Э. Лукевиц, С. Германе, И. Сегал, А. Заблоцкая

СИЛИЛЬНАЯ МОДИФИКАЦИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ

4*. ПРОИЗВОДНЫЕ АМИНОКИСЛОТ В РЯДУ ТЕТРАГИДРОХИНОЛИНА, -ИЗОХИНОЛИНА И -СИЛАИЗОХИНОЛИНА

Синтезирован ряд производных 2-[N-(1,2,3,4-тетрагидрохинолил, -изохинолил и -силаизохинолил)] уксусной кислоты, являющихся структурными аналогами глицина. Изучены психотропная активность и острая токсичность синтезированных соелинений.

Исследование синтетических аминокислот с необычными боковыми цепями доказало целесообразность изучения необходимых и достаточных требований к проявлению активности многих пептидов и белков [1,2]. Известно также, что алкилсилильные группы обеспечивают неполярные, гидрофобные свойства при поиске биологически активных соединений [3]. Поэтому, спекулируя на участии синтетических аминокислот в биологическом процессе с включением их в пептиды, мы предполагаем проявление у них таких свойств, как повышение тканевой абсорбции и протеолитической активности, обусловленных гидрофобностью молекулы и размером заместителей.

В продолжение исследований кремнеорганических производных аминоспиртов [4—6] мы синтезировали подобные производные аминокислот, N,N-дизамещенные глицина, в которых атом азота включен в циклическую систему тетрагидрохинолина (Ia) или тетрагидроизохинолина (IIa,в,д, IIIa), а также йодметилаты (Iб, II6, III6) [7]. Кроме того, получено соединение IIIг с силатетрагидроизохинолиновым заместителем, содержащее вместо глицина фрагмент *п*-аминобензойной кислоты.

II $X = CH_2$, a R = OEt, b $R = NH_2$, π R = ONa; III $X = SiMe_2$, a R = OEt

Пб, г; Шб

II $X = CH_2$, 6 R = OEt, $R^1 = Me$, Hal = I, r R = OH, $R^1 = H$, Hal = Cl; III $X = SiMe_2$, 6 R = OEt, $R^1 = Me$, Hal = I

^{*} Сообщение 3 см. [6].

Этиловые эфиры 2-[N-(1,2,3,4-тетрагидрохинолил (Ia)- и -изохинолил (IIa)]уксусной кислоты получены при нагревании соответственно тетрагидрохинолина и -изохинолина с этиловым эфиром хлоруксусной кислоты в гексане в присутствии триэтиламина. Кремнеорганический аналог тетрагидроизохинолинового производного с атомом кремния в никле (IIIa) синтезирован взаимодействием диметилхлорметил(2-бромметилфенил)силана с этиловым эфиром глицина в присутствии триэтиламина. Аналогично при взаимодействии упомянутого силана с этиловым эфиром п-аминобензойной кислоты получен этиловый эфир 2-[N-(4,4-диметил-4-сила-1,2,3,4-тетрагидроизохинолил) |бензойной кислоты (IIIв). В результате реакции этиловых эфиров Ia, IIa, IIIa и IIIв с йодистым метилом синтезированы их йодметилаты. При обработке эфира IIa концентрированным водным раствором аммиака под небольшим давлением, а также взаимодействием его с концентрированной соляной кислотой получены амид (Пв) и гидрохлорид (IIr) 2-[N-(1,2,3,4-тетрагидроизохинолил)]уксусной кислоты соответственно.

Натриевая соль (IIд) получена в результате последовательного взаимодействия тетрагидроизохинолина с монохлоруксусной кислотой и гидроокисью натрия.

Проведено сравнительное исследование синтезированных соединений с целью выяснения влияния кремнеорганического заместителя и тетрагидро (изо) хинолинового кольца на биологическую активность в ряду 2-[N-(1,2,3,4-тетрагидро (изо) хинолил)]уксусной кислоты на психотропную активность синтезированных соединений.

