Я. Ю. Якунин, В. Д. Дяченко, В. П. Литвинова

СИНТЕЗ, СТРУКТУРА И РЕАКЦИИ АЛКИЛИРОВАНИЯ 5-ТЕНОИЛ- И 5-БЕНЗОИЛ-6-ТРИФТОРМЕТИЛ-3-ЦИАНОПИРИДИН-2-ТИОЛАТОВ N-МЕТИЛМОРФОЛИНИЯ

Реакцией этоксиметиленпроизводных трифтортеноил- и трифторбензоилацетона с цианотиоацетамидом в присутствии избытка N-метилморфолина получены соответствующие 5-ацил-6-трифторметил-3-цианопиридин-2-тиолаты N-метилморфолиния и изучено их алкилирование.

Ключевые слова: N-метилморфолин, пиридин, тиено[2,3-b]пиридин, цианотиоацетамид, этоксиэтилен, алкилирование.

В литературе описаны трифторметилзамещенные пиридинтионы, полученные реакцией цианотиоацетамидов с активированными олефинами или 1,3-дикарбонильными соединениями [1–4]. Известна биологическая активность трифторметилзамещенных ароматических и гетероциклических соединений [5], а также 4-незамещенных пиридин-2(1H)-тионов [6–8]. В продолжение исследований в этом направлении нами разработан метод синтеза 5-теноил- и 5-бензоил-6-трифторметил-3-цианопиридин-2-тиолатов.

Взаимодействие этоксиметиленпроизводных трифтортеноил- (1) или трифторбензоилацетона (2) с цианотиоацетамидом (3) в присутствии двукратного избытка N-метилморфолина при комнатной температуре приводит к 5-теноил- (4) или 5-бензоил-6-трифторметил-3-цианопиридин-2-тиолату N-метилморфолиния (5) с выходами 85 и 51 % соответственно. Вероятно, реакция протекает с образованием аддуктов 6, 7, циклизующихся в соли 4 и 5 соответственно.

1, 4, 6 R =тиенил-2; 2, 5, 7 R = Ph

Строение последних подтверждается результатами элементного анализа и спектроскопическими исследованиями (табл. 1, 2), а также согласуется с литературными данными о конденсации 1,1,1-трифторацетилацетона с цианотиоацетамидом [2]. Так, в ИК спектрах солей 4, 5 присутствуют полосы поглощения валентных колебаний карбонильной группы в области 1600—1630 и сопряженной нитрильной группы в области 2190 см⁻¹.

В спектрах ЯМР ¹Н соединений **4**, **5** наблюдаются характерные для протонов N-метилморфолиниевого катиона триплеты в области 3.17–3.80, а также синглетный сигнал протона **4**-Н пиридинового ядра в области 7.27–7.74 м. д. Сигналы протонов теноильного фрагмента соли **4** имеют вид триплета и двух дублетов в областях 7.16 и 7.70, 7.89 м. д. соответственно. Бензоильный фрагмент тиолата **5** проявляется в виде мультиплета при 7.34–8.04 м. д.

Обработка солей 4 и 5 эквимолярным количеством галогенидов 8а-f в ДМФА в присутствии КОН (метод A) приводит к образованию алкилтиопроизводных 9а-f и 10a-f соответственно. При обработке тиолатов 4 и 5 4-бромфенацилбромидом 7g или α-хлорацетамидом 8h по методу A во всех случаях образуется смесь линейного продукта 9g,h или 10g,h с соответствующим тиенопиридином 11g,h и 12g,h. При непродолжительном нагревании указанных реагентов в ДМФА без КОН (метод Б) удалось получить индивидуальные линейные производные 9h и 10g,h. Следует отметить, что относительно высокая способность к циклизации продукта 9g не позволила выделить его в качестве индивидуального соединения в условиях методов A и Б.

9,11 R = 2-тиенил-2; 10, 12 R = Ph; 8–11 a R^1 = H, b R^1 = Me, c R^1 = Et, d R^1 = Pr, e R^1 = CH₂ = CH, f R^1 = Ph, g R^1 = 4-BrC₆H₄CO, h R^1 = H₂NCO

Строение полученных алкилпроизводных 9a–f,h и 10a–h, а также тиенопиридинов 11g,h и 12g,h подтверждено результатами элементного анализа (табл. 1), данными ИК спектров и ЯМР 1 Н (табл. 2).

