Н. П., Персианова И. В., Полиевктов М. К., Шейнкер Ю. Н. // ХГС. 1980. № 3. С. 344.
- 6. Микерова Н. И., Алексеева Л. М., Панишева Е. К., Шейнкер Ю. Н., Граник В. Г. // ХГС. 1990. № 3. С. 324.
- 7. Гринев А. Н., Урецкая Г. Я., Либерман С. Ф. // XГС. 1971. \mathbb{N}° 3. С. 335.
- 8. Любчанская В. М., Алексеева Л. М., Граник В. Г. // XГС. 1992. $N\!\!_{2}$ 1. С. 40.
- 9. Любчанская В. М., Саркисова Л. С., Алексеева Л. М., Кулешова Е. Ф., Шейнкер Ю. Н., Граник В. Г. // Хим.-фарм. журн. 1992. № 9—10. С. 108.
- Муханова Т. И., Алексеева Л. М., Кулешова Е. Ф., Шейнкер Ю. Н., Граник В. Г. // Хим.фарм. журн. — 1993. — № 2. — С. 136.

Центр по химии лекарственных средств (ВНИХФИ), Москва 119815

Поступило в редакцию 05.12.96