В. И. Теренин*, М. В. Галкин, Е. В. Кабанова, А. С. Иванов

1-(ТРИФТОРМЕТИЛ)-3,4-ДИГИДРОПИРРОЛО[1,2-*а*]ПИРАЗИНЫ: СИНТЕЗ И ПРЕВРАЩЕНИЯ ПОД ДЕЙСТВИЕМ О- И N-НУКЛЕОФИЛОВ

Разработан метод синтеза и изучены превращения 1-(трифторметил)-3,4-дигидропирроло[1,2-*a*]пиразинов под действием О- и N-нуклеофилов. Показано, что при действии нуклеофилов на 1-(трифторметил)пирроло[1,2-*a*]пиразины трифторметильная группа трансформируется в амидную и амидиновую группы, а также происходит ароматизация пирроло[1,2-*a*]пиразиновой системы в результате формального элиминирования молекулы фтороводорода.

Ключевые слова: 1-(трифторметил)пирроло[1,2-*а*]пиразин, нуклеофильные реакции с участием трифторметильной группы.

Производные пирроло[1,2-*a*]пиразинов являются перспективными ингредиентами в создании медицинских препаратов, пищевых добавок, оптоматериалов [1–5]. Один из наиболее простых и удобных методов синтеза пирроло[1,2-*a*]пиразинов основан на конденсации 2-ацилфуранов с этилендиамином [6]. Однако данный метод синтеза применяется только для получения 1,6-алкил- и арилзамещённых пирроло[1,2-*a*]пиразинов, труднодоступные же пирроло[1,2-*a*]пиразины с функциональной группой в положении 1 ранее подобным способом не получали.

В результате конденсации этилендиамина с 2-(трифторацетил)фуранами **1а,b** (синтезированными по методике [7]) нам удалось получить, соответственно, 1-трифторметил-3,4-дигидропирроло[1,2-*a*]пиразин (**2a**) и 6-метил-1-трифторметил-3,4-дигидропирроло[1,2-*a*]пиразин (**2b**). Следует отметить, что образование связи C=N при взаимодействии с аминами не характерно для карбонильных соединений с трифторметильной группой в α-положении; в таких случаях, как правило, реакция останавливается на стадии присоединения амина. Так, например, при реакции аминов с (трифторметил)кетонами для отщепления молекулы воды и образования иминогруппы требуется использовать водоотнимающие средства, такие как POCl₃ или SOCl₂ [8].

Ранее нами было показано, что при действии метиламина на соли 6трифторацетилпирроло[1,2-*a*]пиразиния протекает перегруппировка с участием трифторацетильной группы, приводящая к производным пирроло[1,2-*a*]пиразин-1-она [9]. Можно было ожидать, что под действием нуклеофилов соединения **2a**,**b** будут претерпевать похожие превращения с элиминированием трифторметильной группы и образова- нием пирролопиразинонов.

Однако при действии 10% раствора гидроксида натрия в 80% этаноле на 1-трифторметил-3,4-дигидропирроло[1,2-*a*]пиразины **2а,b** мы неожиданно получили 1-(дифторметил)пирроло[1,2-*a*]пиразины **3а,b** в качестве единственных продуктов реакции.

Варьирование условий не привело к изменению результатов реакции. Оптимальными оказались условия, когда смесь соединений **3а,b** в растворе спиртовой щёлочи выдерживали 2 нед при комнатной температуре. Попытка увеличить скорость протекания реакции нагреванием привела к резкому снижению выхода и усложнению состава реакционной смеси.

Можно предложить следующий механизм протекания данной реакции. Сначала под действием основания идет 1,4-элиминирование молекулы HF, далее происходит миграция протона из положения 4 пиразинового кольца интермедиата **A** к атому углерода дифторметиленовой группы, в результате чего образуется 1-(дифторметил)пирроло[1,2-*a*]пиразин (**3a**).

Замена О-нуклеофила на более мягкий N-нуклеофил привела к усложнению состава реакционной смеси: так, при взаимодействии соединений **2а,b** с 33% раствором метиламина в этаноле помимо соединений **3а,b** были выделены 3,4-дигидро- и ароматические N-метилпирроло[1,2-*a*]пиразин-1-карбоксамиды **4а,b** и **5а,b**, а также в следовых количествах продукты циклотрансформации **6а,b**.

Для того, чтобы выяснить, являются ли ароматические соединения 4 и 6 результатом трансформации первоначально образующегося соединения 3, 1-(дифторметил)пирроло[1,2-*a*]пиразин (**3a**) выдерживали 5 ч в растворе метиламина в спирте при 150 °С. Превращения соединения **3a** в амид **4a** и индолизин **6a** зафиксировано не было, и из реакционной смеси было выделено только исходное соединение. На основании данного опыта можно утверждать, что соединение **3** не служит интермедиатом для образования соединений **4** и **6**, т. е. соединения **4** и **6** образуются непосредственно из трифторметильных производных **2**.

