А. В. Макаркина, С. В. Зубков, В. А. Чертков

ОРИЕНТАЦИЯ БЕНЗОТИОФЕНА МАГНИТНЫМ ПОЛЕМ В ИЗОТРОПНОЙ ЖИДКОЙ ФАЗЕ

С высокой точностью проанализированы спектры ЯМР 1 Н бензотиофена (2 моль/л раствор в ацетоне), зарегистрированные на спектрометрах с напряженностью магнитного поля 4,7, 9,39 и 11,74 T. С использованием «метода многих спектрометров» получены константы спин-спинового и диполь-дипольного взаимодействия для всех пар протонов и параметры ориентации для исследуемой молекулы $\Delta \chi$ и $\delta \chi$, характеризующие анизотропию и асимметрию магнитной восприимчивости соответственно.

В настоящее время одним из главных источников получения информации о структуре молекул служит спектр ЯМР. Для современной спектроскопии ЯМР характерно использование высоких и сверхвысоких магнитных полей. Ранее было показано, что молекула, обладающая анизотропией магнитной восприимчивости, способна ориентироваться под действием постоянного магнитного поля спектрометра [1]. В изотропных средах тепловое движение молекул препятствует их упорядочению и результирующая ориентация оказывается малой. В спектрах ЯМР явно проявляется частичная ориентация молекул в жидкостях и газах за счет анизотропных взаимодействий ядерных спинов. Это неусредняющиеся до нуля прямое диполь-дипольное взаимодействие между ядрами и взаимодействие квадрупольного момента ядра с градиентом локального электрического поля, вызванного его окружением.

В настоящее время главным инструментом для учета этих малых эффектов и оценки параметров ориентации является измерение квадрупольных расщеплений в спектрах ЯМР ²Н для соединений, селективно меченых дейтерием. Информацию об эффектах ориентации можно получить также из точного анализа спектров ПМР в том случае, когда небольшие по величине константы диполь-дипольного взаимодействия (КДДВ) приводят к сильной связи в спектрах ЯМР высокосимметричных молекул с химической эквивалентностью (бензол [2], нафталин [3, 4], ортодихлорбензол [5], см. обсуждение в [6]). Для относительно низко симметричных молекул, таких, как бензофуран и бензотиофен, практически невозможно дать раздельную оценку констант спин-спинового и диполь-дипольного взаимодействия из анализа спектра ЯМР, зарегистрированного на одной рабочей частоте. Спектры ПМР этих соединений для спектрометров с высокой рабочей частотой близки к первому порядку. При этом наблюдаемые расщепления соответствуют сумме величин косвенных и прямых констант взаимодействия. Для надежного разделения этих параметров необходимо использовать спектры, зарегистрированные на спектрометрах с сильно различающимися рабочими частотами.

В плане систематического изучения эффектов ориентации в данной работе изучен бензотиофен. Были проанализированы спектры ПМР этого соединения, зарегистрированные на спектрометрах с напряженностью магнитного поля 4,7, 9,39 и 11,74 Т (200, 400 и 500 МГц для протонов соответственно). Для точной оценки ориентационных параметров применялся разработанный нами «метод многих спектрометров», который является

развитием «метода двух спектрометров» (см. [1, 7]). Этот метод подразумевает, что для оценки ориентационных эффектов — констант диполь-дипольного взаимодействия и анизотропии и асимметрии магнитной восприимчивости, используются спектры, полученные для серии спектрометров с сильно различающимися рабочими частотами. При этом подразумевается, что все прочие условия эксперимента (температура, состав образца) остаются неизменными.

Полученные спектры бензотиофена были предварительно проанализированы с помощью программы LAOCOON5 [8, 9] по методике, подробно описанной в нашей предыдущей работе [7]. Получены предварительные оценки параметров $\Delta \nu_{ij}$. В приближении первого порядка $\Delta \nu_{ij}$ для пар протонов i и j ориентированных молекул представляют собой алгебраическую сумму истинных значений КССВ J_{ij} , не зависящих от величины постоянного магнитного поля B_0 , и удвоенных значений КДДВ D_{ij} , прямо пропорциональных B_0^2 [4, 10]:

$$\Delta v_{ij} = J_{ij} + 2D_{ij} \tag{1}$$

Очевидно, что для каждого из спектров, зарегистрированных на приборах с различными значениями рабочей частоты, величины

$$\Delta \nu_{ij} \ (\Delta \nu_{ij}^{\ 200}, \ \Delta \nu_{ij}^{\ 400}, \ \Delta \nu_{ij}^{\ 500}) \ \ \text{m} \quad D_{ij} (D_{ij}^{\ 200}, \ D_{ij}^{\ 400}, \ D_{ij}^{\ 500})$$

различны, а J_{ij} одинаковы для одной и той же пары ядер i и j, причем, как уже упоминалось выше, известны только величины $\Delta \nu_{ij}$.

