



Новые реакции 3,5-диметил-1-цианоацетилпиразола (микрообзор)

Елена А. Чигорина^{1,2}, Виктор В. Доценко^{3,4}*

- ¹ Научно-исследовательский институт химических реактивов и особо чистых химических веществ Национального исследовательского центра "Курчатовский институт", Богородский вал, 3, Москва 107076, Россия
- ² Национальный исследовательский центр "Курчатовский институт", пл. Академика Курчатова, 3, Москва 123182, Россия
- ³ Кубанский государственный университет, ул. Ставропольская, 149, Краснодар 350040, Россия; e-mail: victor dotsenko @mail.ru
- ⁴ Северо-Кавказский федеральный университет, ул. Пушкина, 1A, Ставрополь 355009, Россия

Поступило 10.02.2020 Принято 7.03.2020

В микрообзоре обощены новые данные (2014—2019 гг.) по использованию 3,5-диметил-1-цианоацетилпиразола в органическом синтезе.

Введение =

Один из наиболее доступных азолидов, 3,5-диметил-1-цианоацетилпиразол (3-(3,5-диметил-1*H*-пиразол-1-ил)-3-оксопропанонитрил, цианоацетилпиразол, азолид 1), был введен в синтетическую практику Ридом и Мейером в 1957 г. и зарекомендовал себя в качестве эффективного цианоацетилирующего агента. Химические свойства азолида 1 по состоянию на 2014 г. освещены в нескольких обзорных работах. За прошедшие 5 лет появился ряд работ, открывающих новые направления использования азолида 1 в органическом синтезе. Микрообзор суммирует наиболее важные результаты в химии азолида 1 за период с середины 2014 г. по настоящее время.

Елена Анатольевна Чигорина родилась в 1983 г. во Владикавказе, Россия. Окончила химико-технологический факультет Северо-Осетинского государственного университета им. К. Л. Хетагурова. Научная работа связана с химией азолидов, синтезом азагетероциклов.

Виктор Викторович Доценко родился в 1976 г. в Ворошиловграде (Луганске). Окончил в 1998 г. Луганский государственный педагогический институт. Доктор химических наук (2015 г.). Область научных интересов: химия метиленактивных нитрилов и тиоамидов, химия S-, Se-, N-гетероциклов.

Синтез 3,5-диметил-1-цианоацетилпиразола

Традиционный метод получения 3,5-диметил-1-цианоацетилпиразола 1, предложенный в работе Рида и Мейера, предполагает обработку раствора цианоацетгидразида в разбавленной HCl спиртовым раствором ацетилацетона. Недавно была предложена усовершенствованная процедура, позволяющая получать азолид 1 с выходом 91% в водной среде в присутствии каталитических количеств HCl.

Новые реакции цианоацетилирования

Цианоацетилпиразол 1 является лучшим реагентом для получения цианоацетамидов из гетероциклических аминов с пониженной нуклеофильностью — особенно в тех случаях, когда циануксусный эфир недостаточно активен, а использование более сильных ацилирующих агентов сопровождается побочными процессами. Так, реакции 2-аминотиазолов, 6 5-аминопиразолов, 7 2-амино-1,3,4-тиадиазола 8 и аминотиофенов Гевальда 9,10 с азолидом 1 приводят к образованию соответствующих цианоацетамидов 2–5 с высокими выходами.

Новые реакции цианоацетилирования (окончание)

Цианоацетилирование с использованием цианоацетилпиразола 1 обычно носит селективный характер. Так, при обработке *о*-фенилендиаминов с аминогруппами разной активности азолидом 1 реакции протекают по наиболее нуклеофильному центру с образованием продуктов моноацилирования 6 и 7.¹¹ Обнаружено, что нагревание последних выше температуры плавления является эффективным способом получения 2-(цианометил)бензимидазолов 8 — ценных реагентов для гетероциклического синтеза.

Fusion above the melting point
$$(EWG)EDG$$
 NH_2
 N

Интересно отметить, что при наличии в структуре *о*-фенилендиамина первичной и вторичной аминогрупп реакция селективно протекает по первичной аминогруппе даже в случае активации вторичной донорным заместителем, как показано на примере образования амидов 9.5 Очевидно, в данном случае пространственная доступность первичной аминогруппы больше.