Далее нами было изучено взаимодействие соединения 2a с этилендиамином. При двадцатикратном избытке этилендиамина реакционная смесь имела очень сложный состав, и выделить какие-либо продукты реакции не удалось. В результате уменьшения соотношения исходных веществ до 1:1 и добавления растворителя (пропилового спирта) из реакционной смеси удалось выделить соединение 3a, а также 1-(4,5дигидро-1H-имидазол-2-ил)пирроло[1,2-*а*]пиразин (7a) с выходами 6 и 17% соответственно.

2a,b
$$(CH_2NH_2)_2$$
 3a,b +
a (6%), b (51%)
2,7 a R = H, b = Me

В аналогичных условиях в случае соединения **2b** процесс образования 1-(дифторметил)-6-метилпирроло[1,2-*a*]пиразина (**3b**) становится доминирующим.

Изменение соотношений этилендиамина и исходных соединений **2a,b** с 1:1 на 6:1 приводит к образованию ещё одного продукта реакции. Из реакционной смеси методом колоночной хроматографии помимо ароматических соединений **3a,b** и **7a,b** были выделены также и 1-(4,5дигидро-1H-имидазол-2-ил)-3,4-дигидропирроло[1,2-*a*]пиразины **8a,b**.

Представлялось интересным уменьшить выход соединений **3а,b** относительно соединений **7** и **8**. При проведении синтеза без растворителя в запаянной ампуле (140 °C) и соотношении исходных соединений **2а,b** к этилендиамину 1:1.5 удалось добиться желаемого результата. Выход соединений **3а**, **7а** и **8а** составил 10, 24 и 19%, для метилзамещённых соединений – 30, 21 и 24% соответственно.

Таблица 1

Сое- дине-	Брутто-	<u>Н</u> Вы	айдено, числено	<u>%</u> , %	Т. пл., °С	M^+	Выход,
ние	формула	С	Н	Ν		(I _{отн} ,%)	%0
2a	$C_8H_7F_3N_2$	<u>51.04</u> 51.07	<u>3.63</u> 3.75	<u>14.84</u> 14.89	_*	188 (100)	27
2b	$C_9H_9F_3N_2$	<u>53.54</u> 53.47	<u>4.31</u> 4.49	<u>13.86</u> 13.86	49–51**	202 (65)	68
3 a	$C_8H_6F_2N_2$	<u>57.01</u> 57.14	<u>3.51</u> 3.60	<u>16.50</u> 16.66	_	168 (100)	90
3b	$C_9H_8F_2N_2$	<u>59.38</u> 59.34	<u>4.30</u> 4.43	<u>15.23</u> 15.38	48–50	182 (59)	100
4 a	C ₉ H ₉ N ₃ O	<u>61.92</u> 61.70	<u>5.29</u> 5.18	<u>23.80</u> 23.99	94–96	175 (37)	27
4b	$C_{10}H_{11}N_{3}O$	<u>63.48</u> 63.48	<u>5.64</u> 5.86	<u>21.99</u> 22.21	110-112	189 (42)	16
5a	C ₉ H ₁₁ N ₃ O	<u>61.15</u> 61.00	<u>6.15</u> 6.26	<u>23.75</u> 23.71	_	177 (100)	47
5b	$C_{10}H_{13}N_3O$	<u>62.99</u> 62.81	<u>6.89</u> 6.85	<u>21.82</u> 21.97	61	191 (15)	33
7a	$C_{10}H_{10}N_4$	<u>64.80</u> 64.50	<u>5.35</u> 5.41	<u>30.08</u> 30.09	110	186 (100)	24
7b	$C_{11}H_{12}N_4$	<u>66.00</u> 65.98	<u>6.18</u> 6.04	<u>27.80</u> 27.98	114–116	200 (93)	21
8a	$C_{10}H_{12}N_4$	<u>63.53</u> 63.81	<u>6.05</u> 6.43	<u>29.61</u> 29.77	_	188 (90)	19
8b	$C_{11}H_{14}N_4$	<u>65.29</u> 65.32	<u>7.12</u> 6.98	<u>27.61</u> 27.70	108–109	202 (90)	24

Характеристики синтезированных соединений

* Т. кип. 100 °С (9 мм рт. ст.).