Традиционный подход к анализу спектра с целью оценки КДДВ основан на использовании полного Гамильтониана спиновой системы с учетом возможных анизотропных взаимодействий в рамках итерационной процедуры UEA [10]. При этом должны быть известны истинные значения КССВ. В ходе расчета по программе UEA КССВ J_{ij} фиксируются, а КДДВ D_{ij} варьируются. Очевидно, что для одного спектра это сделать невозможно. Но если есть хотя бы два спектра, зарегистрированные на приборах с сильно различающимися рабочими частотами (например, 200 и 400 МГц для ядер 1 H), то задача может быть решена.

Для этого с целью выявления истинных значений констант спин-спинового и диполь-дипольного взаимодействия необходимо осуществить следующий этап анализа спектров с помощью разработанной ваям итерационной процедуры ALIGN, за основу алгоритма которой взято уравнение (1). На начальном этапе расчета предполагается, что D_{ij}^{200} для слабопольного спектра ($B_0=4,7$ Т; 200 МГц для ядер ¹Н) пренебрежимо малы в пределах экспериментальной погрешности. И тогда начальными значениями КССВ J_{ij} для сильнопольных спектров ($B_0=9,39$ Т; 400 МГц и $B_0=11,74$ Т; 500 МГц) являются $\Delta\nu_{ij}^{200}$. Исходя из этой предпосылки в рамках итерационной процедуры UEA в виде подпрограммы, включенной в программу ALIGN, вычисляются начальные значения D_{ij}^{400} и D_{ij}^{500} для сильнопольных спектров. Затем, учитывая, что

$$D_{ij}^{400} / D_{ij}^{200} = 3,99 (2)$$

(см. ниже выражения (3) и (5)), находим оценки D_{ij}^{200} , которые используются для анализа слабопольного спектра и получения J_{ij} . Такая последовательность расчетов повторяется в итерационном цикле до тех пор, пока среднеквадратичное отклонение (СКО) частот линий всей серии экспериментальных и теоретических спектров не достигнет минимума. Итоговые значения межпротонных констант спин-спинового и диполь-ди-

польного взаимодействия для изученной серии спектров бензотиофена представлены в таблице.

Теоретическое рассмотрение вопроса о анизотропных взаимодействиях ядерных спинов [11, 12] дает выражение для константы диполь-дипольного взаимодействия ядер i и j:

$$D_{ij} = -\frac{\mu_0 \gamma_i \gamma_j h}{4 \pi 2 \pi^2 r^3} \left[\left\langle \frac{3}{2} \cos^2 \theta - \frac{1}{2} \right\rangle_B \left(\frac{3}{2} \cos^2 \theta z z'' - \frac{1}{2} \right) + \frac{3}{4} \left(\sin^2 \theta \cos 2\varphi \right)_B \left(\cos^2 \theta z z'' - \cos^2 \theta z z'' \right) \right], \tag{3}$$

где μ_0 — магнитная проницаемость вакуума, γ — гиромагнитное отношение данного ядра, h — постоянная Планка, r — вектор, соединяющий взаимодействующие ядра, θ_{az} — углы между вектором r и осями молекулярной системы координат ($\alpha \in x$, y, z), причем ось z'' локальной системы координат направлена параллельно вектору r. Поскольку в случае ориентации молекулы под действием внешнего магнитного поля молекулярная система отсчета выбирается таким образом, чтобы в ней тензор магнитной восприимчивости χ был диагонален ($\chi_{xy} = \chi_{xz} = \chi_{yz} = 0$) [13], то достаточно двух независимых, усредненных по молекулярному движению параметров ориентации — анизотропии ($\Delta \chi$) и асимметрии ($\delta \chi$) тензора магнитной восприимчивости молекулы:

$$\Delta \chi = \chi_{zz} - \frac{1}{2} (\chi_{xx} + \chi_{yy})$$

$$\delta \chi = \chi_{xx} - \chi_{yy}, \tag{4}$$

которые однозначно связаны с измеряемыми КДДВ D_{ij} (точнее с нервым и со вторым членом в (3)):

$$\left\langle \frac{3}{2}\cos^2\theta - \frac{1}{2}\right\rangle_{\mathcal{B}} = \frac{1}{15}\frac{\Delta\chi}{\mu_0}\frac{B_o^2}{kT}$$

$$\left(\sin^2\theta\cos^2\varphi\right)_B = \frac{1}{15}\frac{\delta\chi}{\mu_0}\frac{B_o^2}{kT}$$
(5)

где k — постоянная Больцмана, T — абсолютная температура, θ и φ — полярные углы между направлением вектора внешнего магнитного поля B_0 и осями молекулярной системы координат.

