В. А. Макаров, О. С. Анисимова, В. Г. Граник

ВЗАИМОДЕЙСТВИЕ 3,5-ДИАМИНО-4-НИТРОПИРАЗОЛА С ЭЛЕКТРОФИЛЬНЫМИ АГЕНТАМИ

Изучено взаимодействие 3,5-диамино-4-нитропиразола с такими электрофильными реагентами, как уксусный ангидрид, ацеталь диметилформамида, ортомуравьиный эфир и кетоны. При взаимодействии с 1,3-дикетонами образуются производные пиразоло [1,5-а] пиримидинов, изучены некоторые свойства последних.

Недавно нами разработан новый синтез 3,5-диамино-4-нитропиразола (I), заключающийся во взаимодействии ендиаминов II или амидиноенаминов III с гидразингидратом [1]. Ранее пиразол I был получен сложным пятистадийным синтезом [2] исходя из 4-нитропиразол-3,5-дикарбоновой кислоты с целью изучения возможностей его диазотирования и свойств бисдиазониевой соли. Иные свойства диаминопиразолопиримидина I исследованы не были.

3,5-Диамино-4-нитропиразол — соединение, способное проявлять свойства как основания, так и кислоты, что во многом определяет его химические свойства. Методом потенциометрического титрования определены его константы ионизации в воде: основность pK_a 5,56 (присоединение протона) и кислотность pK_a 8,48 (отщепление протона), т. е. пиразол I является несколько более сильным основанием, чем пиридин (pK_a 5,17) [3], и приблизительно такой же кислотой, как n-нитрофенол (pK_a 8,5) [4]. Кислотно-основные равновесия для пиразола I могут быть выражены следующей схемой:

$$H_2N$$
 NO_2
 $+H^+$
 H_2N
 NO_2
 $+H^+$
 H_2N
 NO_2
 H_2N^+
 NO_2
 $NO_$

Относительно высокая основность пиразола I свидетельствует о возможности образования соли этого соединения и проведения реакций электрофильного замещения по аминогруппам. Действительно, при его обработке метанольным раствором соляной кислоты немедленно образуется его соль, а кипячение аминопиразола I в уксусном ангидриде приводит с количественным выходом к моноацетамидному производному IV. Наличие в пиразоле I первичных аминогрупп обусловливает возможность взаимодействия с диэтилацеталем ДМФА; причем следует иметь в виду, что относительно высокая кислотность этого соединения способствует его N-алкилированию амидацеталями (см., например, O-алкилирование

фенолов, карбоновых кислот или N-алкилирование оксипиримидинов ацеталями амидов и лактамов [5]). В 3-аминопиразольном ряду такие процессы также описаны [6]. Так, взаимодействие 3-амино-4-цианпиразола с ацеталем диметилформамида на первом этапе приводит к образованию амидинового производного, которое затем подвергается этилированию по NH пиразольного цикла. При взаимодействии пиразола I с ацеталем диметилформамида нам удалось зафиксировать наличие только этилированного диамидинового производного V с выходом 71%. При этом изменение условий проведения этой реакции влияло только на выход V и не изменяло строения конечного продукта.

VIII a n=1, $\delta n=2$

Другая ситуация наблюдалась при реакции исходного пиразола с ортомуравьиным эфиром — даже после многочасового кипячения из реакционной массы был выделен исключительно 1-этил-3,5-диамино-4-нитропиразол (VI). В этом также проявилось отличие свойств исследуемого пиразола от 3-амино-4-цианпиразола [7], который реагировал в аналогичных нашим условиях с образованием смеси этоксиметиленаминопроизводного и 1-этилпиразола в примерно равном соотношении. Положение этильной группы в соединении VI было доказано встречным синтезом. Так, взаимодействие диамина VI с циклогексаноном привело к 1-этил-4-нитропиразолу VII, который, с другой стороны, был синтезирован последовательной реакцией пиразола I с циклогексаноном с получением дициклогексенамино-4-нитропиразола (VIII) и затем его этилированием ортомуравьиным эфиром. При этом надо отметить, что как тот, так и другой путь синтеза производного VII дает хороший выход конечного продукта (60...70%).