** Т. кип. 116–120 °С (7 мм рт. ст.).

Таблица 2

Спектры ЯМР ¹³С синтезированных соединений

Соети-				Хи	мические	сдвиги, б. м	г. д. (J, Гц)			
нения	C(1)	C(3)	C(4)	C(6)	C(7)	C(8)	C(1a)	6-CH ₃	Заместите	ИС
2a	150.23	47.71	41.60	125.16	111.96	109.77	143.00		119.82	
	$(K, J_{1,F} = 35.1)$						$({\rm A}, J_{8{\rm a},{\rm F}}=89.3)$		$(K, J_{C,F} = 276.)$	5, CF ₃)
2b	150.35	47.56	38.66	119.44	112.49	109.17	134.11	11.38	119.92	
	$(K, J_{1,F} = 35.1)$								$(K, J_{C,F} = 276.)$	5, CF ₃)
3a	147.03	125.73	115.96	119.67	115.66	103.94	123.94		115.30	
	$(T, J_{1,F} = 27.0)$								$(T, J_{C,F} = 241.5$, CHF ₂)
3b	146.65	125.74	115.73	123.73	116.15	103.7	123.73	11.19	115.38	
	$(T, J_{1,F} = 27.0)$								$(T, J_{C,F} = 241.5$, CHF ₂)
4a	144.09	124.93	115.13	120.2	116.73	107.05	125.97		164.61 (C=O)	25.93
										(NHCH ₃)
4b	156.78	124.95	116.53	122	116.74	106.81	126.23	11.37	174.21 (C=O)	25.93
										(NHCH ₃)
5a	153.15	47.43	41.93	122.42	114.8	109.59	124.19		163.85 (C=O)	25.78
										(NHCH ₃)
5b	153	47.25	38.73	122.1	115.26	109.06	132.95	11.52	164.08 (C=O)	25.77
										(NHCH ₃)
7а	142.96	115.14	119.41	125.57	106.68	116.13	125.8		50.58 (уш. с,	163.51
									$\overline{CH_2CH_2}$	(NCNH)
7b	142.36	116.04	125.54	123.01	115.87	106.36	130.79	11.3	50.40 (уш. с,	163.67
									$\overline{CH_2CH_2}$	(NCNH)
8a	151.24	47.65	41.61	122.64	113.86	108.87	123.65		50.23 (уш. с,	162.83
									$\overline{CH_2CH_2}$	(NCNH)
8b	151.24	38.69	47.65	122.44	114.7	108.74	132.67	11.42	50.22 (уш. с,	162.89
									$\overline{CH_2CH_2}$	(NCNH)

1573

Таблица 3

соединений
интезированных
спектры* (
и ИК
H
AMP
Спектры

Соеди-				Химические сдвиги, δ, м. д	$(J, \Gamma \mathrm{II})$		
нение	H-3	H-4	H-6	H-7	Н-8	Заместите	И
2a	3.98-	4.07 (m)	6.67 (+ 1 - 1 9)	$6.28 \\ \frac{6.28}{1-2} \frac{1}{7} \frac{1}{1-2} \frac{2}{6}$	6.86 (,,,,,,,,,,)		
2b	3.84	4.0	$(\mu, J_{6,8} - 1.0)$ 2.28	(Д. Д. J. J., 8 – Э. I, J., 6 – 2.0) 6.02	(уш. с) 6.62		
	(r, $J_{3,4} = 6.7$)	$(T, J_{4,3} = 6.7)$	(уш. с, СН ₃)	$({}_{ m I}, \; J_{7,8}=4.1)$	$({}_{ m I\!\! I}, J_{8,7}=4.1)$		
За	7.52	7.89	7.55	7.00	7.10	6.70	
	$(Д, J_{3,4} = 4.8)$	$({\tt I}, \ J_{4,3}=4.8)$	$({\tt I}, \ J_{6,7} = 1.4)$	$({f I},{f I},J_{7,8}=4.0,\ J_{7,6}=2.6)$	$(\mathrm{д}, J_{8,7}=1.4)$	$(\mathrm{T}, J_{\mathrm{H,F}} = 54.4, \mathrm{C}\underline{\mathrm{HF}}_2)$	
3b	7.56	7.64	2.52	6.78	7.05	6.68	
	$({\tt I}, \ J_{3,4}=4.8)$	$(Д, J_{4,3} = 4.8)$	(c, CH ₃)	$({ m I}, \ J_{7,8}=4.1)$	$({\tt I}, \ J_{8,7}=4.1)$	$(T, J_{H,F} = 54.5, CHF_2)$	
4a	7.47	7.94	7.53	7.03	7.76	3.06	7.98
	$(Д, J_{3,4} = 4.7)$	$({}_{\hbox{\rm II}}, {}_{\hbox{\rm J}_4,3}=4.7, \ {}_{\hbox{\rm J}_{4,8}=1.0)}$	$({\tt I\!I}, {\tt I}_{6,7} = 2.5, \ J_{6,8} = 1.3)$	$({}_{ m A}, {}_{ m J_{7,8}}=4.1, \ {}_{ m J_{7,6}}=2.5)$	$({\tt A}, \ J_{8,7}=4.1)$	(μ , $J_{\rm H,NH} = 5.1$, NHC <u>H</u> ₃)	(уш. с, NH)
4b	7.51	7.70	2.53	6.83	7.73	3.05	8.01
	$({\tt I}, \ J_{3,4}=4.7)$	$(Д, J_{4,3} = 4.7)$	(c, CH ₃)	$({\tt I}, \ J_{7,8}=4.0)$	$({ m A},\ J_{8,7}=4.0)$	$(\mu, J_{\rm H,NH} = 4.8, \rm NHC\underline{H}_3)$	(уш. с, NH)

