Посвящается юбилею академика Валерия Николаевича Чарушина

Н. П. Бельская*, А. В. Кокшаров, А. И. Елисеева, Дж. Фан^а, В. А. Бакулев

СИНТЕЗ И ОКИСЛИТЕЛЬНАЯ ЦИКЛИЗАЦИЯ 3-АМИНО-2-АРИЛАЗО-5-*трет*-ЦИКЛОАЛКИЛАМИНОТИОФЕНОВ

Осуществлён синтез серии 3-амино-4-арилазо-4,5-дигидротиофенов при взаимодействии арилгидразоноцианотиоацетамидов, содержащих *трет*-циклоалкиламиногруппу, с α-галогенкетонами, 2-хлорацетонитрилом и 4-нитробензилбромидом. Изучено их окисление в присутствии ацетатов металлов, показано, что нагревание в пиридине с Cu(OAc)₂ приводит к образованию тиено[3,4-*d*]-1,2,3триазолийолатов.

Ключевые слова: арилгидразонотиоацетамиды, галогенкарбонильные соединения, тиено[3,4-*d*]-1,2,3-триазолийолаты, тиофены, *трет*-циклоалкиламины, оки-сление.

α-Галогенкарбонильные соединения, включая такие производные как αхлоруксусная кислота и 2-галогенкетоны или фенацилбромиды, широко используются в органическом синтезе для получения различных гетероциклических соединений [1–9]. Ранее мы показали, что взаимодействие арилгидразонотиоацетамидов с α-галогенкетонами приводит к образованию 1,3-тиазолов или 4,5-дигидротиофенов, в зависимости от электронных и пространственных эффектов заместителей у атома азота тиоамидного фрагмента и природы заместителя в ароматическом цикле [6–9]. Целью настоящей работы являются определение области распространения этой реакции для синтеза тиофенов и изучение химических свойств полученных гетероциклических соединений.

Реакцию арилгидразонотиоацетамидов **1a**–h, содержащих *трет*-циклоалкиламинный заместитель в тиоамидной группе, с α-галогенкетонами **2a,c**, хлорацетонитрилом **2c** и 4-нитробензилбромидом **2d** проводили при нагревании в присутствии сильных оснований.

В результате этого исследования была получена серия 3-амино-2-арилазотиофенов **4а**–**m**, механизм образования которых можно представить как нуклеофильное присоединение метиленовой группы к атому углерода цианогруппы в первоначально образующемся интермедиате **3**. В спектрах ЯМР ¹Н аминотиофенов **4а**–**m** присутствует сигнал группы NH₂ в виде двух широких однопротонных синглетов или двухпротонного синглета в области 9.00–10.10 м. д., а также сигналы протонсодержащих групп заместителя R, R¹ и *трет*-циклоалкиламиногруппы. В ИК спектрах 3-аминотиофенов **4** имеется две полосы поглощения группы NH₂ в области 3260– 3450 см⁻¹. Полоса поглощения, соответствующая колебаниям связи C=O,

$$I X = (CH_{a})_{a} R = Ph R^{1} = 4 - CI_{c} H_{a}CO m R = Ph R^{1} = 4 - CI_{c} H_{a}CO X = CH_{a}N - Ph$$

в ИК спектрах соединений **4а–с,е–g,і–** смещена в область 1575–1600 см⁻¹, что свидетельствует об образовании в их молекуле внутримолекулярных водородных связей. При замене ацильного или бензоильного заместителя R^1 в соединениях **4а,с,е** на циано- или 4-нитрофенильную группу сигналы протонов группы NH₂ в спектрах ЯМР ¹Н соединений **4d,h** смещаются в сильное поле на 2.6–2.0 и 0.6–1.2 м. д., что может быть следствием ослабления внутримолекулярной водородной связи, в которой участвует эта группа.

Мы обнаружили, что при окислении 3-амино-4-арил-5-*трет*-циклоалкиламинотиофенов **4е-g**,**i**-**m** в пиридине в присутствии ацетата меди и нагревании до 80 °C происходит образование 1Н-тиено[3,4-*d*]-1,2,3-триазолийолатов **5а-h**, строение которых было подтверждено с помощью спектральных методов и данных элементного анализа.

