Н. П. Бельская, Е. Е. Зверева, Л. А. Бабушкина, В. А. Бакулев

РЕАКЦИИ 2-АРИЛГИДРАЗОНОАЦЕТАМИДОВ С ОРТОЭФИРАМИ. СИНТЕЗ НОВЫХ ТЕТРАГИДРО-1,2,4-ТРИАЗИНОВ

Проведено исследование реакции арилгидразоноцианоацетамидов с триэтилортоформиатом и триэтилортоацетатом. Показано, что при взаимодействии ортомуравьиного эфира с указанными амидами, замещенными по карбамоильной функции алкильными группами нормального строения, происходит их циклизация в 2-арил-4-алкил-5-оксо-3-этокси-2,3,4,5-тетрагидро-1,2,4-триазин-6-карбонитрилы, в то время как реакция N-фенил- и N-циклоалкилацетамидов с ортомуравьиным эфиром приводит к продуктам этилирования этих соединений по гидразонному фрагменту. При взаимодействии арилгидразоноцианоацетамидов с ортоуксусным эфиром реализуется последнее превращение с образованием исключительно 2-(арилэтилгидразоно)ацетамидов.

Ключевые слова: арилгидразоны, ортоэфиры, тетрагидротриазиноны.

Арилгидразоны известны более 100 лет и в настоящее время хорошо изучены [1]. Показано, что эти соединения способны вступать в реакции с электрофильными [2], нуклеофильными реагентами [3] и радикалами [4], а также в реакции циклоприсоединения [5]. На их основе были получены самые разнообразные органические вещества, в том числе пяти-, шести- и семичленные гетероциклические соединения [6].

Несмотря на большое число публикаций, посвященных химии гидразонов, взаимодействие арилгидразоноацетамидов с ортоэфирами до нашего предварительного сообщения [7] описано не было. Вместе с тем, по аналогии с реакциями *орто*-аминоамидов [8] и *орто*-аминогидразидов [9] с этилортоацетатом и этилортоформиатом, можно было предположить, что эта реакция может служить методом синтеза 1,2,4-триазинов, относящимся к редко используемому типу комбинаций (5+1) атомных фрагментов [10].

Исходные N-карбамоилзамещенные арилгидразоноацетамиды 1—5 были получены сочетанием ароматических диазопроизводных с соответствующими амидами циануксусной кислоты по известной методике [1].

Взаимодействие соединений 1—5 с этилортоформиатом и этилортоацетатом проводили при длительном кипячении в избытке ортоэфира аналогично методу [8, 9]. Было обнаружено, что единственными продуктами реакции гидразонов 1—5 с триэтилортоформиатом, протекающей, по-видимому, через интермедиаты 6—10, которые стабилизируются в результате отщепления молекулы спирта, являются 2-арил-5-оксо-3-этокси-2,3,4,5-тетрагидро-1,2,4-триазин-6-карбонитрилы 11—15, содержащие в положении 4 триазинового цикла алкильный или бензильный заместители.

1, 6, 11a-j, R^2 = CH₃, a R^1 = 4-OCH₃, b R^1 = 4-CH₃, c R^1 = H, d R^1 = 4-Cl, e R^1 = 4-F, f R^1 = 3-CF₃, g R^1 = 2,4-дихлор, h R^1 = 4-COOC₂H₅, i R^1 = 4-NO₂, j Ar R^1 = β-нафтил; 2, 7, 12b, d, f R^2 = C₂H₅, b R^1 = 4-CH₃, d R^1 = 4-Cl, f R^1 = 3-CF₃; 3, 8, 13a, d, i R^2 = C₂H₄OCH₃, a R^1 = 4-OCH₃, d R^1 = 4-Cl, i R^1 =4-NO₂; 4, 9, 14a, b, d, i R^2 = C₄H₉, a R^1 = 4-OCH₃, b R^1 = 4-CH₃, d R^1 = 4-Cl, i R^1 = 4-NO₂; 5, 10, 15a, d, i R^2 = CH₂C₆H₅, a R^1 = 4-OCH₃, d R^1 = 4-Cl, i R^1 = 4-NO₂

В масс-спектрах соединений **11—15** присутствуют пики молекулярных ионов M^{\dagger} с интенсивностью 10—100%. Характерным также является присутствие в масс-спектрах соединений **11—15** иона $[M_{\bullet}OC_2H_5]^{\dagger}$ (5—100%). Максимальным пиком чаще всего является пик иона алкильного заместителя с $m/z=R^2$ (78—100%). Наряду с ним содержатся пики ионов, соответствующих описанной фрагментации триазинонового цикла [10].