5a 3.95 6.79 6.79 6.26 7.26 7.26 7.45 2.95 7.47 5b (yu. c) (yu. c) (x, J_{s,s} = 1.3) (x, J_{s,s} = 3.9) (x, J_{s,s} = 3.9) (x, J_{s,m} = 5.0, NHCH) (yu. c. 5b (yu. c) (yu. d) (yu. d) (yu. d) (yu. d) (yu. c) (
5b 3.80 (r, $J_{3,4} = 6.4$) 3.92 (r, $J_{3,4} = 6.4$) 2.26 (r, $J_{3,4} = 6.4$) 6.01 (r, $J_{3,4} = 8.1$) 7.41 (r, $J_{3,4} = 8.1$) 7.43 (r, $J_{4,3} = 8.1$) 7.45 (r, $J_{4,3} = 8.1$) 7.61 (r, $J_{4,3} = 8.1$) 7.60 (r, $J_{4,3} = 8.1$	5a	0	3.95 /ш. с)	6.79 ($\mu, J_{6,8} = 1.3$)	6.26 $(\mu, \mu, J_{7,8} = 3.9, J_{7,6} = 2.5)$	7.26 $(\mu, \mu, J_{8,7} = 3.9, J_{8,6} = 1.3)$	2.95 (π , $J_{\rm H,NH} = 5.0$, NHC <u>H</u> ₃)	7.47 (уш. с, NH)
10a 7.46 7.84 7.45 6.93 7.61 3.89 5.5 10b $(x, J_{3,4} = 4.7)$ $(x, T, J_{4,3} = 4.7)$ $T, J_{4,3} = 4.7$ $T, J_{4,8} = 0.98$ 7.6 7.6 9.3 7.61 9.0 5.5 10b 7.53 7.63 2.50 $(x, J_{7,8} = 2.5)$ $(x, J_{3,7} = 4.0)$ $(y.m. c, CH_2CH_2)$ <th>5b</th> <th>3.80 (T, $J_{3,4} = 6.4$)</th> <th>3.92 (T, $J_{4,3} = 6.4$)</th> <th>2.26 (c, CH₃)</th> <th>6.01 ($m L, \ J_{7,8} = 3.7$)</th> <th>7.21 (д. $J_{8,7} = 3.7$)</th> <th>2.92 ($_{\rm H, NH} = 5.1$, NHC<u>H</u>₃)</th> <th>7.48 (уш. с, NH)</th>	5b	3.80 (T, $J_{3,4} = 6.4$)	3.92 (T, $J_{4,3} = 6.4$)	2.26 (c, CH ₃)	6.01 ($ m L, \ J_{7,8} = 3.7$)	7.21 (д. $J_{8,7} = 3.7$)	2.92 ($_{\rm H, NH} = 5.1$, NHC <u>H</u> ₃)	7.48 (уш. с, NH)
10b7.53 (II, $J_{3,4} = 4.7$)7.63 (I, $J_{3,3} = 4.7$)2.50 (I, $J_{3,3} = 4.7$)7.60 (I, $J_{3,3} = 4.7$)3.87 (VIII. c, CH3)-11a3.65(II, $J_{4,3} = 4.7$)(II, $J_{4,3} = 4.7$)(II, $J_{4,3} = 4.7$)(III, $J_{4,3} = 4.7$)(VIII. c, CH3)5.965.6611b3.65(VIII. c)(JIII. J_{4,3} = 4.5)(II. $J_{4,3} = 4.5$)(II. $J_{4,3} = 3.7$, $J_{3,6} = 1.5$)5.665.6711b3.803.942.25(II. $J_{4,3} = 2.5$)5.97(III. $J_{3,6} = 3.7$, $J_{3,6} = 1.5$)7.0811b3.803.94(C.CH3)(II. $J_{4,3} = 5.5$)(II. $J_{4,3} = 6.5$)(III. $J_{4,3} = 6.5$)7.0811b3.803.94(C.CH3)(II. $J_{3,6} = 2.5$)(II. $J_{3,6} = 2.5$)(III. $J_{3,6} = 3.7$, $J_{3,6} = 1.5$)(III. $J_{3,6} = 3.5$)(III. $J_{3,6} = 3.7$)(III. $J_{3,6} = 1.5$)11b3.80(II. $J_{4,3} = 6.5$)(II. $J_{4,3} = 6.5$)(II. $J_{4,3} = 6.5$)(III. $J_{3,7} = 3.5$)(III. $J_{3,7} = 3.5$)(III. $J_{3,7} = 3.5$)* MIX cnewtry. v. cm ⁻¹ : 4a 1657 (ann zutubit C=O), 3334 (N-H); 5a 1587, 1664 (C=N, ann zutubit C=O), 3323 (N-H); 5b 157 (C-N, ann zutubit C=O), 3323 (N-H); 5a 1587, 1664 (C=N, ann zutubit C=O), 3323 (N-H); 5b 157 (C-N, ann zutubit C=O), 3324 (N-H); 5b 157 (C-N, ann zutubit C=O), 3324 (N-H); 5b 157 (C-N, ann zutubit C=O), 3323	10a	7.46 $(Д, J_{3,4} = 4.7)$	$7.84 \ ({ m Jr.}~{ m T},J_{4,3}=4.7, J_{4,8}=0.98)$	7.45 $({\tt II}.{\tt II},J_{6,7}=2.5,J_{6,8}=1.1)$	6.93 (μ , μ , $J_{7,8} = 4.1$, $J_{7,6} = 2.5$)	7.61 (M)	3.89 (уш. с, С <u>Н</u> 2С <u>Н</u> 2)	5.55 (уш. с, NH