В масс-спектре бициклических цвиттер-ионных соединений **5**а–h присутствует пик молекулярного иона, отличающийся на 2 единицы от молекулярной массы исходных соединений. В спектрах ЯМР ¹Н триазолийолатов **5**а–h по сравнению со спектрами тиофенов **4** отсутствуют сигналы группы NH₂, а сигналы протонов в *орто*-положении ароматических циклов заместителя R смещаются в область слабого поля на 0.5 м. д. В ИК спектрах тиено[3,4-*d*]-1,2,3-триазолийолатов **5**а–h, в отличие от спектров исходных тиофенов **4**, отсутствуют полосы поглощения, соответствующие валентным колебаниям связей NH аминогруппы. Полоса поглощения валентных колебаний связи CO карбонильной группы наблюдается в области 1575–1604 см⁻¹.

5 a-h R¹ = 4-ClC₆H₄CO, a-c R = 4-MeOC₆H₄, a X= CH₂, b X = (CH₂)₂, c X = OCH₂, d-h R = Ph, d X= CH₂, e X = (CH₂)₂, f X = (OCH₂)₂, g X = (CH₂)₃, h X = CH₂NPh

В УФ спектрах тиено[3,4-*d*]-1,2,3-триазолийолатов **5а**-**h** имеется три максимума поглощения в области 272–290, 360–370 и 482–540 нм. Причём наблюдается значительный батохромный сдвиг длинноволнового максимума (100 нм) по сравнению с УФ спектрами исходных 4-арилазо-5-*трет*-циклоалкиламинотиофенов **4**.

Использование разных соотношений ацетата меди(II) и арилгидразонотиофена, а также нагревание в отсутствие Cu(OAc)₂ показали, что соль меди(II) участвует в этом превращении в качестве катализатора (таблица).

Нагревание арилазоаминотиофенов **4** в присутствии ацетатов ртути(II) и серебра(I) не привело к образованию новых продуктов.

Использование в качестве исходных соединений при окислении в присутствии $Cu(AcO)_2$ тиофенов 4d,h, содержащих цианогруппу или 4-нитрофенильный заместитель в положении 5 тиофенового цикла, не приводит к образованию новых соединений. Этот факт позволяет предположить, что для реализации окислительной циклизации 3-амино-4-арилазотиофенов 4 важным фактором является присутствие в положении 2 гетероцикла карбонильной группы. Механизм активации соединений 4e-g,i-m может быть связан с каталитическим действием группы C=O за счёт образования водородной связи с аминогруппой, а также повышением стабильности бициклических триазолийолатов 5a-h, благодаря вовлечению карбонильной группы в положении 4 бицикла в делокализацию отрицательного заряда.

Влияние соотношения субстрат : Cu(OAc)₂ на время реакции и выход тиено[3,4-*d*]-1,2,3-триазолата 5f

№ п/п	$4\mathbf{g}$: Cu(OAc) ₂	Время реакции, ч	Выход 5f , %
1	1:2	20	63
2	1:1	25	55
3	10:1	30	46

Появление зарядов на атомах азота и кислорода подтверждается смещением сигналов в спектрах ЯМР ¹Н, батохромного сдвига длинноволнового максимума в УФ спектрах, а также смещением полосы поглощения карбонильной группы в ИК спектре тиено[3,4-d]-1,2,3-триазолийолатов **5а–h**.