В ИК спектрах триазинов 11—15 имеются характеристические полосы валентных колебаний цианогруппы в области 2210—2230 см $^{-1}$, карбонильной группы в области 1680 см $^{-1}$, валентных колебаний С—Н связей метильных и метиленовых групп в области 2890, 2930, 2940, 2980 см $^{-1}$. В спектрах ЯМР 1 Н триазинов 11—15 по сравнению со спектрами исходных гидразонов 1–5 отсутствуют сигналы протонов групп NH и появляется сигнал протона, связанного с C(3) гетероцикла, при 6.55—7.25 м. д., а также сигналы протонов этоксигруппы при 1.0 и 3.4 м. д. Строение продуктов 11a,c,d,h, 12d, 13d и 14d было также подтверждено данными спектрами ЯМР 13 С, в которых присутствуют

сигналы атомов углерода этоксигруппы при 13.12—14.65 и 59.52—61.07, интенсивный сигнал атома углерода С(3) при 90.94—93.26, сигнал углерода триазинового цикла, связанного с цианогруппой, при 113.68—115.50 и углерода группы СN при 113.05—113.70 м. д. Углеродные атомы ароматического ядра дают резонансные сигналы в области 114.74—158.49, а углерод карбонильной группы — при 152.12—152.97 м. д. В этой реакции не исключается возможность циклизации с участием другого нуклеофильного центра — атома кислорода карбоксамидной группы. Такое направление циклизации должно приводить к образованию оксадиазина 16.

Однако исследование дальних констант спин-спинового взаимодействия ${}^{13}\text{C}$ — ${}^{1}\text{H}$ в спектре соединения **11c** показало, что в отличие от структуры **16c**, для которой взаимодействие между атомами C(1)—H(13) и C(13)—H(1)

Таблица 1 Данные масс-спектрометрии триазинонов 11a,c,d,f,h, 12b,f, 13d,i, и 14a, 15d,I, m/z (%)

Соеди- нение	M [↔]	(M_OEt)+	Ф1	Φ2	Φ3	Φ_4	Φ5	R ₂ ^{+•}
	288	243	231	201	173	135	121	
11a	(14.58)	(12.51)	(0.29)	(2.42)	(38.23)	(9.55)	(100)	
	258	213	201	171	143	105	91	
.11c	(38.99)	(100)	(1.07)	(1.82)	(25.54)	(42.21)	(46.91)	
	292	247	235	` ′	177	139	125	
11d	(33.37)	(31.00)	(100)	_	(33.64)	(39.93)	(56.63)	
410	326	281	269	239	211	173	159	
11f	(92.77)	(91.85)	(6.63)	(2.92)	(19.75)	(27.10)	(44.31)	
116	330	285	273	243	215	177	163	
11h	(100)	(95.68)	(1.25)	(0.72)	(64.19)	(27.15)	(88.13)	
12b	286	241	215	185	157	119	105	
120	(77.14)	(74.01)	(2.27)	(3.18)	(44.43)	(27.52)	(48.10)	
12f	340	295	269	239	211	173	159	
121	(56.06)	(43.66)	(2.77)	(1.65)	(13.46)	(20.99)	(27.21)	
13d	336	291	235	205	177	139	125	59
130	(100)	(77.83)	(2.60)	(2.33)	(42.68)	(53.85)	(48.71)	(84.22)
13i	347	302	246	-216	188	150	136	59
131	(49.42)	(59.72)	(2.35)	(1.72)	(15.55)	(46.81)	(14.92)	(100)
14a	330	285	231	201	173	135	121	57
144	(23.80)	(22.57)	(2.12)	(5.83)	(40.31)	(14.63)	(35.12)	(100)
15d	368	323	_		177	139	125	91
r.Su	(24.74)	(4.27)			(1.44)	(6.13)	(6.47)	(100)
15i	379	334	_		l	150	136	91
131	(47.45)	(7.31)			The state of the s	(4.38)	(1.49)	(100)

 $\label{eq:Tadiuqa2} \mbox{Cпектры ЯМР 13C для соединений 11a,c,d,h, 12d, 13d и 14d, ДМСО-d6, <math>\delta$, м. д.