Таблица 1 Характеристики синтезированных соединений

Сое- дине-	Брутто-	<u>Найдено, %</u> Вычислено, %				Т. шл., °С	Выход,
ние	формула	С	Н	N.	S] 1. mi., C	%
4	C ₁₇ H ₁₆ F ₃ N ₃ O ₂ S ₂	49.03 49.15	3.71 3.88	10.32 10.11	15.54 15.44	128–130	85
5	C ₁₉ H ₁₈ F ₃ N ₃ O ₂ S	<u>55.90</u> 55.74	4.21 4.43	10.11 10.26	7.99 7.83	114–116	51
9a	C ₁₃ H ₇ F ₃ N ₂ OS ₂	47.70 47.56	2.31 2.15	8:39 8.53	19.40 19.53	145–147	72
9b	C ₁₄ H ₉ F ₃ N ₂ OS ₂	<u>49.01</u> 49.12	2.42 2.65	8.30 8.18	18.84 18.73	124–126	56
9c	C ₁₅ H ₁₁ F ₃ N ₂ OS ₂	50.33 50.55	3.00 3.11	7.99 7.86	17.32 17.19	103–105	52
9d	C ₁₆ H ₁₃ F ₃ N ₂ OS ₂	<u>51.92</u> 51.88	3.70 3.54	7.41 7.56	17.22 17.31	76–78	53
9e	C ₁₅ H ₉ F ₃ N ₂ OS ₂	<u>50.77</u> 50.84	2.33 2.56	7.74 7.91	18.25 18.10	107–109	52
9f	C ₁₉ H ₁₁ F ₃ N ₂ OS ₂	<u>56.55</u> 56.43	2.82 2.74	6.80 6.93	15.71 15.86	126–128	58
9h	C ₁₄ H ₈ F ₃ N ₃ O ₂ S ₂	45.10 45.28	2.34 2.17	11.50 11.32	17.12 17.27	130-132 субл.	61
10a	C ₁₅ H ₉ F ₃ N ₂ OS	<u>55.76</u> 55.90	2.59 2.81	8.81 8.69	9.85 9.95	105–107	84
10b	C ₁₆ H ₁₁ F ₃ N ₂ OS	<u>57.30</u> 57.14	3.18 3.30	8.12 8.33	9.66 9.53	86–88	55
10c	C ₁₇ H ₁₃ F ₃ N ₂ OS	58.11 58.28	3.55 3.74	8.25 8.00	9.06 9.15	83–85	53
10d	C ₁₈ H ₁₅ F ₃ N ₂ OS	<u>59.41</u> 59.33	4.39 4.15	7.54 7.69	8.62 8.80	74–76	52
10e	C ₁₇ H ₁₁ F ₃ N ₂ OS	58.50 58.62	3.11 3.18	8.33 8.04	9.40 9.20	97–99	52
10f	C ₂₁ H ₁₃ F ₃ N ₃ OS	63.14 63.31	3.12 3.29	7.22 7.03	8.13 8.05	75–77	56
10g	C ₂₂ H ₁₂ BrF ₃ N ₂ O ₂ S	<u>52.42</u> 52.29	2.11 2.39	5.34 5.54	6.60 6.35	8082	58
10h	C ₁₆ H ₁₀ F ₃ N ₃ O ₂ S	52.43 52.60	2.59 2.76	11.71 11.50	8.92 8.78	108–110	61
11g	C ₂₀ H ₁₀ BrF ₃ N ₂ O ₂ S ₂	46.76 46.98	1.80 1.97	5.59 5.48	12.61 12.54	88–90	58
11h	C ₁₄ H ₈ F ₃ N ₃ O ₂ S ₂	45.51 45.28	2.32 2.17	11.14 11.32	17.10 17.27	73–75	56
12g	C ₂₂ H ₁₂ BrF ₃ N ₂ O ₂ S	52.14 52.29	2.22 2.39	<u>5.61</u> 5.54	6.49 6.35	134–136	54
12h	C ₁₆ H ₁₀ F ₃ N ₃ O ₂ S	<u>52.71</u> 52.60	2.92 2.76	11.41 11.50	8.55 8.78	70–73	57