Как видно из реакции пиразола I с циклогексаноном, кетоны легко конденсируются по аминогруппам в положении 3 и 5 пиразольного цикла. С этой точки зрения казалось интересным провести реакции производного I с 1,3-дикарбонильными соединениями с целью выхода к пиразоло [1,5-а] пиримидинам. В рамках данной работы в качестве агентов были изучены только симметричные 1,3-дикарбонильные соединения, так как при участии в

указанной реакции несимметричных соединений следует ожидать получения различных трудноидентифицируемых изомерных производных. Взаимодействие І с дикетонами протекает исключительно в присутствии сильной кислоты, которая необходима в количестве, существенно меньшем, чем эквимолярное. В данном случае использовали 0,1 молярное количество HCl, для чего всякий раз применялся ее 9% метанольный раствор. Как в отсутствие. так и в избытке соляной кислоты процесс конденсации не имеет места. Понятно, что избыток HCl приводит к образованию катиона (K), уже не способен атаковаться электрофильным реагентом. Небольшие же количества Н необходимы, по-видимому, для активации метиленаминовом интермедиате для циклизации эндоциклической пиразольной группе NH с образованием ароматического пиримидинового цикла — необратимой реакции, сопровождающейся выигрышем энергии. Факт необходимости кислотного катализа, по-видимому, исключает возможность первоначальной атаки по эндоциклической группе NH.

Проведение реакции пиразола I с ацетилацетоном и дибензоилметаном в указанных условиях позволило осуществить синтез производных IX, Ха,б. Следует отметить, что непродолжительное кипячение производного IX в водной соляной кислоте приводит к гидролизу связи С=N и пиразолопиримидин Ха был выделен с количественным выходом. В случае использования в качестве дикарбонильного соединения дибензоилметана из реакционной массы был выделен исключительно X6.

Для синтезированных пиразолопиримидинов в рамках настоящего исследования была изучена возможность восстановления нитрогруппы и их бромирования. Так, при восстановлении гидросульфитом натрия в щелочной среде ароматической нитрогруппы в полученных пиразоло [1,5-а] пиримидинах IX и Ха были синтезированны соответственно производные XII и XI. При этом их конечный выход в расчете на перекристаллизованный продукт не превышал 50%, в то время как кислый гидролиз соединения XII привел к 2,3-диаминопроизводному XI с количественным выходом. Последее соединение, на наш взгляд, является перспективным исходным в синтезе

Физико-химические характеристики синтезированных соединений

Соеди- нение	Брутго- формула	Найдено, %			Вычислено, %			<i>т</i> _{пл} , °С	Растворитель	ик спектр, см ⁻¹	M ⁺	Выход,
		С	Н	N	C	Н	N	11111	для кристаллизации			%
*,			*									
IV	C ₅ H ₇ N ₅ O ₃	32,54	3,78	37,54	32,43	3,78	37,83	>260	ДМФА/вода	33503120, 1710, 1610, 1356	185	93
v	C ₁₁ H ₁₉ N ₇ O ₂	47,00	6,72	34,95	46,97	6,76	34,88	134136	Пропанол-2/эфир	1665, 1610, 1455	281	71
VI	C ₅ H ₉ N ₅ O ₂	35,24	5,01	40,83	35,08	5,26	40,93	194195	Пропанол-2/гексан	32503190, 1610, 1310	171	83
VII	C ₁₇ H ₂₅ N ₅ O ₂	61,54	7,48	21,06	61,63	7,55	21,01	161162	Пропанол-2	1670, 1615, 1432, 1325, 908	.331	
VIIIa	C ₁₅ H ₂₁ N ₅ O ₂	59,51	6,53	23,34	59,40	6,93	23,10	132135	Пропанол-2	3210, 1654, 1612, 1354, 1102	303	62
VIIIG	C ₁₇ H ₂₅ N ₅ O ₂	61,68	7,41	21,22	61,63	7,55	71,14	138141	Пропанол-2	3205, 1646, 1628, 1348	331	57
IX	C ₁₃ H ₁₅ N ₅ O ₃	53,81	5,17	24,32	53,97	5,19	24,22	264266	ДМФА	1728, 1650, 1612, 1521, 1423	289	96
Xa	C ₈ H ₉ N ₅ O ₂	46,54	4,21	33,61	46,37	4,34	33,81	244246	Вода	32153180, 1664, 1543	207	95
Хб	C ₁₈ H ₁₃ N ₅ O ₂	65,31	3,86	24,28	65,25	3,92	24,14	>270	дмФА	32303180, 1654, 1512, 1456	331	87
ΧI	C ₈ H ₁₁ N ₅	54,10	6,34	39,78	54,23	6,21	39,54	212214	Этанол	34003125, 1640	177	56
XII	C ₁₃ H ₁₇ N ₅ O	60,41	6,23	26,84	60,23	6,56	27,02	108110	Вода	33503120, 1705, 1651	259	61
XIII	C ₈ H ₅ N ₅ O ₂ Br ₄	18,66	1,02	12,93	18,49	0,96	13,48	112114	Этанол	32153150, 1653, 1517	519	73
XVI	$C_{10}H_{14}N_6O_2$	48,03	5,64	33,68	48,00	5,60	33,60	>260	ДМФА	32703170, 1652, 1520, 1410	250	. 91

различных трициклических производных, имеющих пиразолопиримидиновую систему в своем составе.