В ароматических соединениях ось z выбирается перпендикулярной плоскости молекулы так, чтобы $|\Delta\chi| > |\delta\chi|$. В высокосимметричных молекулах, таких, например, как нафталин [3], оси молекулярной системы координат (x, y, z) совпадают с осями тензора магнитной восприимчивости $\{x(\chi), y(\chi), z(\chi)\}$. Для низкосимметричных молекул, таких, например, как бензотиофен, вероятно, разумно будет предположить, что оси z и $z(\chi)$ совпадают (молекула плоская), а между осями x и $x(\chi)$ есть некоторый угол α [3]. От величины этого угла зависит, очевидно, значение параметра $\delta\chi$ (см. рисунок).

Оценку ориентационных параметров проводили методом наименьших квадратов в итерационном режиме с использованием выражений (3)—(5) в рамках программы ALIGN. Чтобы получить величины углов θ_{az} ", необходимо

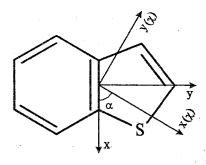


Схема расположения осей молекулярной системы координат (x, y, z) и осей тензора магнитной восприимчивости $\{x(\chi), y(\chi), z(\chi)\}$ для бензотиофена. Направление осей z и $z(\chi)$ ортогонально плоскости молекулы

знать положение взаимодействующих ядер *i* и *j* в молекулярной системе координат. Для их оценки была проведена полная оптимизация геометрии с использованием полуэмпирического квантово-химического метода РМЗ, который дает хорошие результаты для расчета ароматических гетероциклов [14]. При этом в качестве стартовых использовались геометрические параметры бензофурана [15] с учетом естественной корректировки ближайшего окружения гетероатома. Окончательные значения параметров ориентации бензотиофена составляют

$$\Delta \chi = -8.71 \pm 0.70 \times 10^{-34} \text{ m}^3,$$

$$\delta \chi = -1.26 \pm 0.64 \times 10^{-34} \text{ m}^3,$$

$$\alpha = 58^o.$$

Как и следовало ожидать, основным анизотропным фактором является наличие кольцевого тока 10π -электронной системы сопряженных колец молекулы бензотиофена, который отвечает за возникновение наведенного магнитного момента по оси z молекулярной системы координат. Знак «минус» параметра $\Delta \chi$ означает, что направление наведенного магнитного момента противоположно внешнему магнитному полю. При этом предпочтительна такая ориентация молекулы во внешнем магнитном поле, чтобы ось z молекулярной системы координат стала ортогональной направлению поля [16]. Полученные в настоящей работе оценки $\Delta \chi$ находятся в соответствии с данными для нафталина [4] и бензофурана [7]. Следует отметить, что полученное нами значение $\Delta \chi$ по модулю примерно в два раза ниже, чем оценка этого параметра для родственной молекулы нафталина (см. [3, 11, 12]). Выяснение причины этого несоответствия требует дополнительного изучения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н бензотиофена зарегистрированы на спектрометрах Bruker AC-200, Varian VXR-400 и Varian Unity-500 для 2 моль/л растворов в ацетоне-D₆ при 306.6 К. Время выборки данных составляло от 24 до 30 с. Для увеличения разрешения использовали преобразование лоренцевой формы линии в гауссову. Ширина линий в преобразованных спектрах составляла 0,03...0,04 Гц при цифровом разрешении 1...2 мГц. Анализ спектров проводили с помощью итерационных программ LAOCOON5 [8, 9] и UEA [10], модифицированных для проведения расчетов на IBM PC. Точность соответствия экспериментальных пиков и теоретических частот переходов

Константы спин-спинового J_{ij} и диполь-дипольного D_{ij} взаимодействия (Гц) в бензотиофене (306.6 K, 2M раствор в ацетоне- D_6) для серии спектров, зарегистрированных на спектрометрах ЯМР с рабочей частотой для протонов 200, 400 и 500 МГц (в скобках приведены стандартные отклонения параметров)