Результаты изучения нейротропной активности синтезированных соединений приведены в таблице. Депримирующая активность по тестам «вращающегося стержня» и «трубы» производных 2-[N-(1,2,3,4-тетрагидро-изохинолил) јуксусной кислоты зависит от природы заместителя по карбоксильной группе. Так, наибольшую депримирующую активность проявляет амид тетрагидроизохинолилуксусной кислоты (IIв), несколько слабее проявляется действие гидрохлорида тетрагидроизохинолилуксусной кислоты (IIг), а натриевая соль (IIд) в дозах до 500 мг/кг не обладает депримирующими свойствами.

Среди йодметилатов Іб, ІІб, ІІІб и ІІІг наибольшую депримирующую активность проявляет йодметилат этилового эфира 2-[N-(1,2,3,4-тетрагидроизохинолил) јуксусной кислоты (ІІб). Соответствующее производное тетрагидрохинолина Іб депримирующих свойств не обнаруживает, а соединения с диметилсилильной группой в положении 4 изохинолиновой структуры (ІІІб и ІІІг) значительно менее активны. Производное бензойной кислоты ІІІг проявляет депримирующую активность, в два раза меньшую по сравнению с соответствующим производным уксусной кислоты ІІІб.

В отношении гипотермического эффекта (тест ректальной температуры) установлены примерно те же закономерности, которые были обнаружены в предыдущих тестах.

Ни одно из исследованных соединений депримирующих свойств по тесту «подтягивания на перекладине» не проявляет, а также не обнаруживает анальгезирующих свойств, не предупреждает судорог, вызванных максимальным электрошоком.

Нейротропная активность производных 2-[N-(1,2,3,4-тетрагидрохинолил-, -изохинолил и -силаизохинолил)]уксусной и бензойной кислот

Соеди- нение	<i>LD</i> 50, мг/кг	<i>ED</i> ₅₀ , мг/кг			<i>M</i> ± <i>m</i> , % к контролю (100%)				
		Тест							
		вращающегося стержня	трубы	ректальной температуры	гипоксической гипоксической	гексеналового наркоза	этанолового наркоза	қоразоловых судорог	фенаминовой гиперактивност
				,					
IIr	815 (5671110)	>500	178 (136596)	447 (313596)	135,3*	121,1	89,3	334,1*	45,2*
Ид	3550 (20205080)	>500	>500	>500	140,9*	184,7*	132,5*	270,3*	83,2
Пв	447 (313597)	103 (67138)	109 (41206)	170 (73332)	101	149,9*	133,8*	144,3*	67,0
16	41 (2755)	>25	>25	>25	184,4*	156,2*	120,2*	104,9	75,8*
Пе	129 (84179)	3 (15)	21 (1529)	6 (38)	110,9	164,9*	131,2*	169,6*	121,4
Шб	45 (3160)	33 (2246)	>25	21 (1529)	182,6*	150,0*	113,2	155,4*	106,8
IIIr	>1000	65 (4489)	73 (26137)	82 (57111)	111,2	109,5	154,8*	140,9*	100,8

^{*} Различия по отношению к контролю статистически достоверны при P < 0.05.

В отношении коразоловых судорог установлено, что наибольшую противосудорожную активность проявляет гидрохлорид 2-[N-(1,2,3,4-тетрагидроизохинолил) Јуксусной кислоты (IIr), который в 3,34 раза увеличивает дозу коразола, вызывающую летальный исход у мышей. За ним в убывающем порядке следуют соответствующая натриевая соль (Пл) и амил (IIв), которые повышают дозу коразола в 2,7 и 1,4 раза. В ряду йодметилатов наиболее высокую антикоразоловую активность проявляет йодметилат этилового эфира 2-[N-(1,2,3,4-тетрагидроизохинолил) јуксусной кислоты (IIб). Кремнеорганические производные (IIIб и IIIг) обладают несколько меньшей противосудорожной активностью, а йодметилат этилового эфира 2-(1,2,3,4-тетрагидрохинолил) уксусной кислоты (Іб) вовсе не обладает защитными свойствами при коразоловых судорогах. Почти все производные тетрагидро (изо) хинолилкарбоновых кислот, за исключением соединений IIr и IIIг, в дозе 5 мг/кг удлиняют продолжительность гексеналового наркоза в 1,5...1,85 раза. В отношении этанолового наркоза установлено, что действие исследованных соединений менее выражено (на 20...55%). Изучаемые соединения, кроме йодметилатов этиловых эфиров 2-(1,2,3,4-тетрагидро(сила) изохинолил) уксусной (IIб, IIIб) и бензойной кислот (IIIг), уменьшают фенаминовую гиперактивность на 15...55%, причем в этом случае более активен гидрохлорид 2-[N-(1,2,3,4-тетрагидроизохинолил)]уксусной кислоты (IIr). Йодметилат этилового эфира тетрагидрохинолилуксусной кислоты (Іб), в отличие от других исследованных йодметилатов ІІб, ІІІб, ІІІг, имеет антифенаминовую активность.