Проведённое исследование показало, что реакция 2-арилгидразоно-2-циантиоацетамидов 1 с α-галогенкарбонильными соединениями и 4-нитробензилбромидом является удобным методом синтеза полифункциональных тиофенов, которые могут быть использованы для синтеза новых конденсированных гетероциклических производных, включающих этот циклический фрагмент.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры измерены на фурье-спектрометре Bruker Alpha (НПВО, ZnSe). УФ спектры записаны на спектрометре Perkin–Elmer Lambda 45 в ТГФ. Спектры ЯМР ¹Н и ¹³С получены на приборе Bruker AVANCE II 400 (400 и 100 МГц соответственно) в ДМСО-d₆ (соединения **4a–m**), пиридин-d₅ (соединения **5a,c,d,h**) и 1,4-диоксан-d₈ (соединения **5b,e–g**), внутренний стандарт ТМС. Масс-спектры зарегистрированы на приборе Varian MAT 311A, энергия ионизации 70 эВ. Контроль за ходом реакции и индивидуальностью полученных веществ осуществлялся с помощью ТСХ на пластинках Sorbfil UV-254 в системе этилацетат–гексан, 1 : 1; хлороформ–ацетон, 30 : 1; хлороформ–гексан–ацетон, 5 : 4 : 1.

Арилгидразоноцианацетамиды получены по описанному ранее методу [10].

Взаимодействие арилгидразонотиоацетамидов 1а-h с галогенкарбонильными соединениями 2а-d (общая методика). К раствору 1 ммоль арилгидразоноцианотиоацетамида 1 в 5 мл ДМФА добавляют 1 ммоль соединения 2 и 0.23 г (2 ммоль) *t*-BuOK. Реакционную массу выдерживают при температуре 80 °C до исчезновения исходных веществ (TCX) и выливают в воду, выделившийся осадок отфильтровывают и перекристаллизовывают из этилового спирта.

1-[3-Амино-4-(4-метоксифенилазо)-5-(пирролидин-1-ил)тиофен-2-ил]эта-

нон (4а). Выход 47%; т. пл. 238–239 °С. ИК спектр, v, см⁻¹: 1581 (СО), 2830, 2850, 2900, 2940, 2970 (С–Н); 3350, 3400 (N–H). УФ спектр, λ_{max} , нм (lg ε): 350 (6.86), 445 (6.38). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.09–2.12 (4H, м, 2CH₂); 2.21 (3H, с, COCH₃); 3.79–3.85 (4H, м, CH₂); 3.86 (3H, с, OCH₃); 6.94 и 7.55 (4H, AA'XX', *J* = 8.8, Ar); 8.76 (1H, уш. с, NH); 9.01 (1H, уш. с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 344 [M]⁺ (29). Найдено, %: С 59.49; H 6.05; N 16.35; S 9.23. C₁₇H₂₀N₄O₂S. Вычислено, %: С 59.28; H 5.85; N 16.27; S 9.31.

1-[3-Амино-4-(4-метоксифенилазо)-5-пиперидинотиофен-2-ил]этанон (4b). Выход 55%; т. пл. 236–237 °С. ИК спектр, v, см⁻¹: 1578 (СО), 2835, 2970 (С–Н), 3355, 3440 (N–H). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.76–1.82 (6H, м, 3CH₂); 2.09 (3H, с, СОСН₃); 3.83 (3H, с, ОСН₃); 3.85–3.90 (4H, м, 2CH₂); 6.95 и 7.56 (4H, AA'XX', *J* = 9.2, Ar); 8.60 (1H, уш. с, NH); 8.72 (1H, уш. с, NH). Масс-спектр, *m/z* (*I*_{0тн}, %): 358 [M]⁺ (17). Найдено, %: С 60.19; H 6.28; N 15.48. C₁₈H₂₂N₄O₂S. Вычислено, %: С 60.31; H 6.19; N 15.63.

1-[3-Амино-4-(4-метоксифенилазо)-5-морфолинотиофен-2-ил]этанон (4с). Выход 49%; т. пл. 243–244 °С. ИК спектр, v, см⁻¹: 1596 (СО), 2850, 2975 (С–Н), 3350, 3400 (N–H). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.12 (3H, с, СОСН₃); 3.82–3.87 (4H, м, 2СН₂); 3.84 (3H, с, ОСН₃); 3.87–3.89 (4H, м, 2СН₂); 7.58 и 7.97 (4H, AA'XX', *J* = 9.2, Ar); 8.57 (1H, с, NH); 8.63 (1H, с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 360 [M]⁺ (22). Найдено, %: С 56.89; Н 5.68; N 15.66. С₁₇Н₂₀N₄O₃S. Вычислено, %: С 56.65; Н 5.59; N 15.54.