Соеди-	–CH ₂ – <u>C</u> H ₃	R ²	R ¹	<u>C</u> H ₂ CH ₃	⟩CH_ (OEt)	C- <u>C</u> N	<u>C</u> -CN	C_{ap}	C=O
lla*	14.65	31.84	55.64	59.58	93.26	113.37	113.68	114.74 119.92 135.69 158.49	152.97
11c* ²	14.46	31.47	<u>—</u>	61.02	91.96	113.37	114.02	117.92 125.97 129.15 141.63	152.36
11d	14.65	31.81		61.07	91.90	113.69	114.44	119.81 129.45 130.55 140.52	152.39
11h	14.45	32.15	14.48 61.17 170.05	59.52	92.85	113.05	115.50	117.05 127.85 130.12 145.00	152.55
12d	14.55	13.12 40.71	<u> </u>	60.51	90.97	113.70	114.71	119.85 129.41 130.50 140.56	151.95
13d	14.58	44.20 58.07 69.02	_	61.10	91.17	113.65	114.98	119.81 129.53 130.60 140.59	152.22
14d	14.56	13.50 19.47 29.59 45.17	_	60.86	90.94	113.67	114.98	119.78 129.39 130.51 140.59	152.12

^{*} Спектр снят в CDCl₃.

осуществляется через пять связей, в структуре 11c эти атомы разделены только тремя о-связями и для нее более вероятно проявление их взаимодействия в спектре. С учетом характера наблюдаемых сигналов (дублет квартетов), а также наличия соответствующих констант спинспинового взаимодействия (${}^3J_{\text{C(13)-H(1)}} = 2.0~\Gamma\text{ц}, {}^3J_{\text{C(1)-H(13)}} = 3.3~\Gamma\text{ц})$ можно однозначно судить об образовании именно триазинового, а не оксадиазинового циклического продукта.

В отличие от реакций гидразонов 1-5, замещенных по атому азота амидной группы алкилами нормального строения, взаимодействие N-фенил- и N-циклогексилкарбоксамидопроизводных 17, 18 с триэтилортоформиатом привело к кристаллическим продуктам, которым на основании данных элементного анализа, ИК, ЯМР ¹Н спектров была предложена структура 2-(арилэтилгидразоно)-2-цианоацетамидов 19, 20. Образование последних можно объяснить снижением реакционной способности амидной NH группы гидразона 1 при введении арильного заместителя, затрудняет циклоалкильного отр циклизацию ИЛИ промежуточных соединений типа 6-10. Происходит миграция этильной группы на атом N-гидразонового фрагмента и выброс этилформиата. Отметим, что взаимодействие гидразонов 1 с триэтилортоацетатом привело к образованию исключительно продуктов этилирования, гидразонов 19-21.

 $^{*^2}$ Спектр снят в смеси ДМСО-d₆: CCl₄= 1 : 1.