11a 3.65 (yu. c) 6.51 $J_{v.u.}$ $J_{o.s}^{6} = 2.5,$ $J_{o.s}^{6} = 1.5)$ 5.96 $J_{7,6}^{7} = 3.7,$ $J_{8,6}^{7} = 3.7,$ $J_{8,6}^{8} = 1.5)$ 6.91 $J_{8,6}^{8} = 1.5)$ 3.50 $J_{0.u.}^{7}$ 5.66 $J_{0.u.}^{7}$ $J_{0.s}^{6} = 1.5)$ 3.94 $J_{0.s}^{7} = 2.25$ $J_{0.s}^{7} = 2.5)$ $J_{7,6}^{7} = 2.5)$ $J_{7,6}^{7} = 2.5)$ $J_{0.u.}^{7} J_{8,7}^{7} = 3.7,$ $J_{0.u.}^{7} J_{8,7}^{7} = 3.7,$ $J_{0.u.}^{7} J_{8,6}^{7} = 1.5)$ 3.77 $J_{0.u.}^{7} CH_2$ $(yu. c, CH_2CH_2)$ $J_{0.u.}^{7} CH_2$ 4.35 $J_{0.u.}^{7} CH_2$ $11b$ 3.80 3.94 $(r, J_{3,4} = 6.5)$ $(r, J_{4,3} = 6.5)$ $(r, J_{4,3} = 3.5)$ $(\mu, J_{8,7} = 3.5)$ $(yu. c, CH_2CH_2)$ $(yu. c, CH_2CH_2)$ $* MK$ cnercp, v, cm ⁻¹ : 4a 1657 (ann µный C=O), 3334 (N-H); 4b 1680 (ann µный C=O), 3379 (N-H); 5a 1587, 1664 (C=N, ann µный C=O), 3323 (N-H); 5b 15i (C=N, ann µный C=O), 3224, 3327 (N-H). $(N-H); 5a 1587, 1664 (C=N, ann µный C=O), 3323 (N-H); 5b 15i$	10b	7.53 ($\pi, J_{3,4} = 4.7$)	7.63 (д. $J_{4,3} = 4.7$)	2.50 (c, CH ₃)	$(\Pi, J_{7,8} = 4.0)$	7.60 ($\mu, J_{8,7} = 4.0$)	3.87 (уш. с, С <u>Н</u> 2С <u>Н</u> 2)	I
11b 3.80 3.94 2.25 5.97 7.08 3.77 4.32 (r. $J_{3,4} = 6.5)$ (r. $J_{4,3} = 6.5)$ (c. CH ₃) (r. $J_{7,8} = 3.5)$ (a. $J_{8,7} = 3.5)$ (a. $J_{8,7} = 3.5)$ (but. c. CH ₂ CH ₂) (yut. c. CH ₂ CH ₂) * HK cnekrp, v, cm ⁻¹ : 4a 1657 (aмидный C=0), 3334 (N-H); 4b 1680 (амидный C=0), 3379 (N-H); 5a 1587, 1664 (C=N, амидный C=0), 3323 (N-H); 5b 15 (C=N, амидный C=0), 3323 (N-H); 5b 15 (C=N, амидный C=0), 3323 (N-H); 5b 15 (D-H); 5b 15	11a	<u> </u>	1 3.65 /ш. с)	$6.51 \ ({ m IL}.~{ m IL}, J_{6,7}=2.5, \ J_{68}=1.5)$	5.96 (д. д. $J_{7,8} = 3.7$, $J_{7,6} = 2.5$)	6.91 (μ , μ , $J_{8,7} = 3.7$, $J_{8,6} = 1.5$)	3.50 (уш. с, С <u>Н</u> 2С <u>Н</u> 2)	5.66 (уш. с, NH
* ИК спектр, v, см ⁻¹ : 4а 1657 (амидный C=O), 3334 (N–H); 4b 1680 (амидный C=O), 3379 (N–H); 5 а 1587, 1664 (C=N, амидный C=O), 3323 (N–H); 5 b 15 ⁽ (C=N, амидный C=O), 3224, 3327 (N–H).	11b	3.80 (T, $J_{3,4} = 6.5$)	3.94 (T, $J_{4,3} = 6.5$)	2.25 (c, CH ₃)	5.97 ($\mu, J_{7,8} = 3.5$)	7.08 $(\pi, J_{8,7} = 3.5)$	<u>3.77</u> (уш. с, С <u>Н</u> ₂ С <u>Н</u> ₂)	4.32 (уш. с, NH
	* ИК с (C=N, ами		1657 (амидный C=O , 3327 (N-H).), 3334 (N–H); 4b 16	580 (амидный C=O), 3379 (N–	ч Н); 5а 1587, 1664 (С	- ≔N, амидный C=O), 3323 (№	I–H); Sb 1591,