3-Амино-4-(4-метоксифенилазо)-5-(пирролидин-1-ил)тиофен-2-карбонитрил (4d). Выход 60%; т. пл. 240–241 °С. ИК спектр, v, см⁻¹: 2166 (С≡N), 2832, 2863, 2965, 2982 (С–Н), 3300, 3370 (N–H). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.11–2.14 (4H, м, 2CH₂); 3.75–3.78 (4H, м, 2CH₂); 3.87 (3H, с, OCH₃); 6.77 (2H, уш. с, NH₂); 6.95–7.00 (2H, м, Ar); 7.55–7.58 (2H, м, Ar). Масс-спектр, *m/z* (*I*_{отн}, %): 327 [М]⁺ (18). Найдено, %: С 56.43; Н 5.39; N 21.53. С₁₆Н₁₇N₅OS. Вычислено, %: С 58.70; Н 5.23; N 21.39.

[З-Амино-4-(4-метоксифенилазо)-5-(пирролидин-1-ил)тиофен-2-ил](4хлорфе- нил)метанон (4е). Выход 75%; т. пл. 270–271 °С. ИК спектр, v, см⁻¹: 1600 (СО), 2830, 2850, 2900, 2940, 2960 (С–Н), 3450 (NH). УФ спектр, λ_{max} , нм (lg ε): 378 (6.68), 436 (6.48). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.03–2.14 (4H, м, 2CH₂); 3.82 (3H, с, ОСН₃); 4.63–4.82 (4H, м, 2CH₂); 7.00 и 7.61 (4H, AA'XX', *J* = 8.8, Ar); 7.48 и 7.63 (4H, AA'XX', *J* = 8.3, Ar); 9.14 (1H, с, NH); 9.16 (1H, с, NH). Массспектр, *m/z* (*I*_{отн}, %): 440 [M]⁺ (9). Найдено, %: С 60.25; H 5.14; N 12.43. C₂₂H₂₁CIN₄O₂S. Вычислено, %: С 59.92; H 4.80; N 12.71.

[3-Амино-4-(4-метоксифенилазо)-5-пиперидинотиофен-2-ил](4-хлорфенил)метанон (4f). Выход 51%; т. пл. 202–203 °С. ИК спектр, v, см⁻¹: 1595 (CO), 2963 (C–H), 3320 (N–H). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.73–1.79 (6H, м, 3CH₂); 3.84 (3H, с, OCH₃); 3.85–4.00 (4H, м, 2CH₂); 6.97 и 7.59 (4H, AA'XX', *J* = 8.8, Ar); 7.43 и 7.60 (4H, AA'XX', *J* = 8.4, Ar); 9.14 (2H, уш. с, NH₂). Масс-спектр, *m/z* (*I*_{отн}, %): 454 [M]⁺ (8). Найдено, %: C 61.13; H 5.28; N 11.99. C₂₃H₂₃ClN₄O₂S. Вычислено, %: C 60.72; H 5.10; N 12.31.

[3-Амино-4-(4-метоксифенилазо)-5-морфолинотиофен-2-ил](4-хлорфенил)метанон (4g). Выход 63%; т. пл. 204–205 °С. ИК спектр, v, см⁻¹: 1601 (CO), 2852, 2924, 2953 (С–Н), 3433 (N–H). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.80–3.82 (4H, м, 2CH₂); 3.85 (3H, с, OCH₃); 3.87–3.91 (4H, м, 2CH₂); 6.98 и 7.60 (4H, AA'XX', *J* = 8.8, Ar); 7.44 и 7.62 (4H, AA'XX', *J* = 8.4, Ar); 9.07 (2H, уш. с, NH₂). Массспектр, *m/z* ($I_{\text{отн}}$, %): 456 [M]⁺ (18). Найдено, %: С 57.66; H 4.81; N 12.47. C₂₂H₂₁ClN₄O₃S. Вычислено, %: С 57.83; H 4.63; N 12.26.