Характеристики синтезированных соединений

Соеди- Брутго-			<u>Найде</u> Вычисл			Т. пл., °С	Время*	Выход,
нение	формула	С	Н	N	CI	,	~ } -1001	%
11a	C ₁₄ H ₁₆ N ₄ O ₃	<u>57.95</u> 58.33	5.43 5.56	19.13 19.44	_	125—126	20	56
11b	C ₁₄ H ₁₆ N ₄ O ₂	61.82 61.76	6.03 5.88	21.15 21.59	_	160—162	16	48
11c	C ₁₃ H ₁₄ N ₄ O ₂	60.35 60.47	5.25 5.43	22.11 21.71		119—121	14	65
11d	C ₁₃ H ₁₃ CIN ₄ O ₂	<u>53.44</u> 53.33	4.61 4.44	19.15 19.29	11.86 12.14	157—158	10	67
11e	C ₁₃ H ₁₃ FN ₄ O ₂	56.45 56.52	4.68 4.71	21.05 20.29	-	116—118	8_9	56
11f	C ₁₄ H ₁₃ F ₃ N ₄ O ₂	51.42 51.53	4.05 3.99	17.21 17.18	-	70—72	6	46
11g	C ₁₃ H ₁₂ Cl ₂ N ₄ O ₂	47.88 47.71	3.58 3.67	17.50 17.13 17.29	21.23 21.71	125—126	12	66
11h	C ₁₆ H ₁₈ N ₄ O ₄	58.37 58.18	5.61 5.45	16.97	_	150—152	10	88
-11i	C ₁₃ H ₁₃ N ₅ O ₄	51.55 51.49 66.53	4.35 4.29 5.02	22.62 23.10 18.50	_	149—150	30	54
11j	C ₁₇ H ₁₆ N ₄ O ₂	66.22 56.42	5.23 5.52	18.17 20.58	_	150—153	15	62
12b	C ₁₅ H ₁₈ N ₄ O ₂	56.60 54.56	5.66 5.02	19.58 18.56	<u>11.83</u>	105—109	15	47
12d	C ₁₄ H ₁₅ ClN ₄ O ₂	54.81 53.25	4.89 4.68	18.27 24.89	11.58	108—112	16	36
12f	C ₁₅ H ₁₅ F ₃ N ₄ O ₂	53.00 57.75	4.73 5.95	24.08 17.07	_	115—118	8	56 49
13a 13d	C ₁₆ H ₂₀ N ₄ O ₄ C ₁₅ H ₁₇ CIN ₄ O ₃	57.83 <u>53.56</u>	6.02 <u>5.14</u>	16.87 16.99	10.01	98—100 103—105	56 16	51
13i	C ₁₅ H ₁₇ N ₅ O ₅	53.49 51.93	5.05 5.12	16.64 <u>19.88</u>	10.55	144—145	32	59
14a	C ₁₇ H ₂₂ N ₄ O ₃	51.87 <u>62.06</u>	4.90 <u>6.59</u>	20.17 17.03	_	110—111	18	50
14b	C ₁₇ H ₂₂ N ₄ O ₂	61.81 65.11	6.67 7.12	16.97 18.50	_	109—110	15	54
14d	C ₁₆ H ₁₉ ClN ₄ O ₂	64.97 <u>57.55</u> 57.40	7.01 <u>6.45</u> 5.68	17.84 16.92 16.74	11.21 10.61	118—122	7	76
- 14i	C ₁₆ H ₁₉ N ₅ O ₄	55.39 55.65	5.67 5.51	19.97 20.29	-	158—162	12	49
15a	C ₂₀ H ₂₀ N ₄ O ₃	66.21 65.93	5.32 5.49	15.01 15.38	_	88—90	16	55
15d	C ₁₉ H ₁₇ CIN ₄ O ₂	61.89 61.87	4.45 4.61	15.01 15.19	10.02 9.63	99—102	10	52
15i	C ₁₉ H ₁₇ N ₅ O ₄	<u>59.98</u> 60.16	4.62 4.49	19.10 18.46	-	164—165	56	58
19d	C ₁₇ H ₁₅ CIN ₄ O	62.59 62.48	4.35 4.59	16.77 17.15	11.22 10.87	262—264	20	53
20h	C ₂₀ H ₂₆ N ₄ O ₃	65.18 64.85	6.92 7.07	15.10 15.12	-	164—165	15	35
20k	C ₁₉ H ₂₆ N ₄ O ₂	66.89 66.64	7.15 7.65	16.12 16.36	_	165—168	10	40
21d	C ₁₂ H ₁₃ ClN ₄ O	<u>54.65</u> 54.44	5.16 4.91	<u>21.07</u> 21.17	13.25 13.42	172—174	5	38
21h	C ₁₅ H ₁₈ N ₄ O	66.58 66.66	6.78 6.67	20.81 20.74	_	152—153	8	38
21i	C ₁₂ H ₁₃ N ₅ O ₃	<u>52.54</u> 52.36	4.63 4.73	25.67 25.45	-	168—170	7	37

^{*}Продолжительность кипячения, ч.