Протоны	I_{ij}	D_{ij}^{200}	D_{ij}^{400}	D _{ij} 500
2-Н, 3-Н	5,4742	-0,0013	-0,0059	-0,007.4
	(0,0020)	(0,0004)	(0,0011)	(0,0012)
2-Н, 4-Н	0,1985	-0,0005	-0,0011	-0,0047
	(0,0017)	(0,0004)	(0,0009)	(0,0011)
2-H, 5-H	0,0104 (0,0027)	*	*	*
2-Н, 6-Н	0,5135	0,0000	-0,0005	0,0011
	(0,0023)	(0,0004)	(0,0011)	(0,0011)
2-Н, 7-Н	0,0272 (0,0019)	*	*	*
3-H, 4-H	-0,2935	-0,0018	-0,0073	-0,0105
	(0,0018)	(0,0004)	(0,0009)	(0,0010)
3-Н, 5-Н	0,0165 (0,0035)	*	*	*
3-Н, 6-Н	-0,1222	0,0003	0,0025	0,0003
	(0,0021)	(0,0006)	(0,0010)	(0,0010)
3-H, 7-H	0,8478	-0,0003	-0,0003	-0,0039
	(0,0020)	(0,0004)	(0,0010)	(0,0010)
4-H, 5-H	8,0387	-0,0017	-0,0063	-0,0115
	(0,0022)	(0,0006)	(0,0012)	(0,0012)
4-H, 6-H	1,1969	-0,0006	-0,0023	-0,0044
	(0,0017)	(0,0004)	(0,0008)	(0,0008)
4-H, 7-H	0,7637	-0,0004	-0,0017	-0,0024
	(0,0017)	(0,0003)	(0,0009)	(0,0009)
5-H, 6-H	7,1155	-0,0023	-0,0080	-0,0137
	(0,0034)	(0,0004)	(0,0009)	(0,0009)
5-H, 7-H	1,0486	0,0001	0,0021	-0,0026
	(0,0022)	(0,0006)	(0,0011)	(0,0013)
6-H, 7-H	8,1 <i>5</i> 99	-0,0013	-0,0051	-0,0083
	(0,0021)	(0,0004)	(0,0010)	(0,0010)

^{*} Не оценивались.

(СКО) составляла $0,0026,\,0,0057\,$ и $0,0056\,$ Γ ц для спектров на $200,\,400\,$ и $500\,$ М Γ ц соответственно. Оптимизация геометрии бензотиофена проводилась на IBM PC методом PM3 [14].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 95-03-09639).

СПИСОК ЛИТЕРАТУРЫ

- 1. Bothner-By A. A. // Encyclopedia of NMR. 1996. Vol. 5. P. 2932.
- Laatikainen R., Santa H., Hiltunen Y., Lounila J. // J. Magn. Reson. 1993. Vol. A104. P. 738
- 3. Bastiaan E. W., Bulthuis J., MacLean C. // Magn. Reson. Chem. 1986. Vol. 24. P. 723.
- 4. Laatikainen R. // J. Magn. Reson. 1988. Vol. 78. P. 127.
- 5. Anet F. A. L. // J. Amer. Chem. Soc. 1986. Vol. 108. P. 1354.
- Gayathri G., Bothner-By A. A., van Zijl P. C. M., MacLean C. // Chem. Phys. Lett. 1982. Vol. 87. — P. 192.
- 7. Макаркина А. В., Голотвин С. С., Чертков В. А. // ХГС. 1995. № 9. С. 1214.
- 8. Castellano S., Bothner-By A. A. // J. Chem. Phys. 1964. Vol. 41. P. 3863.

- 9. Attimonelli M., Sciacovelli O. // Org. Magn. Reson. 1980. Vol. 13. P. 277.
- 10. Johannesen R. B., Ferretti J. A., Harris R. K. // J. Magn. Reson. 1970. Vol. 3. P. 84.
- Bastiaan E. W., MacLean C.// NMR Basic Principles and Progress / Diehl P., Fiuck E., Günther H., Kosfeld R., Seelig J. (Eds). —L.; N. Y.; Toronto; Sydney; San Francisko: Akad. Press, 1991. — Vol. 25. — P. 17.
- Bastiaan E. W., van Zijl P. C. M., MacLean C., Bothner-By A. A. // Annual Reports on NMR Spectroscopy/Webb G. A. (Ed.). — L.; N. Y.; Toronto; Sydney; San Francisko: Akad. Press, 1987. — Vol. 19. — P. 35.
- Татевский В. М. Строение и физико-химические свойства молекул и веществ. М.: Издво МГУ, 1993.
- 14. Dewar M. J. S. // J. Mol. Struct. 1983. Vol. 100. P. 41.
- 15. Еднерал И. В. // ЖТЭХ. 1983. № 19. С. 429.
- 16. Van der Hart D. L. // Encyclopedia of NMR. 1996. Vol. 5. P. 2938.

Московский государственный университет им. М. В. Ломоносова, Москва 119899 Поступило в редакцию 25.12.96