688

Выход 49%; т. пл. 238–239 °С. ИК спектр, v, см⁻¹: 1585 (СО), 2840, 2969 (С–Н), 3248, 3462 (N–H). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 3.79 (3H, с, ОСН₃); 3.80–3.92 (8H, м, 4СН₂); 7.00 (2H, д, *J* = 8.8, Ar); 7.55–7.60 (4H, м, Ar); 8.12 (2H, уш. с, NH₂); 8.19 (2H, д, *J* = 9.2, Ar). Масс-спектр, *m/z* (*I*_{отн}, %): 439 [M]⁺ (22). Найдено, %: С 57.15; H 4.95; N 15.83. С₂₁H₂₁N₅O₄S. Вычислено, %: С 57.39; H 4.82; N 15.94.

[З-Амино-5-(пирролидин-1-ил)-4-фенилазотиофен-2-ил](4-хлорфенил)метанон (4i). Выход 65%; т. пл. 225–226 °С. ИК спектр, v, см⁻¹: 1590 (СО), 2918, 2937, 2997 (С–Н), 3430 (N–H). УФ спектр, λ_{max} , нм (lg ε): 365 (6.24), 430 (5.83). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.11–1.18 (2H, м, CH₂); 1.20–1.28 (2H, м, CH₂); 2.05–2.13 (4H, м, 2CH₂); 7.33 (1H, т, *J* = 7.2, C₆H₅); 7.48–7.57 (4H, м, C₆H₅); 7.64–7.70 (4H, м, Ar); 9.24 (1H, с, NH); 9.32 (1H, с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 410 [M]⁺ (23). Найдено, %: С 61.60; H 4.80; N 13.75. C₂₁H₁₉CIN₄OS. Вычислено, %: С 61.38; H 4.66; N 13.63.

[3-Амино-5-пиперидино-4-фенилазотиофен-2-ил](4-хлорфенил)метанон (4j). Выход 57%; т. пл. 180–181 °С. ИК спектр, v, см⁻¹: 1579 (СО), 2854, 2943 (С–Н), 3352 (N–H). УФ спектр, λ_{max} , нм (lg ε): 366 (6.22), 445 (5.69). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.75–1.82 (6H, м, 3CH₂); 3.94–3.97 (4H, м, 2CH₂); 7.32 (1H, т, *J* = 7.2, Ar); 7.42–7.45 (4H, м, Ar); 7.60–7.62 (4H, м, Ar); 9.20 (2H, с, NH₂). Массспектр, *m/z* ($I_{\text{отн}}$, %): 424 [M]⁺ (12). Найдено, %: С 61.92; Н 5.50; N 13.26. $C_{22}H_{21}$ ClN₄OS. Вычислено, %: С 62.18; Н 4.98; N 13.18.

[3-Амино-5-морфолино-4-фенилазотиофен-2-ил](4-хлорфенил)метанон (4k). Выход 75%; т. пл. 220–221 °С. ИК спектр, v, см⁻¹: 1580 (СО), 2856, 2922, 3029 (С–Н), 3264, 3378 (N–H). УФ спектр, λ_{max} , нм (lg ε): 360 (6.49), 450 (5.80). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 3.78–3.81 (4H, м, 2CH₂); 3.92–3.95 (4H, м, 2CH₂); 7.40 (1H, т, *J* = 7.2, Ar); 7.40–7.57 (4H, м, Ar); 7.65–7.70 (4H, м, Ar); 9.15 (2H, уш. с, NH₂). Масс-спектр, *m/z* (*I*_{отн}, %): 426 [M]⁺ (20). Найдено, %: С 59.22; H 4.61; N 13.20. С₂₁H₁₉ClN₄O₂S. Вычислено, %: С 59.08; H 4.49; N 13.12.