Спектральные характеристики 4-метилтриазинонов 11а-ј

Соеди-	ИК спектр, v, см ⁻¹		Спектр ЯМР ¹ Н, ДМСО-d ₆ , δ, м. д., КССВ (<i>J</i>), Гц								
нение	CH, C≡N, C=O	C <u>H</u> ₃CH₂	NCH ₃	CH₃C <u>H</u> ₂	R ¹	СНтриаз	СН _{аром}				
11a	2980, 2945, 2910, 2230, 1670	1.05 (3H, T, J = 8.0)	3.09 (3H, c)	3,41 (2H, ABX ₃ , J = 8.0)	3.80 (3H, c)	6.95 (1H, c)	7.06 и 7.52 (4H, AA'XX', <i>J</i> = 9.5)				
11b	2985, 2935, 2905, 2230, 1670	1.05 (3H, T, J = 7.0)	3.10 (3H, c)	3.41 (2H, ABX ₃ , J = 7.0)	2.33 (3H, c)	7.02 (1H, c)	7.25 и 7.56 (4H, AA'BB', $J = 8.4$)				
11c	2980, 2940, 2910, 2230, 1670	1.06 (3H, T, J = 7.0)	3.12 (3H, c)	3.44 (2H, ABX ₃ , J = 7.0)		7.06 (1H, c)	7.45—7.60 (4H, м)				
11d	2980, 2940, 2905, 2230, 1670	1.07 (3H, τ , $J = 7.1$)	3.09 (3H, c)	3.39 (2H, ABX ₃ , J = 7.1)		7.06 (1H, c)	7.60 и 7.55 (4H, AA'BB', <i>J</i> = 9.6)				
11e	2990, 2945, 2910, 2230, 1670	1.06 $(3H, T, J = 7.1)$	3.11 (3H, c)	3.42 (2H, ABX ₃ , $J = 7.1$)		7.01 (1H, c)	7.30—7.39 (2H, м), 7.50—7.62 (2H, м)				
11f	2980, 2240, 1685	1.06 (3H, т, <i>J</i> =7.1)	3.10 (3H, c)	3.41 (2H, ABX ₃ , J = 7.1)	· —	7.19 (1H, c)	7.06—7.95 (4H, м)				
11g	2980, 2930, 2230, 1670	1.05 (3H, т, <i>J</i> = 7.0)	3.09 (3H, c)	3.50 (2H, ABX ₃ , J = 7.0)		6.55 (1H, c)	7.62, 7.74, 7.89 (3H, ABX, ${}^{3}J$ = 8.7, ${}^{4}J$ = 2.0)				
11h	2980, 2935, 2230, 1715, 1675	1.06 (3H, T, J = 7.0)	3.13 (3H, c)	3.45 (2H, ABX ₃ , J = 7.0)	1.34 (3H, τ , $J = 7.5$), 4.33 (2H, κ , $J = 7.5$)	7.15 (1H, c)	7.65 и 8.05 (4H, AA'XX', <i>J</i> = 9.3)				
11i ,	2990, 2950, 2910, 2240, 1690	1.07 (3H, т, <i>J</i> = 7.0)	3.14 (3H, c)	3.50 (2H, ABX ₃ , J=7.0)		7.21 (1H, c)	7.78 и 8.36 (4H, AA'XX', J=9.5)				
11j	2975, 2930, 2230, 1675	1.06 (3H, т, $J = 7.1$)	3.16 (3H, c)	3.50 (2H, ABX ₃ , J = 7.1)		7.25 (1H, c)	7.80 (1H, д. д, ³ <i>J</i> = 9.5, ⁴ <i>J</i> = 2.5), 7.46—7.61 (2H, м), 7.95—8.02 (4H, м)				

Спектральные характеристики соединений 12—15

Соеди- нение	ИК спектр, v,	Спектр ЯМР 1 Н, ДМСО- d_6 , δ , м. д., КССВ i (J), Γ ц								
	(CH, C≡N, C=O)	C <u>H</u> ₃CH₂	R ²	CH₃C <u>H</u> ₂	R ¹	СНтриаз	СНаром			
12b	2980, 2930, 2230, 1650	1.04 (3H, T, J = 7.0)	1.22 (3H, т, <i>J</i> = 7.0); 3.58 (2H, к, <i>J</i> = 7.0)	3.35 (2H, ABX ₃ , J = 7.0)	2.33 (3H,c)	7.06 (1H, c)	7.30 и 7.49 (4H, AA'BB', <i>J</i> = 8.6)			
12d	2985, 2935, 2230, 1660	1.05 (3H, т, <i>J</i> = 7.0)	1.22 (3H, τ , $J = 7.0$); 3.54 (2H, κ , $J = 7.0$)	3.38 (2H, ABX ₃ , $J = 7.0$)		7.11 (1H, c)	7.56 и 7.63 (4H, AA'XX', J = 9.3)			
12f	2985, 2940, 2225, 1650	1.05 (3H, r, <i>J</i> = 7.0)	1.24 (3H, τ , $J = 7.0$); 3.61 (2H, κ , $J = 7.0$)	3.39 (2H, ABX ₃ , <i>J</i> = 7.0)		7.23 (1H, c)	7.70 (2H, м), 7.91 (2H, уш. с)			
13a*	2980, 2890, 2830, 2230, 1670	1.10 (3H, т, <i>J</i> = 7.0)	3.30 (3H, c); 3.48—3.64 (3H, м); 3.83—3.94 (1H, м)	3.40 (2H, ABX ₃ , $J = 7.0$)	3.81 (3H, c)	6.86 (1H, c)	6.97 и 7.45 (4H, AA'XX', <i>J</i> = 9.2)			
13d	2980, 2930, 2890, 2230, 1660	1.05 (3H, т, <i>J</i> = 6.7)	3.26 (3H, c); 3.50—3.70 (3H, м); 3.80—3.92 (1H, м)	3.40 (2H, ABX ₃ , $J = 6.7$)	. Account	7.04 (1H, c)	7.60 и 7.57 (4H, AA'BB', J = 9.3)			
13i	2980, 2885, 2825, 2230, 1680	1.07 (3H, T, J=6.7)	3.27 (3H, c); 3.58—3.78 (3H, м); 3.80—3.95 (1H, м)	3.43 (2H, ABX ₃ , $J = 6.7$)		7.20 (1H, c)	7.81 и 8.36 (4H, AA'XX', <i>J</i> = 9.2)			
14a*²	2960, 2925, 2850, 2220, 1660	1.18 -(3H, T, J=6.7)	0.95 (3H, т, <i>J</i> = 7.3); 1.32 (2H, м); 1.63 (2H, м); 3.20–3.35 (1H, м); 3.65 (1H, м)	3.43 (2H, ABX ₃ , $J = 6.7$)	3.84 (3H, c)	6.34 (1H, c)	6,94 и 7,42 (4H, AA'XX', <i>J</i> = 9.3)			

