Т. М. Соколенко*, Л. М. Ягупольский

ПОЛИФТОРАЛКИЛИРОВАНИЕ И АЛКЕНИЛИРОВАНИЕ 1-БЕНЗИЛ-1Н-ИНДАЗОЛ-3-ОЛА

Изучено полифторалкилирование и алкенилирование 1-бензил-1Н-индазол-3-ола галогенполифторалканами и фторированными олефинами. Показано, что только реакции, протекающие с участием дифторкарбена, приводят к смеси продуктов N- и O-алкилирования. Во всех остальных случаях – взаимодействие с галогенполифторэтанами или полифторалкенами – образуются O-полифторалкильные и алкенильные производные индазолола.

Ключевые слова: дибромдифторметан, 1,2-дибромтетрафторэтан, 1,2-дифтордихлорэтилен, дифторхлорметан, 1,1-дифторэтилен, индазол-3-ол, тетрафторэтилен, 1,1,2-трифтортрихлорэтан, трифторхлорэтилен, полифторалкилирование, фтор- алкенилирование.

Пятичленные гетероциклические соединения с алкоксифторированными заместителями изучены мало несмотря на то, что а,а,а-трифторанизол впервые синтезирован ещё в 1955 г. [1], а а-фторалкилфениловые эфиры бензольного ряда в настоящее время хорошо исследованы и находят широкое практическое применение [2]. Среди этого класса соединений можно упомянуть лишь трифторметоксипроизводные индола и бензофурана, синтезированные путём присоединения трифторметилгипофторита и последующего отщепления фтористого водорода [3], и дифторметоксипроизводные пиразола (в том числе и гербицид Пирафлюфенэтил [2]), полученные действием дифторкарбена, генерированного из дифторхлорметана [4, 5].

В настоящей работе нами изучено алкилирование и алкенилирование 1-бензил-1Н-индазол-3-ола (1а) галогенполифторалканами и полифторалкенами. Выбор такого объекта исследования обусловлен тем, что производные индазола обладают широким спектром биологической активности (противовоспалительной и антибактериальной [6–8], противоопухолевой и цитостатической [9, 10]), и более того, препарат "Бензидамина гидрохлорид" применяется в клинической практике как нестероидное противовоспалительное средство [11]. Известно, что 1-замещённые индазол-3-олы с алкилсульфатами, алкилгалогенидами или диазометаном дают смеси продуктов О- и N-алкилирования, с 3-диметиламинопропилбензолсульфонатом – только продукт О-алкилирования, а с акрилонитрилом и этилакрилатом – продукт присоединения по атому азота [12].

Нами найдено, что реакция 1-бензилиндазол-3-ола (1а) с дифторкарбеном, генерированным из дифторхлорметана, протекает не селективно,

хотя и с высоким общим выходом (~80%), причём образуется смесь 1649

продуктов О- и N-алкилирования 2 и 3 в соотношении 5 : 4 (схема 1). Соединения 2 и 3 существенно различаются по физическим свойствам и их можно легко разделить колоночной хроматографией.

Схема 1

Реакции галогенофильного полифторалкилирования [13] позволяют присоединять полифторгалогеналкильные группы к различным гетероатомам. В работе [14] показано, что применение тетрабутиламмониевых солей в качестве катализатора позволяет проводить такие реакции с высокими выходами и селективностью. Нами установлено, что взаимодействие натриевой соли индазолола 1a с 1,2-дибромтетрафторэтаном или 1,1,2-трифтортрихлорэтаном приводит к образованию продуктов О-алкилирования 4 и 5 (схема 2). Нуклеофильность индазолола низка, поэтому реакция происходит в жестких условиях, при которых она сопровождается частичным осмолением субстрата. Практически так же реагирует с 1,1,2-трифтортрихлорэтаном и калиевая соль индазолола 1a.