668	
591, 1	
5b 15	
[H];	
23 (N	
), 33	
й C=(
идны	
N, am	
t (C=	
, 1664	
1587	
I); 5a	
N-I	
3379	
(0=0)	
(ный	
(амид	
1680	
l); 4b	
N-E	
3334	
() ()	
ный (Ċ.
цимв)	E E
1657 (3327
- ¹ : 4a	3224,
v, cm	
ектр,	ный (
1К сп	амид
1 *	C=N,

Таким образом, нами изучены превращения 1-(трифторметил)-3,4-дигидропирроло[1,2-*a*]пиразинов под действием О- и N-нуклеофилов и синтезированы ранее не известные 1-функциональнозамещённые пирроло[1,2-*a*]пиразины и дигидропирроло[1,2-*a*]пиразины.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на спектрометре UR-20 и IR-200. Спектры ЯМР ¹Н и 13 С зарегистрированы на спектрометре Avance-400 фирмы Bruker (400 и 100 МГц соответственно) в CDCl₃ при температуре 23 и 25 °С, внутренний стандарт ТМС. Масс-спектры записаны на приборе Kratos MS-90 при энергии ионизации 70 эВ. Контроль за ходом реакции и чистотой соединений осуществлялся методом TCX на пластинках Silufol-254 (254 нм), Alufol в системах бензол, бензол–этилацетат, 1:1, метанол–хлороформ, 1:10.

2-(Трифторацетил)фуран (1а) получают по методике [7]. Выход 52%, т. кип. 40–41 °С (10 мм рт. ст.) (т. кип. 142 °С (765 мм рт. ст.) [7]), $n^{20}{}_{\rm D}$ 1.4405. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 6.71 (1Н, д. д, $J_{4,3} = 3.8$, $J_{4,5} = 1.7$, H-4); 7.55 (1Н, м, H-3); 7.85 (1Н, д. д, $J_{5,4} = 1.7$, $J_{5,3} = 0.7$, H-5).

2-(Трифторацетил)-5-метилфуран (1b) получают по методике [7]. Выход 67%, т. кип. 55 °С (7 мм рт. ст.) (т. кип. 170 °С (756 мм рт. ст.) [7]), n^{20}_{D} 1.4560. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.48 (3H, с, CH₃); 6.33 (1H, д. к, $J_{4,3} = 2.0, J_{4,CH_3} = 0.8$, H-4); 7.45 (1H, д. $J_{3,4} = 2.0$, H-3).

