Т. И. Годовикова, С. П. Голова, С. А. Возчикова, Е. Л. Игнатьева, М. В. Поворин, Т. С. Пивина, Л. И. Хмельницкий

РЕЦИКЛИЗАЦИЯ ЗАМЕЩЕННЫХ ФУРОКСАНОВ В ПРОИЗВОДНЫЕ 1,2,3-ТРИАЗОЛ-1-ОКСИДА

Установлено влияние на рециклизацию замещенных фуроксанов положения и природы заместителей.

Ранее мы сообщали о превращении 4-амино (алкиламино) - 3-нитрофуроксанов в соответствующие 5-нитро-1,2,3-триазол-1-оксиды при действии первичных алифатических аминов [1, 2].

Для объяснения полученных результатов нами была предложена схема образования 1-оксидотриазольного цикла, в которой первым актом взаимодействия фуроксана с алкиламином является атака этим нуклеофилом атома азота N-оксидного фрагмента:

Известно [3], что самой слабой внутрициклической связью фуроксанового кольца является связь N(O)—O. Мы предполагаем, что под действием первичного амина именно по этой связи раскрывается фуроксановый цикл, затем отщепляется молекула воды и происходит циклизация с образованием производного 1,2,3-триазол-1-оксида.

В настоящей работе обобщены и проанализированы полученные нами ранее [1, 2] для ряда замещенных фуроксанов (Ia—o) результаты по изучению влияния на их рециклизацию положения и природы заместителей, а также приведены новые экспериментальные данные об этом превращении с участием первичных аминов разного строения.

Сведения о способности фуроксанов Ia—о к рециклизации под действием первичных аминов представлены в табл. 1. Как видно из таблицы., для превращения фуроксанов I в 1,2,3-триазол-1-оксиды необходимым условием является наличие в исходном соединении в положении 3 электроотрицательного заместителя, а в положении 4 — только амино- или алкиламиногруппы (соединения Ia—ж).

Отрицательные результаты опытов с фуроксанами Іл и Ім указывают на важность для рециклизации присутствия атома водорода, связанного с азотом аминогруппы.

Было высказано также предположение, что скорость и направление рассматриваемой реакции существенно зависят от величины заряда на атоме азота в положении 2. Для его подтверждения были выполнены квантово-химические расчеты методом ППДП/2 (Полное Пренебрежение Дифференциальным Перекрыванием) строения некоторых из изученных фуроксанов, а также индексов реакционной способности — зарядов на

Таблица 1

	Рецикл	изуется	Не рециклизуется			
фуроксан		заместители	фуроксан 3-	заместители		
171	3-	4_		4-		
Ia	NO ₂	NH2	I3	NH2	NO2	
Іб	NO ₂	CH3NH	Іи	CH ₃	NH2	
Ів	NO_2	C ₂ H ₅ NH	Īκ	NH ₂	C ₆ H ₅	
Ir	NO ₂	C ₃ H ₇ NH	Іл	NO ₂	(CH3)2N	
Ід	NO ₂	NCCH2CH2NH	Ім	NO ₂	C5H10N	
Ie	NO ₂	H—OCH2CH2NH	Ін	NO ₂	N3	
Іж	C_6H_5	NH2	Io	NO ₂	CH ₃ O	

Поведение дизамещенных фуроксанов Іа-о в условиях реакции рециклизации

атомах и резонансных энергий связей, коррелирующих с ковалентной составляющей прочности связи.