При взаимодействии натриевой соли индазолола **1a** с дибромдифторметаном наблюдается более сложная картина (схема 2). Реакция длится дольше даже при более высокой температуре, характеризуется невысоким общим выходом (32%) и низкой селективностью. Основными фторсодержащими продуктами являются О-бромдифторметильное **6** и О-дифторметильное **2** производные, а также соединение **7**, в котором дифторметиленовая

группа соединена с атомом кислорода одного и атомом азота другого

индазольного кольца. Наблюдается также образование небольших количеств N-бромдифторметильного **8** и N-дифторметильного **3** производных. По сравнению с приведённым выше взаимодействием с галогенфторэтанами селективность этой реакции низкая, вероятно, из-за того, что, согласно галогенофильному механизму, в первом случае промежуточно образуются фторэтилены, а в последнем – гораздо более реакционно-способный дифторкарбен [15].

Удобным методом введения полифторалкильных групп к гетероатомам (кислороду, азоту, сере) является катализируемое основаниями присоединение фторированных олефинов [16]. Взаимодействие индазололов 1а-с (в присутствии каталитических количеств их калиевых производных – К_{кат}) с тетрафторэтиленом или трифторхлорэтиленом приводит к соответствующим О-фторалкильным производным 9а-с и 10 (схема 3). Для проведения аналогичного процесса с каталитическими количествами основания 1,1-дифторэтилен недостаточно реакционоспособен, а его реакция с калиевой солью индазолола 1а сопровождается отщеплением фтористого водорода и приводит к образованию олефина 11 как основного продукта, наряду с незначительной примесью продукта присоединения 12. Натриевая соль индазолола 1а с 1,2-дифтордихлорэтаном реагирует аналогично, но хлористый водород элиминируется эффективнее, что с высоким выходом приводит к олефину 13 (схема 3). В реакцию вводилась смесь иис- и транс-олефинов в соотношении 1:1. Продукт представляет собой смесь олефинов в таком же соотношении, разделить которую перегонкой или хроматографически не удалось.

Схема 3

1, 9 а Ar = Ph, b Ar = 4-MeOC₆H₄, c Ar = 2-пиридил

Таблица 1

Сое- ди- не-	Брутто- формула		<u>Найд</u> Вычис	<u>ено, %</u> слено, %		Т. кип., °С (0.1 мм рт. ст.)	Выход, %
ние	T • P ···) • · ··	С	Н	Br (Cl)	Ν	[Т. пл., °С]	, -
2	$C_{15}H_{12}F_2N_2O$	<u>65.78</u> 65.69	<u>4.36</u> 4.42		<u>10.13</u> 10.22	117	45 (9*)
3	$C_{15}H_{12}F_2N_2O$	<u>65.80</u> 65.69	<u>4.25</u> 4.42		<u>10.27</u> 10.22	[52–53]	36 (2*)
4	$C_{16}H_{11}BrF_4N_2O$	<u>47.55</u> 47.66	<u>2.52</u> 2.76	<u>19.96</u> 19.82	<u>6.95</u> 6.95	133 [29–30]	60
5	$C_{16}H_{11}Cl_2F_3N_2O$	<u>51.28</u> 51.21	<u>2.95</u> 2.96	<u>(18.50)</u> (18.90)	<u>7.49</u> 7.47	140 [37–38]	_**
6	$C_{15}H_{11}BrF_2N_2O$	<u>50.81</u> 51.01	<u>3.39</u> 3.15	<u>22.39</u> 22.62	<u>8.12</u> 7.93	[28–29]	12
7	$C_{29}H_{22}F_2N_4O_2$	<u>69.91</u> 70.14	<u>4.42</u> 4.47		<u>11.30</u> 11.29		7
8	$C_{15}H_{11}BrF_2N_2O$			<u>22.32</u> 22.62		[54–55]	2
9a	$C_{16}H_{12}F_4N_2O$	<u>58.91</u> 59.25	<u>3.50</u> 3.74		<u>8.54</u> 8.65	125	85
9b	$C_{17}H_{14}F_4N_2O_2$	<u>57.94</u> 57.62	<u>4.10</u> 3.99		<u>7.82</u> 7.91	130	85
9c	$C_{15}H_{11}F_4N_3O$	<u>55.55</u> 55.38	<u>3.55</u> 3.42		<u>12.81</u> 12.92	107	82
10	C ₁₆ H ₁₂ ClF ₃ N ₂ O	<u>56.51</u> 56.39	<u>3.50</u> 3.56	<u>(10.67)</u> (10.40)	<u>8.20</u> 8.22	133	95
11	C ₁₆ H ₁₃ FN ₂ O	<u>71.67</u> 71.62	<u>5.12</u> 4.89		<u>10.40</u> 10.44	115	38
12	$C_{16}H_{14}F_2N_2O$				<u>10.01</u> 9.72		5
13	$C_{16}H_{11}ClF_2N_2O$	<u>59.67</u> 59.91	<u>3.38</u> 3.46	<u>(11.38)</u> (11.05)	<u>8.61</u> 8.74	125	89
14	$C_9H_6F_4N_2O$	<u>46.07</u> 46.16	<u>2.53</u> 2.58		<u>11.74</u> 11.96	[97–98]	97