[3-Амино-5-(азепан-1-ил)-4-фенилазотиофен-2-ил](4-хлорфенил)метанон (41). Выход 60%; т. пл. 208–209 °С. ИК спектр, v, см⁻¹: 1575 (СО), 2924, 2939, 2941 (С–Н), 3260 (N–Н). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.55–1.67 (4H, м, 2CH₂); 1.78–1.96 (4H, м, 2CH₂); 3.94–3.96 (4H, м, 2CH₂); 7.30 (1H, т, *J* = 7.4, Ar); 7.41–7.46 (4H, м, Ar); 7.55–7.63 (4H, м, Ar); 9.26 (1H, с, NH); 9.36 (1H, с, NH). Масс-спектр, *m/z* (*I*_{0тн}, %): 438 [М]⁺ (12). Найдено, %: С 63.19; Н 5.41; N 12.88. С₂₃H₂₃ClN₄OS. Вычислено, %: С 62.93; Н 5.28; N 12.76.

[З-Амино-4-фенилазотиофен-2-ил-5-(4-фенилпиперазин-1-ил)](4-хлорфенил)метанон (4m). Выход 68%; т. пл. 213–214 °С. ИК спектр, v, см⁻¹: 1596 (СО), 2839, 2850 (С–Н), 3430 (N–H). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.40–3.42 (4H, м, 2CH₂); 4.11–4.13 (4H, м, 2CH₂); 6.79 (1H, т, *J* = 7.6, Ar); 6.92 (2H, д, *J* = 7.2, Ar); 7.21 (2H, т, *J* = 7.2, Ar); 7.37 (1H, т, *J* = 7.2, Ar); 7.49–7.51 (4H, м, Ar); 7.62–7.67 (4H, м, Ar); 9.16 (2H, уш. с, NH₂). Масс-спектр, *m*/*z* (*I*_{отн}, %): 501 [M]⁺ (16). Найдено, %: С 64.38; H 4.95; N 13.88. С₂₇Н₂₄ClN₅OS. Вычислено, %: С 64.60; H 4.82; N 13.95.

Окисление 3-амино-4-арилазо-5-*трет*-циклоалкиламинотиофенов 4. К раствору 1 ммоль 3-амино-4-арилазотиофена 4 в пиридине добавляют 0.364 г (2 ммоль) Cu(OAc)₂, выдерживают при 80 °C и перемешивании 20 ч (TCX). Реакционную массу выливают на лёд, выпавший осадок отфильтровывают и промывают водой.

[2-(4-Метоксифенил)-6-(пирролидин-1-ил)-4H-тиено[3,4-*d*]-1,2,3-триазол-2-ий-4-илиден](4-хлорфенил)метанолат (5а). Выход 90%; т. пл. 266–267 °С. ИК спектр, v, см⁻¹: 1575 (СО), 2943 (С–Н). УФ спектр, λ_{max} , нм (lg ϵ): 275 (6.25), 348 (6.39), 478 (5.92). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.03–2.17 (4H, м, 2CH₂); 4.63–4.82 (4H, м, 2CH₂); 3.82 (3H, с, OCH₃); 6.99 и 8.04 (4H, AA'XX', *J* = 8.8, Ar);

7.45 и 8.15 (4H, AA'XX', J = 8.4, Ar). Масс-спектр, m/z ($I_{\text{отн}}$, %): 438 [M]⁺ (100).

Найдено, %: С 60.35; Н 4.23; N 12.84. С₂₂Н₁₉ClN₄O₂S. Вычислено, %: С 60.20; Н 4.36; N 12.76.

[2-(4-Метоксифенил)-6-пиперидино-4H-тиено[3,4-*d***]-1,2,3-триазол-2-ий-4-илиден](4-хлорфенил)метанолат (5b)**. Выход 63%; т. пл. 242–243 °С. ИК спектр, v, см⁻¹: 1575 (СО), 2860, 2943 (С–Н). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.90–2.02 (6H, м, 3CH₂); 3.85 (3H, с, ОСН₃); 3.87–3.94 (2H, м, CH₂); 4.15–4.22 (2H, м, CH₂); 7.05 и 8.05 (4H, AA'XX', *J* = 9.2, Ar); 7.40 и 8.10 (4H, AA'XX', *J* = 8.8, Ar). Масс-спектр, *m/z* (*I*_{отн}, %): 452 [M]⁺ (100). Найдено, %: С 60.73; H 4.56; N 12.25. С₂₃H₂₁ClN₄O₂S. Вычислено, %: С 60.99; H 4.67; N 12.37.