Начальными приближениями при расчетах явились усредненные геометрические параметры [3, с. 21]. В качестве примера на рисунке представлены молекулярные диаграммы, иллюстрирующие результаты расчетов 4-амино-3-нитро- и 3-амино-4-нитрофуроксанов (Іа и Із), а также 4-амино-3-фенил- и 3-амино-4-фенилфуроксанов (Іж и Ік). Как следует из

Молекулярные диаграммы соединений фуроксанового ряда (над связями указаны величины резонансных энергий в а.е.; при атомах приведены величины зарядов в единицах заряда электрона (-е); μ — дипольный момент)

R ¹	Брутто- формула	<u>Найпено. %</u> Вычислено, %			<i>Т</i> пл, °С	Спектр ПМР	Выход,
		С	н	N		в сысіз, 0, м. д.	70
C_2H_5	C4H7N5O3	$\frac{27.63}{27,75}$	<u>4.12</u> 4,08	<u>40,29</u> 40,45	134136	5,27 (2H, ш. с, NH2), 4,35 (2H, к, CH2), 1,46 (3H, т, CH3)	40
C ₆ H ₁₃	C8H ₁₅ N ₅ O ₃	<u>41,99</u> 41,91	<u>6.53</u> 6,60	<u>30,67</u> 30,55	5960	5,25 (2H, c, NH ₂), 4,27(2H, т, NCH ₂)1,601,32 (8H, м, 4CH ₂); 0,90 (3H, т, CH ₃)	53
C ₇ H ₁₅	C9H ₁₇ N ₅ O ₃	<u>44,57</u> 44,43	<u>7.13</u> 7,04	$\frac{28.87}{28,79}$	6162	5,23 (2H, с, NH ₂), 4,27 (2H, т, NCH ₂), 1,581,32 (10H, м, 5CH ₂), 0,88 (3H, т, CH ₃)	60
C ₈ H ₁₇	C10H ₁₉ N ₅ O ₃	<u>46,79</u> 46,68	<u>7.53</u> 7,44	$\frac{27,31}{27,22}$	5860	5,23 (2H, с, NH ₂), 4,26 (2H, т, NCH ₂), 1,321,27 (12H, м, 6CH ₂), 0,88 (3H, т, CH ₃)	48
$C_{12}H_{25}$	C14H ₂₇ N ₅ O ₃	<u>53,78</u> 53,65	<u>8.61</u> 8,68	$\frac{22,48}{22,35}$	8283	5,25 (2H, с, NH ₂), 4,27 (2H, т, NCH ₂), 1,331,25 (2OH, м, 10CH ₂), 0,88 (3H, т, CH ₃)	58
<i>i</i> -C ₃ H ₇	C5H9N5O3	$\frac{32,19}{32,08}$	<u>4,93</u> 4,85	$\frac{37.52}{37,42}$	151152	5,23 (2H, c, NH ₂), 5,20 (1H, м, CH), 1,47 (6H, д, 2CH ₃)	41
<i>i</i> -C ₄ H ₉	$C_6H_{11}N_5O_3$	<u>35,95</u> 35,82	<u>5,59</u> 5,51	<u>34.97</u> 34,81	7273	5,23 (2H, с, NH ₂), 5,06 (1H, м, CH), 1,87 (2H, м, CH ₂), 1,43 (3H, д, <u>CH</u> ₃ CH), 0,90 (3H, т, <u>CH</u> ₃ CH ₂)	35
CH ₂ CH ₂ OH	$C_4H_7N_5O_4$	$\frac{25.59}{25,40}$	<u>3.80</u> 3,73	$\frac{37.13}{37,03}$	145149	5,23 (2H, ш. с, NH ₂), 3,82 (2H, т, CH ₂ N), 3,40 (2H, м, CH ₂ OH)	45
CH ₂ CHOHCH ₃	$C5H_9N_5O_4$	<u>29,65</u> 29,56	<u>4.53</u> 4,47	$\frac{34.58}{34,48}$	132134	4,89 (3H, ш. с, NH ₂ OH), 4,33 (1H, м, CH), 4,23 (2H, д, CH ₂), 1,27 (3H, д, CH ₃)	51
CH ₂ CH ₂ CN	$C_5H_6N_6O_3$	<u>30,28</u> 30,31	$\frac{3.15}{3,05}$	$\frac{42.61}{42.42}$	183184	6,39 (2H, с, NH ₂), 3,14 (2H, т, CH ₂ N), 2,67 (2H, т, CH ₂ CN)	63
С ₆ H ₁₁ (цикло- гексил)	$C_8H_{13}N_5O_3$	<u>42,34</u> 42,29	<u>5.87</u> 5,77	<u>30.91</u> 30,82	123124	5,22 (2H, с, NH ₂), 4,85 (1H, м, CH), 2,041,42 (10H, м, 5CH ₂)	53
C ₆ H ₅ CH ₂	C9H9N5O3	<u>45,92</u> 45,96	<u>3.87</u> 3,86	<u>29,89</u> 29,78	174,5175	5,22 (2H, c, NH ₂), 5,42 (2H, c, CH ₂), 7,277,41 (5H, м, CP h)	44