Характеристики синтезированных соединений

* Выход продукта в реакции с CBr₂F₂.

** Выход продукта при использовании натриевой соли **1a** 70%, при использовании калиевой соли **1a** 74%.

Нами была предпринята попытка дебензилировать индазолы 9a-c. Оказалось, что соединения 9a,c устойчивы к каталитическому гидрированию (10% Pd на угле) при атмосферном давлении. Они также устойчивы к щелочному (кипячение в 10% водном растворе K₂CO₃) и кислотному гидролизу (кипячение в трифторуксусной кислоте или в 10% водном растворе HCl). Индазол **14** удалось получить действием трифторуксусной 1652 кислоты на N-*пара*-метоксибензильное производное 9b (схема 4).

Состав и строение полученных соединений подтверждены данными элементного анализа, хромато-масс-спектроскопии, спектрами ЯМР $^1{\rm H}$ и $^9{\rm F}$ (табл. 1–3).

Таблица 2

Спектры ЯМР ¹ Н синтезированных соединений	*
Спектры ЯМР Н синтезированных соединении	*

_

Соеди- нение	Химические сдвиги, б, м. д. (Ј, Гц)
2	5.38 (2H, c, CH ₂); 7.04 (1H, t, ${}^{2}J_{H,F}$ = 73.2, OCHF ₂); 7.08–7.30 (8H, M, H Ar); 7.62 (1H, д, ${}^{3}J_{H,H}$ = 8.4, H-4)
3	4.86 (2H, c, CH ₂); 7.07–7.17 (7H, м, H Ar); 7.21 (1H, т, ${}^{2}J_{H,F}$ = 58.2, NCHF ₂); 7.51 (1H, т, ${}^{3}J_{H,H}$ = 7.8, H Ar); 7.68 (1H, д, ${}^{3}J_{H,H}$ = 7.8, H-4)
4	5.65 (2H, с, CH ₂); 7.25–7.33 (6H, м, H Ar); 7.51 (1H, т, ${}^{3}J_{H,H}$ = 8.4, H Ar); 7.64 (1H, д, ${}^{3}J_{H,H}$ = 8.4, H-7); 7.81 (1H, д, ${}^{3}J_{H,H}$ = 8.4, H-4)
5	5.65 (2H, с, CH ₂); 7.25–7.33 (6H, м, H Ar); 7.51 (1H, т, ${}^{3}J_{H,H}$ = 8.4, H Ar); 7.65 (1H, д, ${}^{3}J_{H,H}$ = 8.4, H-7); 7.81 (1H, д, ${}^{3}J_{H,H}$ = 8.4, H-4)
6	5.48 (2H, c, CH ₂); 7.09–7.33 (8H, м, H Ar); 7.52 (1H, д, ³ <i>J</i> _{H,H} = 8.4, H-4)
7	4.77 (2H, c, CH ₂); 5.38 (2H, c, CH ₂); 7.00–7.30 (15H, M, H Ar); 7.48 (1H, $_{\rm T}$, $^{3}J_{\rm H,H}$ = 7.8, H Ar); 7.68 (1H, $_{\rm A}$, $^{3}J_{\rm H,H}$ = 7.8, H-4); 7.81 (1H, $_{\rm A}$, $^{3}J_{\rm H,H}$ = 8.4, H-4')