14b	2960, 2935, 2900, 2850, 2220, 1665	1.04 (3H, r, J=7.0)	0.90 (3H, T, $J = 7.0$); 1.30 (2H, M); 1.61 (2H, M); 3.20–3.35 (1H, M); 3.61 (1H, M)	3.40 (2H, ABX ₃ , $J = 7.0$)	2.33 (3H, c)	7.02 (1H, c)	7.30 и 7.48 (4H, AA'BB', <i>J</i> = 8.9)
14d	2980, 2960, 2930, 2860, 2230, 1680	1.05 (3H, т, <i>J</i> = 7.0)	0.90 (3H, т, <i>J</i> = 7.0); 1.30 (2H, м); 1.60 (2H, м); 3.20—3.35 (1H, м); 3.60 (1H, м)	3.38 (2H, ABX ₃ , $J = 7.0$)		7.08 (1H, c)	7.56 и 7.62 (4H, AA'BB', <i>J</i> = 8.9)
14i	2955, 2930, 2860, 2225, 1670	1.06 (3H, т, <i>J</i> = 7.0)	0.91 (3H, т, <i>J</i> = 7.0); 1.32 (2H, м); 1.67 (2H, м); 3.20—3.35 (1H, м); 3.62 (1H, м)	3.45 (2H, ABX ₃ , $J = 7.0$)		7.24 (1H, c)	7.83 и 8.35 (4H, AA'XX', <i>J</i> = 9.0)
15a	2980, 2920, 2230, 1670	0.85 (3H, τ , $J = 7.0$)	4.72 и 4.83 (2H, AB, <i>J</i> = 15.5); 7.25—7.37 (5H, м)	3.24 (2H, ABX ₃ , $J = 7.0$)	3.83 (3H, c)		6.97—7.25 (5Н, м) ^{*3}
15d	2990, 2920, 2230, 1660	0.82 (3H, т, <i>J</i> = 6.7)	4.72 и 4.84 (2H, AB, <i>J</i> = 15.0); 7.25—7.42 (5H, м)	3.26 (2H, ABX ₃ , $J = 6.7$)	. 	7.15 (1H, c)	7.57 и 7.62 (4H, AA'BB', <i>J</i> = 9.5)
15i	2990, 2930, 2230, 1680	0.83 (3H, T, J = 7.0)	4.73 и 4.90 (2H, AB, <i>J</i> = 15.3); 7.22—7.43 (6H, м)* ³	3.25 (2H, ABX ₃ , $J = 7.0$)	-		7.80 и 8.38 (4H, AA'XX', J = 9.2)

^{*} Спектр ЯМР 1 Н снят в смеси ДМСО- d_{6} — СС l_{4} , 1:1. *2 Спектр ЯМР 1 Н снят в CDС l_{3} . $*^{3}$ Сигналы СН-триазина перекрываются ароматическими.