Характеристики продуктов взаимодействия аминов R¹NH₂ с 4-амино-3-нитрофуроксаном Ia

.

.

полученных данных, резонансная энергия внутрициклической связи N(O)—O в соединении Із ниже (-0,931) по сравнению с энергией аналогичной связи в соединении Іа (-0,894). То же самое характерно и для аминофенилзамещенных фуроксанов: в соединении Ік связь прочнее (-0,937) по сравнению со связью N(O)—O в соединении Іж (-0,896). Эти данные совпадают с результатами опытов: для фуроксанов Іа и Іж характерна рециклизация, а в случае фуроксанов Із и Ік эта реакция не имеет места.

Аналогичная тенденция наблюдается для величин зарядов на оксидных атомах азота: в случае соединений Іа,ж они несколько выше, чем для соединений Із,к. Однако разницы между величинами резонансных энергий, а также зарядов очень невелика и нельзя утверждать, что эти параметры определяют способность рассмотренных соединений к рециклизации.

Мы также пытались объяснить превращение замещенных 4-аминофуроксанов в 1,2,3-триазол-1-оксиды наличием внутримолекулярной водородной связи в исходных соединениях, так как известно [4], что возникновение таких связей приводит к делокализации электронной плотности, уменьшению заселенностей связей и, как следствие, к ослаблению их прочности. Действительно, в соединениях Ia—е (табл. 1) может иметь место водородная связь между атомом водорода аминогруппы и атомом кислорода нитрогруппы, способствующая рециклизации. Однако в фуроксане Iж, претерпевающем такое же превращение, подобная связь отсутствует.

С другой стороны, соединение Із не рециклизуется, хотя в нем возможно наличие внутримолекулярных водородных связей атома водорода аминогруппы как с атомом кислорода нитрогруппы, так и с N-оксидным фрагментом.

Поэтому, анализируя изложенные выше результаты, мы пришли к заключению, что рециклизация аминофуроксанов I, содержащих в положении 3 электроотрицательный заместитель, в 1,2,3-триазол-1-оксиды (II) обусловлена, по-видимому, в первую очередь наличием атома водорода при экзоциклическом атоме азота в положении 4 фуроксанового кольца (структура IA). Мы предполагаем, что в процессе реакции под действием первичного амина этот атом водорода мигрирует к атому азота в положении 5 (структура IB), а затем образовавшийся продукт IБ превращается в соответствующий триазолоксид II:

I, II a-e X = NO₂, # X = C₆H₅; a R = H, R¹ = CH₃; \Im R = R¹ = CH₃; B R = R¹ = C₂H₅; r R = R¹ = C₃H₇; \exists R = CH₂CH₂CN, R¹ = CH₃; e R = CH₂CH₂OH, R¹ = CH₃; # R = H, R¹ = CH₃

В ряду других пяти-, а также шестичленных гетероциклов с одним, двумя и более атомами азота известны примеры миграции атома водорода от заместителя в цикл и наоборот [5, 6].