Антигипоксическое действие исследованных соединений наиболее выражено у йодметилата этилового эфира 2-[N-(4,4-диметил-4-сила-1,2,3,4-тетрагидроизохинолил)]уксусной кислоты (IIIб) и у йодметилата этилового эфира 2-[N-(1,2,3,4-тетрагидрохинолил)]уксусной кислоты (Iб), которые увеличивают продолжительность жизни мышей в 1,83 и 1,85 раза соответственно. Гидрохлорид IIг и натриевая соль 2-[N-(1,2,3,4-тетрагидро-изохинолил)]уксусной кислоты (IIд) имеют несколько меньшую антигипоксическую активность.

Натриевая соль IIд, амид IIв и йодметилат этилового эфира 2-[N-(1,2,3,4-тетрагидроизохинолил)]уксусной кислоты (IIб) в дозе 5 мг/кг облегчают процесс обучения животных и на 83,3, 83,3 и 66,7% соответственно предупреждают ретроградную амнезию, вызванную электрошоком (контроль 16,6%).

При исследовании острой токсичности установлено, что самую высокую летальную дозу имеет натриевая соль IIд, а токсические свойства гидрохлорида IIг и амида 2-[N-(1,2,3,4-тетрагидроизохинолил)]уксусной кислоты (IIв) усиливаются соответственно в 4,3 и 7,9 раза. В ряду йодметилатов наиболее высокую токсичность проявляет йодметилат этилового эфира 2-[N-(1,2,3,4-тетрагидрохинолил)]уксусной кислоты (Iб), а соответствующий йодметилат этилового эфира тетрагидроизохинолилпроизводного (IIб) имеет в 3,1 раза меньшую токсичность. Появление в положении 4 тетрагидроизохинолиновой структуры диметилсилильной группы IIIб, в свою очередь, повышает острую токсичность соединения в 2,9 раза. Замена остатка уксусной кислоты на остаток бензойной (IIIг) заметно понижает токсические свойства соединения.

В результате проведенных исследований установлено, что наибольшей депримирующей активностью обладает йодметилат этилового эфира 2-[N-(1,2,3,4-тетрагидроизохинолил)]уксусной кислоты.

Антигипоксическое действие наиболее ярко выражено у йодметилатов этиловых эфиров 2-[N-(1,2,3,4-тетрагидрохинолил)- и 2-[N-(4,4-диметил-4-сила-1,2,3,4-тетрагидроизохинолил)] уксусной кислоты.

Все исследованные соединения в той или иной степени способны пролонгировать гексеналовый и этаноловый наркоз и обладают выраженным противосудорожным действием, вызываемым коразолом.

Наименьшей токсичностью среди исследованных производных обладают натриевая соль 2-[N-(1,2,3,4-тетрагидроизохинолил)] уксусной кислоты и йодметилат этилового эфира o-[N-(4,4-диметил-4-сила-1,2,3,4-тетрагидроизохинолил)] бензойной кислоты. Последний проявляет сравнительно большую депримирующую активность, а натриевая соль максимально среди исследованных соединений пролонгирует гексеналовый наркоз и проявляет высокую антикоразоловую активность.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР сняты на приборе Bruker WH-90/DS в CDCl3 или DMSO-D6, внутренний стандарт ТМС. Опибка измерения $\pm 0,05$ м. д. ИК спектры записаны на приборе Perkin-Elmer 580 В в вазелиновом масле. ГЖХ анализ проводили на хроматографе Хром-4 с пламенно-ионизационным детектором. Использовалась стеклянная колонка (1,2 м \times 3 мм), заполненная 5% OV-17 на носителе Chromosorb W-HP (80...100 меш).

Данные элементного анализа на С, Н, N и Cl соответствуют вычисленным.