8	4.92 (2H, с, CH ₂); 7.03–7.17 (7H, м, H Ar); 7.50 (1H, т, ${}^{3}J_{H,H} = 7.8$, H Ar); 7.68 (1H, д, ${}^{3}J_{H,H} = 7.8$, H-4)
9a	5.62 (2H, c, CH ₂); 6.97 (1H, T. T, ${}^{2}J_{H,F}$ = 52.8, ${}^{3}J_{H,F}$ = 2.7, CHF ₂); 7.22–7.32 (6H, m, H Ar); 7.49 (1H, T, ${}^{3}J_{H,H}$ = 8.4, H Ar); 7.65 (1H, д, ${}^{3}J_{H,H}$ = 7.8, H-7); 7.78 (1H, д, ${}^{3}J_{H,H}$ = 8.4, H-4)
9b	3.76 (3H, c, OCH ₃); 5.36 (2H, c, CH ₂); 6.05 (1H, T. T, ${}^{2}J_{H,F}$ = 52.8, ${}^{3}J_{H,F}$ = 2.7, CHF ₂); 6.75 (2H, д, ${}^{3}J_{H,H}$ = 8.4, H Ar); 7.01–7.31 (5H, м, H Ar); 7.60 (1H, д, ${}^{3}J_{H,H}$ = 8.4, H-4)
9c	5.59 (2H, c, CH ₂); 6.08 (1H, T. T, ${}^{2}J_{H,F} = 52.8$, ${}^{3}J_{H,F} = 2.7$, CHF ₂); 6.84 (1H, д, ${}^{3}J_{H,H} = 8.4$, H-7); 7.10–7.21 (2H, м, H Ar); 7.32–7.34 (2H, м, H Ar); 7.52 (1H, T, ${}^{3}J_{H,H} = 4.2$, H Ar); 7.64 (1H, д, ${}^{3}J_{H,H} = 8.4$, H-4); 8.52 (1H, д, ${}^{3}J_{H,H} = 3.4$, H Ar)
10	5.63 (2H, c, CH ₂); 7.24–7.32 (6H, M, H Ar); 7.48 (1H, \pm , T, ${}^{2}J_{H,F} = 45.9$, ${}^{3}J_{H,F} = 4.8$, CHCIF); 7.49 (1H, \pm , ${}^{3}J_{H,H} = 8.4$, H Ar); 7.65 (1H, \pm , ${}^{3}J_{H,H} = 8.4$, H-7); 7.78 (1H, \pm , ${}^{3}J_{H,H} = 8.4$, H-4)
11	4.14 (1H, д. д. ${}^{3}J_{H,F} = 39.8$, ${}^{2}J_{H,H} = 4.8$, CF=CH <i>mpahc</i>); 4.28 (1H, д. д. ${}^{3}J_{H,F} = 4.7$, ${}^{2}J_{H,H} = 4.8$, CF=CH <i>uuc</i>); 5.58 (2H, c, CH ₂); 7.18–7.33 (6H, м, H Ar); 7.49 (1H, т., ${}^{3}J_{H,H} = 8.4$, H Ar); 7.68–7.77 (2H, м, H Ar)
12	2.04 (3H, т, ³ <i>J</i> _{H,F} = 13.5, CH ₃); 5.76 (2H, с, CH ₂); 7.09–7.30 (8H, м, H Ar); 7.90 (1H, д, ³ <i>J</i> _{H,H} = 8.4, H-4)
13	5.58 (2H, c, CH ₂); 7.00–7.28 (8H, м, H Ar); 7.61 (1H, д, ³ <i>J</i> _{H,H} = 8.4, H-4)
14	6.09 (1H, т. т. ${}^{2}J_{H,F}$ = 52.8, ${}^{3}J_{H,F}$ = 2.7, CHF ₂); 7.16–7.19 (1H, м, H-5); 7.39–7.40 (2H, м, H-6,7); 7.66 (1H, д, ${}^{3}J_{H,H}$ = 8.4, H-4); 10.23 (1H, уш. с, NH)