Для выяснения вопросов о сравнительной стабильности структур IA и IБ, величинах зарядов на атомах, длинах связей и их устойчивости к действию первичного амина были привлечены квантово-химические расчеты. Теоретическое исследование строения структур IA и IБ было выполнено полуэмпирическим квантово-химическим методом ППДП/2 на примере 4-метиламино-3-нитрофуроксана (Iб). Ниже представлены схематические 206

изображения структур IA и IБ соединения Iб с величинами зарядов на атомах и длинами связей.

Как видно из приведенных данных, в структуре IБ связь N(O)—O несколько длиннее, а заряд на атоме N(2) больше, чем в структуре IA. Место атаки нуклеофильного реагента определяется максимальным положительным зарядом. Отсюда следует, что структура Б должна легче превращаться в триазол-N-оксидную под действием первичных аминов.

Что касается предложенной нами ранее [1, 2] схемы рециклизации фуроксанового цикла в 1,2,3-триазол-1-оксидный, в котором мы предполагаем первым актом разрыв внутрициклической связи N(O)—O, как самой слабой, близкой к простой [3], то в литературе для неконденсированных соединений этого класса мы не нашли однозначного тому подтверждения. Примеры в пользу или против раскрытия рассматриваемой связи известны лишь для конденсированных фуроксанов. Так, при взаимодействии бензофуроксана с калиевыми или натриевыми солями форманилидов различного строения в первую очередь, по мнению авторов, раскрывается связь N(O)—O [7].

Однако возможен разрыв и другой связи N—O цикла, когда первоначальной атаке подвергается неокисленный атом азота фуроксанового кольца. Например, это имеет место при взаимодействии бензофуроксана с вторичными аминами [8, 9], сульфитами, арил- или алкилсульфинатами щелочных металлов [10].

Аналогично реагируют замещенные пиридофуроксаны с диметилсульфоксидом [11], щелочами, алкоголятами металлов и аминами [12]. Механизм взаимодействия указанных фуроксанов с нуклеофильными реагентами твердо пока не установлен — атаке может подвергаться один либо другой атом азота фуроксанового цикла [13].

Наши неоднократные попытки зафиксировать образование в процессе реакции соединения Б с помощью тонкослойной хроматографии были безуспешными. Можно предположить, что либо взаимодействие исходного фуроксана с первичным амином протекает очень быстро, либо промежуточный продукт нестабилен.

Подтвердить наличие нового промежуточного соединения в реакции рециклизации нам удалось с помощью спектральных методов (УФ, ПМР) при изучении взаимодействия 4-метиламино-3-нитрофуроксана Іб с метиламином. При этом предварительно на основании данных спектров ЯМР 13 С и $^{14/15}$ N было строго доказано, что исходный фуроксан находится в форме A и не содержит примеси формы Б. УФ спектры исходных фуроксана Іб и метиламина, а также продукта ІІб содержат каждый свою характерную полосу поглощения при 395, 305 и 222 нм соответственно. После смешения реагентов в УФ спектре реакционной массы появляется полоса при 298 нм, интенсивность которой постепенно уменьшается наряду с возрастанием интенсивности полосы при 222 нм конечного продукта.

Убедительное подтверждение образования промежуточного соединения в процессе реакции получено и с помощью спектров ПМР, снятых в смеси CD₂Cl₂ и CDCl₃ при температуре 10 °C. Так, через 5 мин после смешения реагентов в спектре реакционной смеси наряду с характерными для исходных соединений сигналами протонов метильных групп — дублетом при 3,07 (16) и триплетом при 2,41 м. д. (метиламин) появляется новый синглет при 3,04 м. д., который заметно уменьшается через 8 мин и полностью исчезает через 45 мин. При этом постепенно возрастает интенсивность сигналов двух метильных групп конечного продукта II6 — синглета при 3,88 и дублета при 2,78 м. д.