[2-(4-Метоксифенил)-6-морфолино-4Н-тиено[3,4-*d*]-1,2,3-триазол-2-ий-4-илиден](4-хлорфенил)метанолат (5с). Выход 56%; т. пл. 260–261 °С. ИК спектр, v, см⁻¹: 1590 (СО), 2860, 2940 (С–Н). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.87 (3H, с, ОСН₃); 3.84–3.91 (4H, м, 2СН₂); 3.92–3.99 (4H, м, 2СН₂); 7.08 и 8.04 (4H, AA'XX', *J* = 9.2, Ar); 7.49 и 8.05 (4H, AA'XX', *J* = 8.4, Ar). Масс-спектр, *m/z* (*I*_{отн}, %): 454 [M]⁺ (100). Найдено, %: С 58.22; Н 4.32; N 12.53. С₂₂H₁₉ClN₄O₃S. Вычислено, %: С 58.08; Н 4.21; N 12.32.

[6-(Пирролидин-1-ил)-2-фенил-4H-тиено[3,4-*d***]-1,2,3-триазол-2-ий-4-илиден]-(4-хлорфенил)метанолат (5d).** Выход 94%; т. пл. 220–221 °С. ИК спектр, v, см⁻¹: 1604 (СО). УФ спектр, λ_{max}, нм (lg ε): 272 (6.44), 360 (6.14), 482 (6.07). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.82–1.93 (4H, м, 2CH₂); 3.23–3.81 (4H, м, 2CH₂); 7.21– 7.58 (3H, м, Ar); 7.65 (2H, д, *J* = 8.4, Ar); 8.30 и 8.63 (4H, AA'XX', *J* = 8.0, Ar). Масс-спектр, *m/z* (*I*_{отн}, %): 408 [M]⁺ (100). Найдено, %: С 61.53; H 4.02; N 13.81. С₂₁H₁₇ClN₄OS. Вычислено, %: С 61.68; H 4.19; N 13.70.

[6-Пиперидин-2-фенил-4Н-тиено]3,4-*d***]-1,2,3-триазол-2-ий-4-илиден]-(4-хлорфенил)метанолат (5е)**. Выход 52%; т. пл. 198–199 °С. ИК спектр, v см⁻¹: 1595 (СО), 2858, 2939 (СН). УФ спектр, λ_{max} , нм (lg ε): 272 (6.34), 370 (5.99), 523 (5.92). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.62–1.84 (6Н, м, 3СН₂); 3.57–3.71 (2Н, м, СН₂); 3.96–3.99 (2Н, м, СН₂); 7.45–7.60 (5Н, м, Аг); 8.03 (1Н, т, *J* = 8.8, Аг); 8.15–8.21 (3Н, м, Аг). Масс-спектр, *m/z* (*I*_{отн}, %): 422 [М]⁺ (100). Найдено, %: С 62.57; Н 4.65; N 13.10. С₂₂Н₁₉СlN₄OS. Вычислено, %: С 62.48; Н 4.53; N 13.25.

[(6-Морфолино)-2-фенил-4H-тиено[3,4-*d*]-1,2,3-триазол-2-ий-4-илиден]-(4-хлорфенил)метанолат (5f). Выход 63%; т. пл. 210–211 °С. ИК спектр, v, см⁻¹: 1589 (СО). УФ спектр, λ_{max} , нм (lg ε): 280 (6.53), 360 (6.25), 540 (6.04). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 3.63–3.73 (2H, м, CH₂); 3.87–3.93 (6H, м, 3CH₂); 7.43–7.58 (7H, м, Ar); 8.14 (2H, д, *J* = 8.4, Ar). Масс-спектр, *m*/*z* (*I*_{отн}, %): 424 [M]⁺ (100). Найдено, %: С 59.15; H 4.12; N 13.34. С₂₁H₁₇ClN₄O₂S. Вычислено, %: С 59.36; H 4.03; N 13.19.