Симметричные диамины реагируют с 2 экв. азолида 1 с образованием бис(цианоацетамидов) 10^{12} и 11, 13 которые оказались перспективными исходными соединениями при получении гетероциклических супрамолекулярных рецепторов.

Недавно был предложен подход к получению несимметричных дипиридотиофенов, основанный на мягком ацилировании эфиров 3-аминотиено[2,3-*b*]пиридин-2-карбоновых кислот азолидом **1** с последующей внутримолекулярной циклизацией образующихся цианоацетамидов по Дикману. ¹⁴

For R = Et, R¹, R³ = Me, R² = H

i-PrONa, i-PrOH

DMF,
$$\Delta$$
, 1 h, 81%

R, R¹, R², R³ = Me, Et, R¹ + R² = (CH₂)₄

Последовательная обработка азолида **1** первичными или вторичными аминами и далее $(MeO)_2CR^3NMe_2$ и $N_2H_4\cdot H_2O$ приводит к получению новых 3-аминопиразол-4-карбоксамидов. ¹⁵

NC 1.
$$R^{2}NHR^{1}$$
, PhMe or DMF $80^{\circ}C$, $6-12$ h, $25-97\%$ 2. $(MeO)_{2}CR^{3}NMe_{2}$, PhMe $80^{\circ}C$, 6 h, $49-98\%$ 3. $N_{2}H_{4}\cdot H_{2}O$, EtOH Δ , 12 h, $35-91\%$ NH_{2} Δ 1 = Alk, Hetar; R^{2} = H , Alk; R^{3} = H Me

Интересный подход к синтезу 1,1'-бипиридинов, основанный на реакции продукта цианоацетилирования 1-аминопиридина 12 с различными 1,3-диэлектрофилами, представлен в работе 2016 г. 16

Me CN Me CN Ac₂CH₂ piperidine Me NH
$$_{0}$$
 NH $_{0}$ NH $_{0}$

Реакции гетероциклизации

При наличии в структуре субстрата нескольких нуклеофильных центров реакция цианоацетилирования может иметь каскадный характер и приводить к продуктам

дальнейшей гетероциклизации. Так, взаимодействие амидоксимов с азолидом 1 приводит к образованию 5-цианометил-1,2,4-оксадиазолов. ^{17,18} В частности, этим способом было получено соединение 13 — новый эффективный ингибитор онкогенной микроРНК miR-21. ¹⁸ 3(5)-Аминопиразолы, незамещенные по эндоциклическим атомам азота, вступают в каскадные реакции с азолидом 1 с образованием пиразоло[1,5-а] пиримидинов. ^{7,19}

Реакции цианоацетилпиразола в качестве метиленактивного соединения

Будучи признанной альтернативой циануксусному эфиру в реакциях N-цианоацетилирования, азолид 1 находит пока ограниченное применение как метиленактивное соединение. В качестве недавних примеров проявления нуклеофильных свойств у азолида 1 можно привести регио- и стереоселективное C-аллилирование по Цудзи—Тросту с помощью аддуктов Мориты—Бейлиса—Хиллмана 14. 20

Взаимодействие арилазидов с первичными аминами и цианоацетилпиразолом 1 в условиях однореакторного синтеза в присутствии основания с высокими выходами приводит к продуктам тандемной реакции Димрота – аммонолиза – триазол-4-карбоксамидам 15.²¹

Димрота — аммонолиза — триазол-4-карбоксамидам 15.²¹

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (тема 0795-2020-0010).