Таким образом, приведенные спектральные данные свидетельствуют в пользу образования промежуточного соединения типа Б, объясняя тем самым, почему с первичными аминами реагируют только амино- и моноалкиламинофуроксаны.

Нами было исследовано также влияние природы первичного амина на рециклизацию фуроксанов в 1,2,3-триазол-1-оксиды. На примере 4-амино-3-нитрофуроксана (Ia) было показано, что помимо аминов с алкильными заместителями как нормального (CH₃, C₂H₅, C₆H₁₃—C₈H₁₇, C₁₂H₂₅), так и изостроения (*i*-C₃H₇, *i*-C₄H₉) в эту реакцию можно вводить и такие амины, как аллиламин, этаноламин, изопропиламин, 3-аминопропионитрил, циклогексиламин, бензиламин. Во всех случаях идет образование соответствующих 5-нитро-1,2,3-триазол-1-оксидов (см. табл. 2).

ИК спектры этих продуктов содержат интенсивные полосы поглощения, характерные для N-оксидов триазольного цикла (1625...1620 см⁻¹), нитрогруппы (1534...1520 и 1390...1370 см⁻¹) и аминогруппы (3470...3460 см⁻¹). Для УФ спектров характерно поглощение в области 221, 222, 310 и 400 нм. Масс-спектры содержат пики молекулярных ионов, фрагментация которых подтверждает строение синтезированных соединений.

Полученные результаты позволяют сделать предположение о том, что 4-амино- или -алкиламинофуроксаны, содержащие в положении 3 фуроксанового цикла электроноакцепторный заместитель, будут претерпевать такое превращение при действии первичных аминов, основность которых выше, чем у аммиака.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР получены на приборе Bruker AM-300, внутренний стандарт ТМС. Спектры УФ сняты на приборе Specord UV в абсолютном этаноле. Температуры плавления определены на столике типа Boetius со скоростью нагрева 4 °С/мин в точке плавления.

Синтез 4-замещенных 3-нитрофуроксанов (Іа—е,з,л—о) описан ранее [14]. Фуроксаны Іж и Ік получены по методике работы [15], а фуроксан Іи — как описано в работе [16].

Превращение соединений Ia—в, Ід и Іе в соответствующие 1,2,3-триазол-1-оксиды опубликовано в работах [1, 2].

Взаимодействие фуроксана Ia с метил- и аллиламинами и характеристики полученных 1,2,3триазол-1-оксидов описаны в работах [1, 2].

Характеристики 2-замещенных 4-амино-5-нитро-1,2,3-триазол-1-оксидов, синтезированных по известной методике [2] при действии на фуроксан Іа соответствующих аминов R¹NH₂, приведены в табл. 2.

Синтез триазолоксидов IIг, ж взаимодействием фуроксанов Iг и Іж с пропиламином и метиламином соответственно проводили по известной методике [2].

5-Нитро-2-пропил-4-пропиламино-1,2,3-триазол-1-оксид (Пг). Выход 23%. *Т*_{ПЛ} 55...56 °С. ИК спектр: 3515, 2980, 2950, 2885, 1620, 1527, 1510, 1480, 1450, 1410, 1393, 1383, 1345, 1319, 1275, 1238, 1185, 1169, 1133, 1104, 1065, 1045, 905, 826, 770, 750, 716, 685 см⁻¹. УФ спектр, λ : 310, 400 нм. Масс-спектр, *m/z*: 229 [M] ⁺; 213 [M–O] ⁺; 183 [M–NO₂] ⁺; 113 [M–NO₂—C₃H₆N₂] ⁺; 97 [M–O₂—C₃H₆N₂—O] ⁺; 96 [M–NO₂—C₃H₆N₂—OH] ⁺; 95 [M–NO₂—C₃H₆N₂—H₂O] ⁺. Найдено, %: С 41,99; H 6,53; N 30,67. СвН₁5N₅O₃. Вычислено, %: С 41,91; H 6,60; N 30,55.