Бромирование соединения X с использованием различных соотношений исходных реагентов всякий раз приводило к получению неразделимой смеси изомеров, так как реакция шла одновременно по метильным группам в положении 5 и 7 либо только по одной из этих групп. Лишь в условиях избыточного бромирования был получен с выходом 76% единственный продукт, представляющий собой тетрабромид XIII, в котором в условиях съемки масс-спектра соотношение изотопных пиков молекулярного иона однозначно указывает на наличие в молекуле четырех атомов брома. Основной распад молекулярного иона XIII обусловлен последовательным элиминированием из него трех атомов брома. В спектре наблюдаются малоинтенсивные пики с m/z 171, 173 и 175 с соотношением интенсивностей 1:2:1. Данные пики можно отнести к иону CHBr2 $^+$, а пиков, отвечающих иону CBr3 $^+$, в спектре не наблюдается, что свидетельствует в пользу симметричного дибромирования каждого метила пиримидинового цикла.

В процессе изучения нами свойств «push-pull» енаминов была также показана возможность синтеза замещенных по аминогруппе пиразолов XV исходя из соответствующих циклических енаминов XIV в условиях их взаимодействия с гидразингидратом. При этом реакция протекает через переаминирование только одной аминогруппы ендиамина с последующей циклизацией в пиразольное кольцо и сохранением аминогруппы в заместителе у аминогруппы в положении 3 пиразола XV. Предполагаемая схема протекающих при этом процессов описана нами в работе [1]. Аналогичное раскрытие цикла в цианоенаминах с образованием замещенных пиразолов описано в [8], однако мы показали, что сокращение времени реакции с 16 ч до 30 мин повышает выход конечного продукта на 20%. По-видимому, именно из-за использования столь жестких условий авторам [8] не удалось синтезировать соединение XIV6. В наших условиях соответствующий синтез удалось осуществить с выходом пиразола XV6 60%.

Для пиразола XVa была изучена возможность его взаимодействия с 1,3-дикетонами, для чего в качестве реагента был выбран ацетилацетон. В результате реакции в условиях, аналогичных описанным выше (кислый катализ), с высоким выходом был получен соответствующий пиразолопиримидин XVI.

В заключение следует указать, что исследование процессов взаимодействия аминопиразолов с электрофильными агентами является основой для синтеза различных полигетероциклических соединений. Этот вопрос нам кажется особенно важным, если учесть тот факт, что в научной литературе описан только один пример синтеза 2-аминопиразоло [1,5-a] пиримидина [9].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрофотометре Perkin-Elmer для суспензий в вазелиновом масле. Масс-спектры получены на спектрометре Varian SSQ-700 с вводом вещества непосредственно в ионный источник. Контроль за чистотой продуктов и ходом реакций осуществляли с помощью TCX на пластинках Silufol UV-254.

Синтезы пиразолов I и XVa, б представлены в работе [1].

Физико-химические характеристики синтезированных соединений приведены в таблице.