Спектральные характеристики синтезированных соединений

Соеди-	ИК спектр, см ⁻¹		Спектр ЯМР ¹ Н, δ, м. д КССВ (<i>J</i>), Гц				
іение	C≡N	C=O, NH ₂	4-Н пиридинового цикла (1H, c)	R (Н _{тиснил} или Н _{фенил})	протоны метилморфолиния или SCH ₂ , R^1 , NH ₂		
1	2	3	4	5	6		
	2190	1635	7.27	7.16 (1H, т, <i>J</i> = 4.6, 4-H); 7.70 (1H, д, <i>J</i> = 5.0, 3H); 7.89 (1H, д, <i>J</i> = 4.6, 5-H))	2.80 (3H, c, CH ₃); 3.80 (4H, T, $J = 5.0$, CH ₂ NCH ₂); 3.78 (4H, T, $J = 5.0$, CH ₂ OCH ₂)		
	2190	1660	7.74*	7.34-8.04 (5H, м)*	2.79 (3H, c, CH ₃); 3.17 (4H, T, $J = 5.0$, CH ₂ NCH ₂); 3.78 (4H, T, $J = 5.0$, CH ₂ COCH ₂)		
a	2220	1660	8.12	7.26 (1H, т, <i>J</i> = 4.6, 4-H); 7.91 (1H, д, <i>J</i> = 5.0, 3-H); 8.24 (1H, д, <i>J</i> = 4.6, 5-H)	2.69 (3H, c, CH ₃)		
b	2224	1570	8.11	7.26 (1H, τ , $J = 4.6$, 4-H); 7.91 (1H, π , $J = 5.0$, 3-H); 8.23 (1H, π , $J = 4.6$, 5-H)	1.34 (3H, τ , $J = 7.5$, CH ₃); 3.31 (2H, κ , $J = 7.5$, SCH ₂)		
c	2210	1680	8.13	7.26 (1H, τ , $J = 4.6$, 4-H); 7.93 (1H, π , $J = 5.0$, 3-H); 8.24 (1H, π , $J = 4.6$, 5-H)	1.04 (3H, τ , $J = 7.5$, CH_3); 1.75 (2H, M , CH_2CH_3); 3.29 (2H, τ , $J = 7.5$, SCH_2)		
d	2210	1640	8.15	7.28 (1H, т, <i>J</i> = 4.6, 4-H); 7.95 (1H, д, <i>J</i> = 5.0, 3-H); 8.26 (1H, д, <i>J</i> = 4.6, 5-H)	0.93 (3H, τ , $J = 7.5$, CH_3); 1.62 [4H, M , $CH_2(\underline{C}H_2)_2$]; 3.29 (2H, τ , $J = 7.5$, SCH_2)		
c	2210	1650	8.15	7.27 (1H, т, <i>J</i> = 4.6, 4-H); 7.92 (1H, д, <i>J</i> = 5.0, 3-H); 8.25 (1H, д, <i>J</i> = 4.6, 5-H)	4.01 (2H, д, J = 7.5, SCH ₂); 5.14 и 5.41 (2H, два д, J = 7.5, CH ₂ =); 5.98 (1H, м, CH=)		
f	2200	1670	8.18	7.48 (1H, т, <i>J</i> = 4.6, 4-H); 7.95 (1H, д, <i>J</i> = 5.0, 3-H); 8.27 (1H, д, <i>J</i> = 4.6, 5-H)	4.65 (2H, c, SCH ₂); 7.30 (5H, м, Ph)		
h .	2230	1600, 1660, 3400	8.14	7.22 (1H, м, 4-H и 1-H, NH ₂)*; 7.96 (1H, д, <i>J</i> = 5.0, 3-H); 8.26 (1H, д, <i>J</i> = 4.6, 5-H)	4.07 (2H, c, SCH ₂); 7.64 (1H, ym. c, NH ₂)		