Схема 4

* Спектры ЯМР ¹Н снимали в ДМСО-d₆ (соединения **2–5, 9а, 10–12**) и CDCl₃ (соединения **6–8, 9b, c, 13, 14**).

В ИК спектрах карбонилсодержащих соединений **3**, **7** и **8** интенсивная полоса поглощения $v_{C=O}$ проявляется в интервале 1720–1730 см⁻¹, а в остальных соединениях она отсутствует.

Весьма примечательно, что в спектрах ЯМР ¹Н синглетный сигнал метиленовой группы арилметиленового фрагмента проявляется в карбонилсодержащих соединениях **3**, **7** и **8** в интервале 4.77–4.92 м. д., тогда как в алкокси- или алкеноксипроизводных – в более слабом поле (5.36–5.76 м. д.). В спектре соединения **2** сигнал дифторметильной группы имеет значение КССВ F–H, характерное для дифторметиловых эфиров [17], а в его изомере **3** – для N-дифторметильных производных [18]. Кроме того, один из ароматических протонов синтезированных соединений проявляется в виде дублетного сигнала в более слабом поле (7.60–7.81 м. д.), чем остальные (если не учитывать сигналов пиридильного фрагмента соединения **9с**). По-видимому, это протон в положении 4 индазола, поскольку именно он может испытывать дезэкранирующее влияние пространственно сближенного атома кислорода карбонильной, а также фторалкокси- или фторалкеноксигрупп.

Таким образом, взаимодействие 1-арилметил-1Н-индазол-3-олов с галогенполифторэтанами и полифторалкенами направляется по атому кислорода. В то же время реакции с участием дифторкарбена малоизбирательны и приводят к смеси продуктов N- и О-алкилирования. Исследованные реакции являются удобным и общим методом синтеза ранее неизвестных индазолов с разнообразными полифторалкоксильными и фторалкеноксильными заместителями.

Таблица З

Соеди- нение	Химические сдвиги, б, м. д. (Ј, Гц)*
2	$-84.77 (2F, \mu, {}^{2}J_{FH} = 73.2, \text{OCHF}_{2})$
3	$-103.37 (2F, \pi, {}^{2}J_{F,H} = 58.2, \text{NCHF}_{2})$
4	-69.08 (2F, c, CBrF ₂); -87.01 (2F, c, OCF ₂)
5	-75.41 (1F, c, CCl ₂ F); -84.57 (2F, c, OCF ₂)
6	-18.14 (2F, c, OCBrF ₂)
7	-60.57 (2F, c, OCF ₂ N)
8	-18.30 (2F, c, NCBrF ₂)
9a	-89.59 (2F, c, OCF ₂); -138.00 (2F, д, ${}^{2}J_{F,H} = 52.8$, CHF ₂)
9b	-89.79 (2F, c, OCF ₂); -137.20 (2F, π , ${}^{2}J_{F,H} = 52.8$, CHF ₂)
9c	-89.20 (2F, c, OCF ₂); -137.55 (д, ${}^{2}J_{F,H} = 52.8$, CHF ₂)
10	-83.18 (2F, c, OCF ₂); -154.69 (1F, д, ${}^{2}J_{F,H} = 45.9$, CHClF)
11	-82.35 (1F, д. д. ${}^{3}J_{F,H mpahc} = 39.8, {}^{3}J_{F,H uuc} = 4.7, OCF=CH_{2}$)
12	-61.77 (2F, кв, ³ <i>J</i> _{F,H} = 13.5, ОСF ₂ CH ₃)
13	-120.29 (1F, д, ² <i>J</i> _{F,F} = 38.7, =CClF, <i>μuc</i>), -118.30 (1F, д, ² <i>J</i> _{F,F} = 119.3,
	=CClF, <i>mpahc</i>), -128.25 (1F, \pm , ${}^{2}J_{F,F} = 38.7$, OCF=, μc),
	-133.45 (1F, д, ² $J_{F,F}$ = 119.3, OCF=, <i>транс</i>)
14	-88.92 (2F, c, OCF ₂); -137.30 (2F, д, ${}^{2}J_{F,H} = 52.8$, CHF ₂)