Спектральные характеристики соединений 19—21

Соеди-	ИК спектр, v, см ⁻¹	Спектр ЯМР 1 Н , ДМСО- d_6 , δ , м. д., КССВ (<i>J</i>), Γ ц								
	NH, C≡N, C=O	C <u>H</u> ₃CH₂N	R ¹	CH₃C <u>H</u> ₂N	R ²	NH	СНаром			
19d	3410, 2210, 1675	1.36 (3H, T, J = 7.8)		4.39 (2H, к, <i>J</i> = 7.0)	7.10 (1H, м); 7.35 (2H, м); 7.67 (2H, д, <i>J</i> = 7.4)	9.67 (1H, c)	7.52 и 7.60 (4H, AA'BB', <i>J</i> = 9.2)			
20h	3410, 2210, 1710, 1675	1.36 (3H, T, J = 7.0)	1.33 (3H, т, <i>J</i> = 6.7), 4.49 (2H, к, <i>J</i> = 6.7)	4.32 (2H, κ, J = 7.0)	1.00—1.85 (10H, м); 3.65 (1H, м)	7.57 (1H, д, J = 8.5)	7.65 и 8.00 (4H, AA'BB', <i>J</i> = 8.8)			
20k	3410, 2210, 1675	1.33 (3H, уш. с.)	1.35 (3H, уш. с.), 4.48 (2H, к, J=5.8)	4.31 (2H, κ , $J = 7.0$)	1.00—1.95 (10H, м); 3.65 (1H, м)	7.57 (1H, д, J=8.3)	7.65 и 8.00 (4H, AA'XX', J = 8.4)			
21d	3410, 2210, 1675	1.30 (3H, T, J = 7.0)		4.36 (2H, κ , $J = 7.0$)	2.74 (3Н, д, J = 4.9)	7.85 (1H, κ , $J = 4.9$)	7.47 и 7.58 (4H, AA'BB', J=8.2)			
21h	3420, 2210, 1710, 1680	1.30—1.40 (6H, м)	4.50 (2H, κ , $J = 7.3$)*	4.35 (2H, κ , $J = 7.1$)	2.76 (3Н, д, J = 4.7)	7.90 (1H, κ , $J = 4.7$)	7.70 и 8.24 (4H, AA'XX', J = 8.9)			
21i	3420, 2210, 1680	1.36 (3H, т, <i>J</i> = 7.2)	_	4.55 (2H, κ, J = 7.2)	2.78 (3Н, д, J = 4.8)	8.03 (1H, κ, J = 4.8)	7.84 и 8. (4H, AA'XX', <i>J</i> = 9.5)			

^{*} Резонансные сигналы метильной группы OCH₂CH₃ перекрываются с сигналами протонов NCH₂CH₃.

N
$$R^2$$
 $HC(OC_2H_5)_3$ $HC(OC_2H_5)_3$ $HC(OC_2H_5)_3$ $HC(OC_2H_5)_3$ $HC(OC_2H_5)_3$ $R^2 = CH_3$ R^1 R^1 R^1 $R^2 = CH_3$ R^1 $R^2 = CH_3$ $R^2 = CH_3$ R^3 R^4 R^4 R^4 R^4 R^4 R^4 R^5 R^6 $R^$

17, 19, $R^2 = C_6H_5$, d $R^1 = 4$ -Cl; 18, 20h,k $R^2 = C_6H_{11}$, h $R^1 = 4$ -COOC₂H₅, k $R^1 = 4$ -OOC₂H₅; 1, 21d,h,i, $R^2 = CH_3$, $R^1 = 4$ -Cl, h $R^1 = 4$ -COOC₂H₅, i $R^1 = 4$ -NO₂

Тетрагидротриазиноны 11–15 являются кристаллическими веществами, достаточно устойчивыми к действию кислот и оснований при комнатной температуре, однако при кипячении в спирте в присутствии эквимолярных количеств серной кислоты происходит их распад с образованием исходных гидразонов.

Таким образом, в результате проведенного исследования нами разработан новый удобный метод синтеза 4-алкил-2-арил-5-оксо-3-этокси-2,3,4,5-тетрагидро-1,2,4-триазин-6-карбонитрилов, открывающий путь к получению ранее недоступных функционально замещенных тетрагидротриазинов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и индивидуальностью синтезированных соединений проводился методом тонкослойной хроматографии на пластинках Silufol UV-254 в системах: хлороформ—этанол, 6:1, 10:1, 15:1; гексан—этилацетат, 2:1. ИК спектры измерены на спектрофотометре UR-20 в таблетках КВг; спектры ЯМР 1 H — на спектрофотометрах Bruker (80 МГц), Bruker WM-250 (250 МГц) и Bruker (400 МГц) с внутренним стандартом ТМС; масс-спектры — на спектрометре Varian MAT 311A при ионизирующем напряжении 70 эВ с прямым вводом образца в источник. Физико-химические и спектральные характеристики всех синтезированных соединений приведены в таблицах 1—6.

2-Арил-4-метил-5-оксо-3-этокси-2,3,4,5-тетрагидро-1,2,4-триазин-6-карбонитрилы (11а—j). Кипятят 0.002 моль гидразона 1а—j в 5 мл триэтилортоформиата. Конец реакции определяют с помощью ТСХ по исчезновению исходного соединения (табл. 3). Реакционную массу упаривают в вакууме, остаток обрабатывают 5 мл пропанола-2 и оставляют на холоду на 18—20 ч. Выделившийся осадок фильтруют и кристаллизуют из этилового спирта.