- 3-Ацетамидо-5-амино-4-нитропиразол (IV). Суспензию 1,0 г (6,9 ммоль) пиразола I в 5 мл уксусного ангидрида кипятят 3 ч. Реакционную массу охлаждают и отфильтровывают 1,2 г яркожелтого осадка IV.
- 3,5-Бис (диметиламинометилен) амино-1-этил-4-нитропиразол (V). Раствор 1,0 г (6,9 ммоль) пиразола I в 5 мл ацеталя диметилформамида выдерживают 2 ч при 100 °C, затем 2 сут в холодильнике. Выпавший крупнокристаллический осадок отфильтровывают и промывают гексаном. Полученные желто-зеленые кристаллы растворяют в 15 мл бензола и переосаждают гексаном. Отфильтровывают 1,4 г желтого кристаллического вещества V.
- 1-Этил-3,5-диамино-4-нитропиразол (VI). Раствор 0,3 г (2,1 ммоль) пиразола I в смеси 4 мл этилового спирта и 4 мл ортомуравьиного эфира кипятят 3 ч, реакционную массу упаривают в вакууме, полученный остаток растирают с гексаном и отфильтровывают 0,3 г ярко-желтого пиразола VI.
- 1-Этил-3,5-дициклогептилиденамино-4-нитропиразол (VII). А. Суспензию 0,3 г (1,7 ммоль) пиразола VI кипятят в 5 мл циклогексанона 5 ч, реакционную массу упаривают, оставшееся масло обрабатывают смесью спирт—серный эфир, 1:1, и отфильтровывают 0,35 г (60%) ярко-желтого VII.
- Б. Суспензию 0.4 г (1.3 ммоль) пиразола VIIIа в 5 мл ортомуравьиного эфира кипятят 3 ч, реакционную массу охлаждают и отфильтровывают 0.35 г (69%) желтого кристаллического вещества, идентичного по своим физико-химическим и спектральным характеристикам пиразолу VII, полученному способом A.
- 3,5-Дициклогексилиденамино-4-нитропиразол (VIIIa) и 3,5-дициклогептилиденамино-4нитропиразол (VIIIб). Раствор 0,4 г (2,8 ммоль) пиразола I в 5 мл циклогексанона или циклогептанона кипятят 6 ч. Реакционную массу упаривают и оставшееся масло затирают с диэтиловым эфиром до образования твердого желтого вещества VIII.
- 2-(4-Оксопентан-2) имино-5,7-диметил-3-нитропиразоло[1,5-а] пиримидин (IX), 2-амино-5,7-дифенил-3-нитропиразоло[1,5-а] пиримидин (Xб) и 3-аминоэтиламино-5,7-диметил-3нитропиразоло[1,5-а] пиримидин (XVI). Суспензию 35 ммоль соответствующего пиразола I или XVб в смеси 5 мл ацетилацетона (или 40 ммоль дибензоилметана), 5 мл метанола и 1,5 мл 9% метанольного раствора НСІ (3,5 ммоль) кипятят 1,5 ч. Реакционную массу охлаждают и отфильтровывают ярко-желтый осадок соответствующего пиразолопиримидина.
- 2-Амино-5,7-диметил-3-нитропиразоло[1,5-*a*]пиримидин (X). Раствор 0,4 г (1,4 ммоль) пиразолопиримидина IX в 5 мл 5% водного раствора HCl охлаждают 5 мин в холодильнике. Выпавший осадок отфильтровывают и получают 0,26 г 2-аминопиразолопиримидина Xa.
- 2-Амино-5,7-диметил-3-аминопиразоло[1,5-a]пиримидин (XI), 2-(4-оксопентан-2)имино-5,7-диметил-3-аминопиразоло[1,5-a]пиримидин (XII). К суспензии 5 ммоль пиразолопиримидина IX или Xa в смеси 25 мл метанола и 25 мл воды при кипячении порциями добавляют сухой гидросульфит натрия и по каплям 40% раствор NaOH. Контроль реакции ведут хроматографически по исчезновению исходного, наличие непрореагировавшего гидросульфита натрия определяют качественной реакцией по обесцвечиванию метиленового синего и щелочность по универсальному индикатору. После исчезновения исходного (TCX в системе хлороформ—метанол, 1:1) нитропиразолопиримидина реакционную массу выдерживают 1 ч при комнатной температуре и экстрагируют этилацетатом (3 × 100 мл). Полученный экстракт сушат Na₂SO₄, упаривают и получают темно-желтое аминопроизводное.
- 2-Амино-3-нитро-5,7-бис (дибромметил) пиразоло [1,5-а] пиримидин (XIII). Суспензию 0,7 г (3,4 ммоль) пиразологиримидина Ха и 1,1 мл (21 ммоль) брома в 25 мл уксусной кислоты кипятят 8 ч, оставляют на ночь. Реакционную массу разбавляют 130 мл воды и отфильтровывают 1,3 г объемного желтого осадка XIII.

Авторы выражают благодарность Н. В. Каменевой (НИОПИК, Москва) за определение констант ионизации.

. СПИСОК ЛИТЕРАТУРЫ

- 1. Соловьева Н. П., Макаров В. А., Граник В. Г. // ХГС. 1997. № 1. С. 89.
- 2. Латыпов Н. В., Силевич В. А., Иванов П. В., Певзнер М. С. // ХГС. 1976. № 12. C. 1649.
- 3. Физические методы в химии гетероциклических соединений / Под ред. А. Р. Катрицкого. — M.: Химия, 1966. — 77 с...
- 4. Установление структуры органических соединений физическими и химическими методами / Под ред. А.Вайсбергера. — М.: Химия, 1967. — Т. 1. — 405 с.
- 5. Граник В. Г., Жидкова А. М., Глушков Р. Г. // Успехи химии. 1977. T. 46. C. 685.
- 6. Бульичев Ю. Н., Корбух И. А., Преображенская М. Н., Чернышов А. И., Есипов С. Е. // XГС. — 1984. — № 2. — С. 259. 7. Бульчев Ю. Н., Корбух И. А., Преображенская М. Н. // ХГС. — 1982. — № 12. — С. 1682.
- 8. Rajappa S., Advani B. G. // Ind. J. Chem. 1977. Vol. 15B. P. 890.
- 9. Sadek K. U., Selim M. A., El-Maghraby M. A. // J. Chem. Eng. Data. 1985. Vol. 30. P. 514.

Центр по химии лекарственных средств (ВНИХФИ), Москва 119815

Поступило в редакцию 09.12.96