		·.	nt,			
10a		2235	1600	8.18	7.58 (3Н, м, 3-, 4- и 5-Н); 8.31 (2Н, м, 2- и 6-Н)	2.77 (3H, c, SCH ₃)
10b		2225	1670	8.17	7.58 (3Н, м, 3-, 4- и 5-Н); 8.28 (2Н, м, 2- и 6-Н)	1.40 (3H, τ , $J = 7.5$, CH ₃); 3.39 (2H, κ , $J = 7.5$, SCH ₂)
10c		2200	1670	8.15	7.57 (3Н, м, 3-, 4- и 5-Н), 8.28 (2Н, м, 2- и 6-Н)	1.03 (3H, т, <i>J</i> = 7.5, CH ₃); 1.76 (2H, м, CH ₃ <u>C</u> H ₂); 3.35 (2H, м, SCH ₂)
10d		2290	1665	8.15	7.60 (3Н, м, 3-, 4- и 5-Н); 8.24 (2Н, м, 2- и 6-Н)	0.92 (3H, M, CH ₃); 1.28–1.88 (4H, M, 2CH ₂); 3.38 (2H, T, <i>J</i> = 7.5, SCH ₂)
10e		2235	1600	8.17	7.58 (3Н, м, 3-, 4- и 5-Н), 8.29 (2Н, м, 2- и 6-Н)	4.09 (2H, д, J = 7.5, SCH ₂); 5.21 и 5.46 (2H, два д, J = 7.5, CH ₂ =); 6.01 (1H, м, CH=)
10f		2210	1630	8.21	7.21–7.68 (8H, м, 3-, 4-, 5-H и CH ₂ Ph)*; 8.31 (2H, м, 2- и 6-H)	4.74 (2H, c, SCH ₂)
10g		2210	1660	8.16	7.81-8.03 (10H, м, 2Ph)	5.10 (2H, c, SCH ₂)
10h	11 1	2220	1640, 3410	8.20	7.58 (3H, м, 3-, 4- и 5-H); 8.32 (2H, м, 2- и 6-H)	4.12 (2H, c, SCH ₂); 7.25 (1H, c, NH ₂); 7.75 (1H, c, NH ₂)
11g		_	1585, 1600, 3510	8.29	7.24 (1H, т, <i>J</i> = 4.6, 4-H); 7.76–7.90 (3H, м, 3-H и NH ₂); 8.25 (1H, д, <i>J</i> = 4.6, 5-H)	7.74 (4H, уш. c, C ₆ H ₄)
11h		_	1600, 1660, 3330, 3440	8.24	7.24 (1H, т, <i>J</i> = 4.6, 4-H); 7.81 (1H, д, <i>J</i> = 5.0, 3-H); 8.18 (1H, д, <i>J</i> = 4.6, 5-H)	6.66 (2H, уш. c, NH ₂); 7.45 (2H, уш. c, CONH ₂)
12g		· · · · · · · · · · · · · · · · · · ·	1600, 1680, 3340	8.13-8.28 (3H, м, 4-, 2-, 6-Н Рh)	7.39-7.92 (5H, м, 3-, 4-, 5-H и NH ₂)*	7.75 (4H, уш. с, С ₆ H ₄)*
12h			1600, 1680, 3360, 3480	8.21 (3H, м, 4-H, 2-, 6-H Ph)	7.49 (5H, м, 3-, 4-, 5-H и CONH ₂)	6.68 (2H, уш. с, NH ₂)
		100				· · · · · · · · · · · · · · · · · · ·

^{*} Сигналы перекрываются.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры синтезированных соединений записаны на приборе ИКС-29 для суспензии в вазелиновом масле. Спектры ЯМР ¹Н регистрировали на приборе Bruker WP-100 SY (100 МГц) для растворов в ДМСО-d₆, внутренний стандарт ТМС. Контроль за ходом реакции и индивидуальностью полученных веществ осуществляли методом ТСХ на пластинах Silufol UV-254 в системе ацетон—гептан, 3:5, проявитель — пары иода.

5-Теноил-6-трифторметил-3-цианопиридин-2-тиолат N-метилморфолиния (4). К смеси 12.5 г (45 ммоль) этоксиэтилена 1 и 4.5 г (45 ммоль) цианотиоацетамида 3 в 20 мл абс. этанола при 20 °С и перемешивании добавляют 10 мл (0.09 моль) N-метилморфолина. После полного растворения исходных соединений реакционную смесь фильтруют через складчатый фильтр. Фильтрат перемешивают 4 ч. Образовавшийся осадок продукта отфильтровывают, промывают ацетоном. Получают 15.9 г соединения 4.

5-Бензоил-6-трифторметил-3-цианопиридин-2-тиолат N-метилморфолиния (5) получают аналогично соединению 4 из амида 3 и этоксиэтилена 2.

2-Алкилтио- и 2-бензилтио-5-теноил-6-трифторметил-3-цианопиридины (9а-f). К раствору 1 г (2.4 ммоль) соли 4 в 8 мл ДМФА при перемешивании добавляют 1.3 мл (2.4 ммоль) 10 % КОН. Через 10 мин в реакционную массу вносят 2.4 ммоль соответствующего алкилгалогенида 8а-f, реакционную смесь фильтруют через складчатый фильтр, фильтрат перемешивают 4 ч. Образовавшийся осадок продукта отфильтровывают, промывают спиртом.