4-Метил-5-оксо-2-фенил-3-этокси-2,3,4,5-тетрагидро-1,2,4-триазин-6-карбонитрил 11с. Спектр ЯМР ¹³С (ДМСО- d_6 +ССІ $_4$, δ , м. д., КССВ (J), Гп): 14.46 (к. т, 1J = 126.3, 2J = 3.0, C(12)), 31.47 (к. д, 1J = 141.0, 3J = 2.0, C(13)), 61.02 (т. к. д, 1J = 143.0, 2J = 4.7, C(11)), 91.96 (д. т. к, 1J = 181.9, 3J = 3.3, C(1)), 113.37 (с, C(10)), 114.02 (с, C(2)), 117.92 (д. д. т, 1J = 161.0, 2J = 5.5, C(6), C(9)), 125.97 (д. т, 1J = 164.2, 2J = 7.4, C(7)), 129.15 (д. д, 1J = 163.6, 2J = 8.0, C(5), C(8)), 141.63 (т. д, 2J = 9.5, 3J = 1.5, C(4)), 152.36 (д. к, 3J = 3.2, C(3)).

2-Арил-5-оксо-4-этил-3-этокси-2,3,4,5-тетрагидро-1,2,4-триазин-6-карбонитрилы (12b,d,f), 2-арил-4-метоксиэтил-5-оксо-3-этокси-2,3,4,5-тетрагидро-1,2,4-триазин-6-карбонитрилы (13a,d,i), 2-арил-4-бутил-5-оксо-3-этокси-2,3,4,5-тетрагидро-1,2,4-триазин-

6-карбонитрилы (14а,b,d,i) и 4-бензил-2-(4-нитрофенил)-5-оксо-3-этокси-2,3,4,5-тетрагидро-1,2,4-триазин-6-карбонитрил 15і. Получают по методике для триазинонов 11а—і.

2-Арил-4-бензил-5-оксо-3-этокси-2,3,4,5-тетрагидро-1,2,4-триазин-6-карбонитрилы (15а,d). Кипятят 0.002 моль гидразона **5а,d** в 5 мл триэтилортоформиата. Растворитель отгоняют в вакууме, остаток обрабатывают 5 мл водного этанола и экстрагируют гексаном $(3\times10\text{ мл})$. Экстракт упаривают под вакуумом, обрабатывают 5 мл пропанола-2 и оставляют на холоду на 18-20 ч до выпадения осадка. Продукт фильтруют и кристаллизуют из пропанола-2.

2-[(4-Хлорфенил)этилгидразоно]-N-фенил-2-цианоацетамид (19d), 2-(арилэтилгидразоно)-N-циклогексил-2-цианоацетамиды (20h,k) и 2-(арилэтилгидразоно)-N-метил-2-цианоацетамиды (21d,h,i). Кипятят 0.002 моль гидразона 17d, 18h,k или 1d,h в 5 мл триэтилортоформиата. Реакционную массу охлаждают, осадок фильтруют и кристаллизуют из этанола.

Работа проведена при финансовой поддержке Российского фонда фундаментальных исследований (Санкт-Петербург, грант 97-0-9.4235).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. П. Китаев, Б. И. Бузыкин, *Гидразоны*, Наука, Москва, 1974, 415.
- 2. G. W. Kabalka, J. T. Maddox, E. Bogas, S. W. Kelley, J. Org. Chem., 62, 3688 (1997).
- 3. Yu-T. Hsieh, G.-H. Lee, Yu. Wang, T.-Y. Luh, J. Org. Chem., 63, 1484 (1998).
- 4. W. R. Bowman, P. T. Stephenson, N. K. Terrett, A. R. Yang, *Tetrahedron*, **51**, 7959 (1995).
- 5. Y. Tanabe, M. Nagaosa, Y. Nishii, Heterocycles, 41, 2033 (1995).
- 6. О. Г. Кузуева, Я. В. Бургарт, В. И. Салоутин, Успехи химии, **47**, 673 (1998).
- 7. E. E. Зверева, Н. П. Бельская, В. А. Бакулев, *XTC*, 1698 (1998).
- 8. E. B. Тарасов, Ю. Ю. Моржерин, Н. Н. Волкова, В. А. Бакулев, XTC, 1124 (1996).
- 9. J. Reiter, J. Barkóczy, J. Heterocycl. Chem., 34, 1575 (1997).
- H. Neunhoeffer, 1,2,4-Triazines and their Benzo Derivatives. Comprehensive Heterocyclic Chemistry II, 6, 507 (1996).

Уральский государственный технический университет, Екатеринбург 620002, Россия e-mail: belska@hrf.ustu.ru

Поступило в редакцию 31.01.2000