Этиловый эфир 2-[N-(1,2,3,4-тетрагидрохинолил)] уксусной кислоты (Ia), йодметилат этилового эфира 2-[N-(1,2,3,4-тетрагидрохинолил)] уксусной кислоты (Iб), этиловый эфир 2-[N-(1,2,3,4-тетрагидроизохинолил)] уксусной кислоты (IIa), йодметилат этилового эфира 2-[N-(1,2,3,4-тетрагидроизохинолил)] уксусной кислоты (IIб), амид 2-[N-(1,2,3,4-тетрагидроизохинолил)] уксусной кислоты (IIв), гидрохлорид 2-[N-(1,2,3,4-тетрагидроизохинолил)] уксусной кислоты (IIг), натриевая соль 2-[N-(1,2,3,4-тетрагидроизохинолил)] уксусной кислоты (IIд), йодметилат этилового эфира 2-[N-(4,4-диметил-4-сила-1,2,3,4-тетрагидроизохинолил)] уксусной кислоты (IIIб) получены по методике [7].

Йодметилат этилового эфира n-[N-(4,4-диметил-4-сила-1,2,3,4-тетрагидроизохинолил)]-бензойной кислоты (IIIг, C₁₉H₂₃INO₂Si). К смеси 2,48 г (15 ммоль) этилового эфира n-аминобензойной кислоты, 4,5 мл (3,3 г, 32 ммоль) триэтиламина в 15 мл бензола при перемешивании по каплям добавляют 4,2 г (15 ммоль) диметилхлорметил(2-бромметилфенил) силана. Реакционную смесь нагревают при 75 °C в течение 2 ч и оставляют при комнатной температуре на 17 ч. Осадок отфильтровывают, промывают бензолом. Фильтрат упаривают. К полученному эфиру Шв (2,03 г), представляющему собой густую вязкую массу, добавляют 1,5 мл (3,4 г, 24 ммоль) йодистого метила. Реакционную смесь нагревают 4 ч и выдерживают при комнатной температуре в течение 3 суток. Выпавший осадок отделяют декантированием и перекристаллизовывают из абслирта. Выход соединения Шг 0,25 г. $T_{\Pi \Pi}$ 183...186 °C. Спектр ПМР (CDCl₃): 6,99...8,18 (8H, м, Ar+Ar), 4,62 (2H, с, ArCH₂N), 4,30 (2H, кв, OCH₂), 3,38 (2H, с, SiCH₂), 1,36 (3H, т, CH₃), 0,50 м. д. (6H, с, SiMe₂).

Биологическая часть [6]. Сравнительную оценку действия веществ на показатели гипоксии, гексеналового и этанолового наркоза, фенаминовой гиперактивности, коразоловых судорог, обучения и тесту Порсолта проводили на группах животных, состоящих из 6 особей, при введении исследуемых веществ в дозе 5 мг/кг в виде водных растворов или водных суспензий, приготовленных при помощи твина-80, внутрибрющинно за 1 ч до постановки соответствующего теста. Контрольным животным инъецировали в брюшную полость такой же объем дистиллированной воды.

Авторы выражают благодарность Совету по науке Латвии за грант № 96 443 для выполнения настоящего исследования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Gante J. // Angew. Chem. Int. Ed. Engl. 1994. Vol. 33. P. 1699.
- 2. Josien H., Lavielle S., Brunissen A., Saffroy M., Torrens Y., Beraujouan J.-C., Glowinski J., Chassaing G. // J. Med. Chem. 1994. Vol. 37. P. 1586.
- 3. Лукевиц Э., Заблоцкая А. // Металлоорг. хим. 1993. Т. 6. С. 263.
- 4. Заблоцкая А., Германе С., Сегал И., Лукевиц Э. // Latv. ķīm. ž. 1993. N 1. С. 79.
- 5. Лукевиц Э., Заблоцкая А., Германе С., Сегал И. // Latv. ķīm. ž. 1994. N 4. С. 472.
- 6. Лукевиц Э., Сегал И., Заблоцкая А., Германе С. // ХГС. 1996. № 6. С. 793.
- 7. Lukevics E., Segal I., Zablotskaya A., Germane S. // Molecules. В печати.