[2-Фенил-6-(4-фенилпиперазин-1-ил)-4Н-тиено[3,4-*d***]-1,2,3-триазол-2-ий-4-илиден](4-хлорфенил)метанолат (5g)**. Выход 94%; т. пл. 219–220 °С. ИК спектр, v, см⁻¹: 1589 (СО), 2854, 2943 (С–Н). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.40–3.42 (2H, м, CH₂); 3.42–3.45 (2H, м, CH₂); 3.63–3.83 (2H, м, CH₂); 3.83–3.90 (2H, м, CH₂); 6.80–7.00 (4H, м, Ar); 7.20–7.28 (2H, м, Ar); 7.46–7.55 (6H, м, Ar); 8.17–8.22 (2H, м, Ar). Масс-спектр, *m/z* (*I*_{отн}, %): 499 [M]⁺ (54). Найдено, %: С 64.87; H 4.75; N 14.15. С₂₇H₂₂ClN₅OS. Вычислено, %: С 64.73; H 4.63; N 13.98.

[6-(Азепан-1-ил)-2-фенил-4Н-тиено[3,4-*d***]-1,2,3-триазол-2-ий-4-илиден]-(4-хлорфенил)метанолат (5h)**. Выход 53%; т. пл. 230–231 °С. ИК спектр, v, см⁻¹: 1596 (СО), 2855, 2960 (С–Н). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.47–1.49 (4H, м, 2CH₂); 1.70–1.80 (4H, м, 2CH₂); 3.42–3.60 (2H, м, CH₂); 4.09–4.22 (2H, м, CH₂); 7.46 (1H, т, *J* = 7.2, Ar); 7.53–7.60 (2H, м, Ar); 7.68 (2H, д, *J* = 8.4, Ar); 8.33 и 8.65 (4H, AA'XX', *J* = 8.0, Ar). Масс-спектр, *m/z* (*I*_{отн}, %): 436 [М]⁺ (100). Найдено, %: С 63.35; H 4.73; N 13.02. С₂₃Н₂₁СlN₄OS. Вычислено, %: С 63.22; H 4.84; N 12.82.

Работа проведена при финансовой поддержке Российского фонда 690

СПИСОК ЛИТЕРАТУРЫ

- 1. В. П. Литвинов, *Успехи химии*, **72**, 75 (2003).
- 2. В. П. Литвинов, С. Г. Кривоколыско, В. Д. Дяченко, *ХГС*, 579 (1999). [*Chem. Heterocycl. Comp.*, **35**, 509 (1999)].
- 3. K. Gevald, M. Rehwald, H. Muller, P. Bellmann, H. Schafer, *Monatsh. Chem.*, **126**, 341 (1995).
- 4. M. Aginagalde, A. Arietta, R. Zangi, F. P. Cossio, Y. Vara, V. L. Cebolla, A. Delgado-Camon, *J. Org. Chem.*, **75**, 2776 (2010).
- 5. S. Ceylan, A. Kirschning, C. Frieze, C. Lammel, K. Mazac, *Angew. Chem.*, *Int. Ed.*, **47**, 8950 (2008).
- 6. И. В. Парамонов, Н. П. Бельская, В. А. Бакулев, *XГС*, 1416 (2001). [*Chem. Heterocycl. Comp.*, **37**, 1298 (2001)].
- 7. И. В. Парамонов, Н. П. Бельская, В. А. Бакулев, *XГС*, 1572 (2003). [*Chem. Heterocycl. Comp.*, **39**, 1385 (2003)].
- Т. Г. Дерябина, Н. П. Бельская, М. И. Кодесс, В. А. Бакулев, *XГС*, 22 (2007). [*Chem. Heterocycl. Comp.*, 43, 18 (2007)].
- N. P. Belskaya, V. A. Bakulev, T. G. Deryabina, J. O. Subbotina, M. I. Kodess, W. Dehaen, S. Toppet, K. Robeyns, L. Van Meervelt, *Tetrahedron*, 65, 7662 (2009).

Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, ул. Мира, 19, Екатеринбург 620002, Россия e-mail: belska@mail.ustu.ru Поступило 28.02.2011

^aState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China