2-Алкилтио- и 2-бензилтио-5-бензоил-6-трифторметил-3-цианопиридины (10a-f) получают аналогично соединениям **9a-f** из 1 г (2.4 ммоль) соли **5** и 2.4 ммоль соответствующего алкилгалогенида **8a-f**.

2-Карбамоилметилтио-5-теноил-6-трифторметил-3-цианопиридин (9h). К раствору 1 г (2.4 ммоль) соли 4 в 8 мл ДМФА при перемешивании добавляют 0.22 г (2.4 ммоль) схлорацетамида 8h. Реакционную смесь нагревают до кипения, фильтруют горячей через складчатый фильтр. Фильтрат выдерживают 12 ч при комнатной температуре, образовавшийся осадок отфильтровывают, промывают спиртом.

2-(4-Бромфенилкарбонилметилтио)- и 2-карбамоилметилтио-5-бензоил-6-трифторметил-3-цианопиридины (10g,h) получают аналогично соединению 9h из соли 5 и 4-бромфенацилбромида 8g или амида 8h соответственно.

3-Амино-2-(4-бромфенилкарбонил)- и 3-амино-2-карбамоил-5-теноил-6-трифторметилтиено[2,3-b]пиридины (11g,h). К раствору 1 г (2.4 ммоль) соли 4 в 8 мл ДМФА при перемешивании добавляют 1.3 мл (2.4 ммоль) 10 % КОН, а через 10 мин — эквимолярное количество соединения 8g или 8h. Реакционную массу перемешивают 0.5 ч, добавляют к ней 1.3 мл 10 % КОН и перемешивают 4 ч. Образовавшийся осадок продукта отфильтровывают, промывают спиртом.

3-Амино-2-(4-бромфенилкарбонил)- и 3-амино-2-карбамоил-5-бензоил-6-трифторметилтиено[2,3-*b*]пиридины (12g,h) получают аналогично соединениям 11g,h из соли 5 и соединения 8g или 8h соответственно.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 99-03-32965а).

СПИСОК ЛИТЕРАТУРЫ

- V. P. Kislyi, K. G. Nikishin, E. Ya. Kruglova, A. M. Shestopalov, V. V. Semenov, A. A. Gakh, A. C. Buchnan, *Tetrahedron*, 52, 10841 (1996).
- 2. К. Г. Никишин, В. П. Кислый, В. Н. Нестеров, А. М. Шестопалов, Ю. Т. Стручков, В. В. Семенов, *Изв. АН. Сер. хим.*, 482 (1998).
- 3. К. Г. Никишин, В. Н. Нестеров, В. П. Кислый, А. М. Шестопалов, Ю. Т. Стручков, В. В. Семенов, *Изв. АН. Сер. хим.*, 701 (1998).

- 4. Л. А. Родиновская, Ю. А. Шаранин, В. П. Литвинов, А. М. Шестопалов, В. К. Промоненков, Б. М. Золотарев, В. Ю. Мортиков, *ЖОрХ*, **21**, 2439 (1985).
- 5. Л. М. Ягупольский, *Ароматические и гетероциклические соединения с фторсодержащими заместителями*, Наукова думка, Киев, 1988.
- A. Rumler, S. Heer, A. Hagen, H.-J. Heidrich, H.-J. Janseh, B. Gentsch, H. Anderle, ГДР Пат. 252372; РЖХим., 15 О 69 П (1988).
- T. L. Su, J. T. Huang, T. C. Chon, G. M. Otter, F. M. Sirotnak, K. A. Watanabe, J. Med. Chem., 31, 1209 (1988).
- 8. E. C. Taylor, G. S. K. Wong, S. R. Flether, P. J. Harrington, G. P. Beardsley, C. J. Shih, Intern. Symp. on Pteridines and Folic Acid Derivatives: Chem. Biol. and Clin. Aspects, Montreal, June 15-20, 1986; *PЖXим.*, 3 E 146 (1988).

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 348011, Украина

Поступило в редакцию 12.04.99 После переработки 07.01.2000

^аИнститут органической химии им. Н. Д. Зелинского Российской академии наук, Москва 117913