208

4-Амино-2-метил-5-фенил-1,2,3-триазол-1-оксид (Пж). Выход 25%. *Т*_{ПЛ} 148...150 °С. ИК спектр: 3345, 3220, 2935, 2865, 1655, 1615, 1590, 1545, 1495, 1460, 1435, 1365, 1335, 1315, 1285, 1170, 1145, 1080, 1065, 1035, 970, 930, 915, 855, 820, 765, 740, 715, 695 см⁻¹. УФ спектр, λ : 215 и 265 нм. Спектр ПМР [(CD₃)₂CO]: 8,02...7,96 (2H, ш. с, NH₂); 7,47...7,43 (5H, м, C₆H₅); 3,76 м. д. (3H, с, CH₃). Масс-спектр, *m/z*: 190 [M]⁺; 174 [M⁻O]⁺; 97 [M⁻O—Ph]⁺; 144 [M⁻O—NO]⁺.

Авторы выражают благодарность за снятие спектров ЯМР канд. хим. наук Ю. А. Стреленко и УФ спектров — д-ру хим, наук В. А. Шляпочникову.

СПИСОК ЛИТЕРАТУРЫ

- Godovikova T. I., Golova S. P., Vozchikova S. A., Ignat'eva E. Z., Povorin M. V., Kuz'min V. S., Khmel'nitskii L. I. // Mendeleev Commun. — 1995. — N 5. — P. 194.
- Годовикова Т. И., Голова С. П., Возчикова С. А., Игнатьева Е. Л., Поворин М. В., Хмельницкий Л. И. // ХГС. — 1996. — № 5. — С. 675.
- 3. Хмельницкий Л. И., Новиков С. С., Годовикова Т. И. // Химия фуроксанов. Строение и синтез. М.: Наука, 1996. С. 26.
- 4. Пиментел Дж., Мак-Клеллан О. Водородная связь. М.: Мир, 1964. 462 с.
- 5. Катрицкий А., Логовская Дж. Химия гетероциклических соединений. М.: ИЛ, 1963. 987 с.
- 6. Итоги науки и техники. Органическая химия. 1989. Т. 17. С. 158.
- 7. Niclas H. J., Göhrmann B. // Synth. Commun. 1989. Vol. 19. P. 2141.
- 8. Latham D. W. S., Meth-Cohn O., Suschitzky H. // Tetrah. Lett. 1972. N 52. P. 5365.
- Latham D. W. S., Meth-Cohn O., Suschitzki H. // J. Chem. Soc. Perkin Trans. I. 1976.— N 20. — P. 2216.
- 10. Pat. 1155119 BRD / Mohr R., Hertpl H. // C. A. 1964. Vol. 60. P. 452.
- 11. Stanovnik B., Tisler M. // Chimia. 1971. Bd 25. S. 272.
- Постовский И. Я., Котовская С. К., Мокрушина Г. А. Теоретические и прикладные аспекты химии ароматических соединений. Всесоюз. симп. по орг. синтезу (Москва, 1981). —М.: Наука, 1981. — С. 39.
- Хмельницкий Л. И., Новиков С. С., Годовикова Т. И. // Химия фуроксанов. Реакции и применение. — М.: Наука, 1996. — С. 207.
- Годовикова Т. И., Ракитин О. А., Голова С. П., Возчикова С. А., Поворин М. В., Хмельницкий Л. И. // ХГС. — 1994. — № 4. — С. 529.
- 15. Gagneux A. R., Meier R. // Helv. chim. acta. 1970. Vol. 53. P. 1883.
- Defilippi A., Sorba J., Calvino R., Garrone A., Gasco A., Orsetti M. // Arch. Pharm. 1988. Bd 321. — S. 77.

Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913, Россия e-mail: cheminst@mail.psu.ru Поступило в редакцию 18.02.98 После переработки 02.07.98

Институт химической физики РАН в Черноголовке, Черноголовка 142432 , Россия