1-(Трифторметил)-3,4-дигидропирроло[1,2-а]пиразин (2а). К раствору 29.4 г (180 ммоль) соединения **1а** в 50 мл бензола прибавляют по каплям в течение 1 ч раствор 42.5 мл (630 ммоль) этилендиамина в 150 мл бензола. Реакционную смесь перемешивают 1 ч, затем 1 ч кипятят, добавляют воду и экстрагируют бензолом. Бензольные вытяжки сушат CaCl₂, растворитель упаривают в вакууме. Остаток перегоняют в вакууме. Выход 9.25 г (27%).

6-Метил-1-(трифторметил)-3,4-дигидропирроло[1,2-*а***]пиразин (2b) получают аналогично соединению 2а из соединения 1b. Выход 68%.**

1-(Дифторметил)пирроло[1,2-а]пиразин (3а). К 0.475 г (2.5 ммоль) соединения **2а** прибавляют десятикратный избыток 10% раствора NaOH в 80% этаноле. Реакционную смесь выдерживают при комнатной температуре 2 нед. Растворитель упаривают в вакууме. К остатку добавляют воду и экстрагируют бензолом. Бензольные вытяжки сушат CaCl₂, растворитель упаривают. Соединение **3а** выделяют методом колоночной хроматографии на силикагеле 35/60, элюируя смесью бензол-этилацетат, 1:1. Выход 0.38 г (90%).

1-(Дифторметил)-6-метилпирроло[1,2-*а***]пиразин (3b)** получают аналогично соединению **3a** из соединения **2b**. Выход 100%.

Реакция 1-(трифторметил)-3,4-дигидропирроло[1,2-а]пиразина (2а) с метил- амином. Смесь 5 мл 33% раствора метиламина в абсолютном этаноле и 0.377 г (2 ммоль) пирролопиразина 2а нагревают 12 ч при 140 °С в запаянной стеклянной ампуле. Растворитель и остатки реагента упаривают в вакууме, продукты реакции выделяют методом колоночной хроматографии на силикагеле 35/60, элюируют бензолом с последующим увеличением полярности элюента до смеси бензол–этилацетат, 1:1, далее увеличивают полярность до смеси этилацетат–спирт, 1:1. Выход продуктов реакции: 0.085 г (25%) соединения 3а, 0.166 г (47%) N-метил-3,4-дигидропирроло[1,2-а]пиразин-1-карбоксамида (5а), 0.095 г (27%) N-метил- пирроло[1,2-а]пиразин-1-карбоксамида (4а), 0.004 г (1%) соединения 6а.

8-(Метиламино)индолизин (6а). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.98 (3H, с, CH₃); 3.96 (1H, уш. с, NH); 5.75 (1H, д, *J*_{7,6} = 7.1, H-7); 6.30 (1H, д, *J*_{1,2} = 2.7, H-1); 6.45 (1H, т, *J*_{6,5-7} = 7.1, H-6); 6.69 (1H, д, *J*_{2,1} = 2.7, H-2); 7.25 (1H, с, H-3); 7,50 (1H, д, *J*_{5,6} = 7.1, H-5) [9].

Реакция 6-метил-1-(трифторметил)-3,4-дигидропирроло[1,2-а]пиразина (2b) с метиламином. Условия проведения реакции аналогичны условиям реакции соединения 2a с метиламином. Из 0.5 г (2.5 ммоль) получают: 0.188 г (42%) соединения 3b, 0.156 г (33%) N,6-диметил-3,4-дигидропирроло[1,2-а]пиразин-1-карбоксамида (5b), 0.073 г (16%) N,6-диметилпирроло[1,2-а]пиразин-1-карбоксамида (4b) и 0.02 г (6%) соединения 6b.

3-Метил-8-(метиламино)индолизин (6b). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.44 (3H, с, CH₃); 2.96 (3H, с, NHC<u>H₃</u>); 3.95 (1H, уш. с, NH); 5.75 (1H, д, *J*_{7,6} = 7.0, H-7); 6.25 (1H, д, *J*_{1,2} = 3.7, H-1); 6.43 (1H, д, *J*_{1,2} = 3.7, H-2); 6.51 (1H, т, *J*_{6,5-7} = 7.1, H-6); 7.24 (1H, с, H-5) [10].