Список литературы

- 1. Ried, W.; Meyer, A. Chem. Ber. 1957, 90, 2841.
- 2. Chigorina, E. A.; Dotsenko, V. V. Chem. Heterocycl. Compd. 2012, 48, 1133. [Химия гетероцикл. соединений 2012, 1216.]
- 3. Chigorina, E. A. Synlett 2014, 453.
- 4. Edraki, N.; Iraji, A.; Firuzi, O.; Fattahi, Y.; Mahdavi, M.; Foroumadi, A.; Khoshneviszadeh, M.; Shafiee, A.; Miri, R. *J. Iran. Chem. Soc.* **2016**, *13*, 2163.
- Iraji, A.; Firuzi, O.; Khoshneviszadeh, M.; Tavakkoli, M.; Mahdavi, M.; Nadri, H.; Edraki, N.; Miri, R. Eur. J. Med. Chem. 2017, 141, 690.
- Gouda, M. A.; Sherif, Y. E.-S.; Elsherbini, M. S. Phosphorus, Sulfur Silicon Relat. Elem. 2014, 189, 1633.
- Ghozlan, S. A. S.; Ramadan, M. A.; Abdelmoniem, A. M.; Abdelhamid, I. A. ARKIVOC 2019, (v), 30.
- Fadda, A. A.; Abd El Salam, M.; Tawfik, E. H.; Anwar, E. M.; Etman, H. A. RSC Adv. 2017, 7, 39773.
- 9. Abdelmoniem, A. M.; Ghozlan, S. A. S.; Abdelwahab, H. M.; Abdelhamid, I. A. *J. Heterocycl. Chem.* **2019**, *56*, 2637.
- Madhavi, K.; Soumya, K. R.; Subhashini, C. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 387.
- Ammar, Y. A.; Abbas, S. Y.; Fouad, S. A.; Salem, M. A.;
 El-gaby, M. S. A. J. Iran. Chem. Soc. 2019, 16, 639.
- 12. Sanad, S. M. H.; Elwahy, A. H. M.; Abdelhamid, I. A. *ARKIVOC* **2018**, (vii), 39.

- $[Pd(C_3H_5)Cl]_2$ (1 mol %) MeO₂C .CO₂Me HZNU-Phos (4 mol %) K₂CO₃ (10 mol %) AcO NC THF, rt, 6-12 h 73-78% ArN₃, RNH₂ Ме HN-R DBU MeCN, Δ, 0.5 h NH₂ OH Þh 85-97% 15 R = H, Alk, Ar, Hetar **HZNU-Phos**
- 13. Hebishy, A. M. S.; Abdelhamid, I. A.; Elwahy, A. H. M. *ARKIVOC* **2018**, (v), 109.
- 14. Chigorina, E. A.; Bespalov, A. V.; Dotsenko, V. V. Russ. J. Gen. Chem. **2019**, 89, 2018. [Журн. общ. химии **2019**, 89, 1520]
- 15. Demjén, A.; Alföldi, R.; Angyal, A.; Gyuris, M.; Hackler, L., Jr.; Szebeni, G. J.; Wölfling, J.; Puskás, L. G.; Kanizsai, I. *Arch. Pharm.* **2018**, *351*, 1800062.
- Khidre, R. E.; Rodini, I. A. M.; Ibrahima, D. A. ARKIVOC 2016, (v), 301.
- Brand, S.; Ko, E. J.; Viayna, E.; Thompson, S.; Spinks, D.; Thomas, M.; Sandberg, L.; Francisco, A. F.; Jayawardhana, S.; Smith, V. C.; Jansen, C.; De Rycker, M.; Thomas, J.; MacLean, L.; Osuna-Cabello, M.; Riley, J.; Scullion, P.; Stojanovski, L.; Simeons, F. R. C.; Epemolu, O.; Shishikura, Y.; Crouch, S. D.; Bakshi, T. S.; Nixon, C. J.; Reid, I. H.; Hill, A. P.; Underwood, T. Z.; Hindley, S. J.; Robinson, S. A.; Kelly, J. M.; Fiandor, J. M.; Wyatt, P. G.; Marco, M.; Miles, T. J.; Read, K. D.; Gilbert, I. H. J. Med. Chem. 2017, 60, 7284.
- Naro, Y.; Ankenbruck, N.; Thomas, M.; Tivon, Y.; Connelly, C. M.; Gardner, L.; Deiters, A. *J. Med. Chem.* 2018, 61, 5900.
- Metwally, N. H.; Abdelrazek, F. M.; Eldaly, S. M. Res. Chem. Intermed. 2016, 42, 1071.
- Pei-Sen, G.; Jin-Lei, Z.; Ning, L.; Jiang, Z. Z.; Yang, Y.;
 Zi-Wei, G.; Weiqiang, Z.; Li-Wen, X. Appl. Organomet. Chem. 2017, 32, e4166.
- Pokhodylo, N.; Shyyka, O.; Matiychuk, V. Med. Chem. Res. 2014, 23, 2426.