Реакция 1-(трифторметил)-3,4-дигидропирроло[1,2-а]пиразина (2а) с этилендиамином. А. Смесь 0.79 г (4.2 ммоль) соединения 2а и 0.31 мл (42 ммоль) этилендиамина нагревают 4 ч. Растворитель и остатки реагента упаривают в вакууме. К остатку добавляют воду, экстрагируют бензолом. Бензольные вытяжки сушат CaCl₂, растворитель упаривают. Продукты реакции выделяют методом колоночной хроматографии на силикагеле 35/60, элюируют смесью бензол-этилацетат, 1:1, увеличивают полярность до смеси этилацетат-спирт, 1:1, и далее элюируют спиртом. Выход продуктов реакции: 0.0096 г (6%) соединения 3а, 0.14 г (17%) 1-(4,5-дигидро-1Н-имидазол-2-ил)пирроло[1,2-а]пиразина (7а).

Б. Смесь 1 г (5.3 ммоль) пироллопиразина **2a** и 2 мл (30 ммоль) этилендиамина в 2 мл пропилового спирта нагревают 4 ч. Растворитель и остатки реагента упаривают в вакууме. Продукты реакции выделяют методом колоночной хроматографии на силикагеле 35/60, элюируют смесью бензол–этилацетат, 1:1, увеличивают полярность до смеси этилацетат–спирт, 1:1, и далее элюируют спиртом. Выход продуктов реакции: 0.171 г (19%) соединения **3a**, 0.355 г (36%) **1-(4,5дигидро-1Н-имидазол-2-ил)-3,4-дигидропирроло[1,2-***а***]пиразина (8а) в виде маслянистой жидкости, 0.174 г (18%) соединения 7a**.

Реакция 6-метил-1-(трифторметил)-3,4-дигидропиролло[1,2-а]пиразина (2b) с этилендиамином. А. Условия проведения реакции аналогичны условиям реакции соединения 2a с этилендиамином. Из 0.4 г (1.74 ммоль) соединения 2b и 0.12 мл (1.74 ммоль) этилендиамина получают: 0.161 г (51%) соединения 3b и 0.01 г (3%) 1-(4,5-дигидро-1Н-имидазол-2-ил)-6-метилпирроло[1,2-а]пиразина (7b).

Б. Смесь 0.86 г (3.74 ммоль) соединения **2b** и 1.5 мл (22 ммоль) этилендиамина в 2 мл пропилового спирта нагревают 4 ч. Растворитель и остатки реагента упаривают в вакууме. Продукты реакции выделяют методом колоночной хроматографии на силикагеле 35/60, элюируют смесью бензол–этилацетат, 1:1, увеличивают полярность до смеси этилацетат–спирт, 1:1, и далее элюируют спиртом. Выход продуктов реакции 0.449 г (66%) соединения **3b**, 0.134 г (18%) **1-(4,5-дигидро-1Н-имидазол-2-ил)-6-метил-3,4-дигидропирроло[1,2-***а***]пиразина (8b), 0.031 г (4%) соединения 7b**.

СПИСОК ЛИТЕРАТУРЫ

1. I. Flament, P. Sonnay, G. Ohloff, Helv. Chim. Acta, 60, 1872 (1977).

2. J. R. Kim, Y. Won, Bull. Korean Chem. Soc., 25, 1874 (2004).

- F. Micheli, B. Bertani, A. Bozzoli, L. Crippa, P. Cavanni, R. Di Fabio, D. Donati, P. Marzorati, G. Merlo, A. Paio, L. Perugini, P. Zarantonello, *Bioorg. Med. Chem. Lett.*, 18, 1804 (2008).
- 4. Shionogi and Co Limited Company, US Pat. 6756376 B1 (2004); http://v3.espacenet.com.
- E. Wong Ho Fong, L. A. Cortes-Burgos, B. N. Rogers, Pharmacia and UpJohn company Limited Liability Company, WO Pat. 039815 (2004); http://www.wipo.int.
- 6. А. М. Лихошерстов, В. П. Пересада, В. Г. Винокуров, А. П. Сколдинов, *ЖОрХ*, **22**, 2610 (1986).
- 7. В. Г. Глуховцев, Ю. В. Ильин, А. В. Игнатенко, Л. Ю. Брежнев, Изв. АН СССР. Сер. хим., 2834 (1987).
- 8. *Синтез фторорганических соединений*, под ред. И. Л. Кнунянца, Г. Г. Якобсона, Химия, Москва, 1973, с. 312.
- 9. В. И. Теренин, А. С. Иванов, *XTC*, 1714 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1460 (2007)].
- 10. В. И. Теренин, А. С. Иванов, *XГС*, 1267 (2006). [*Chem. Heterocycl. Comp.*, **42**, 1101 (2006)].

Московский государственный университет им. М. В. Ломоносова, Москва 119992, Россия e-mail: vter@org.chem.msu.ru Поступило 21.01.2010