Спектры ЯМР ¹⁹F синтезированных соединений

1654

* Спектры ЯМР ¹⁹F снимали в ДМСО-d₆ (соединения **2–5**, **9a**, **10–12**) и CDCl₃ (соединения **6–8**, **9b,c**, **13**, **14**).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на приборе UR-20 в таблетках КВг (кристаллические соединения **3** и **8**) и в тонком слое на пластинке КВг (соединение **7**). Спектры ЯМР ¹Н зарегистрированы на приборе Varian VXR-300 (300 МГц), внутренний стандарт ТМС, спектры ЯМР ¹⁹F – на приборе Varian Gemini-200 (188 МГц), внутренний стандарт фтортрихлорметан. Хромато-масс-спектры (GC/MS) записаны на спектрометре Hewlett–Packard HP GC/MS 5890/5972 (ЭИ 70 эВ) с колонкой HP-5MS HP Part number 19091S-102. Температура плавления определялась на приборе SMP3 (Stuart Scientific). Контроль за ходом реакции осуществлялся методом TCX на пластинах Silufol UV-254. Для колоночной хроматографии использовался силикагель марки MN-Kieselgel-60, для препаративной TCX – плас- тины TLC-Plates, pre-coated SI F 10 × 20 cm (Riedel–de Haën), толщина слоя 0.25 мм.

ДМФА перегоняли над CaH₂ непосредственно перед использованием.

Алкилирование индазол-3-она бензилхлоридами. К раствору, полученному из 1.2 г (30 ммоль) NaOH (2.4 г (60 ммоль) в случае соединения 1с) и 30 мл воды, добавляют 4 г (30 ммоль) индазол-3-она и нагревают при 35 °С до растворения. Добавляют 30 ммоль соответствующего бензилхлорида (в случае 1с используют гидрохлорид 2-хлорметилпиридина) и нагревают 2–3 ч при 70 °С. Реакционную смесь охлаждают. Осадок отфильтровывают, промывают водой и сушат на воздухе. Кристаллизуют из смеси гептан–бензол, 3:1.

1-Бензил-1Н-индазол-3-ол (1а). Выход 5.23 г (78%). Т. пл. 167–168 °С [19].

1-(*п***-Метоксибензил)-1Н-индазол-3-ол (1b).** Выход 3.12 г (41%). Т. пл. 159–160 °С [6].

1-(2-Пиридилметил)-1Н-индазол-3-ол (1с). Выход 4.52 г (67%). Бледножёлтое кристаллическое вещество. Т. пл. 156–157 °С. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 5.41 (2H, c, CH₂); 6.90–7.33 (5H, м, H Ar); 7.47 (1H, т, ³*J*_{H,H} = 7.8, H Ar); 7.68 (1H, д, ³*J*_{H,H} = 7.8, H-4); 8.50 (1H, д, ³*J*_{H,H} = 3.4, H Ar); 10.20 (1H, уш. с, OH). Найдено, %: С 69.28; H 5.00; N 18.50. С₁₃H₁₁N₃O. Вычислено, %: С 69.32; H 4.92; N 18.65.

Взаимодействие индазолола 1а с дифторхлорметаном. К раствору 2.0 г (8.9 ммоль) индазолола 1а в 25 мл безводного ДМФА добавляют 3.7 г (26.8 ммоль) безводного K_2CO_3 и при интенсивном перемешивании и нагревании при 90 °C в течение 6 ч барботируют дифторхлорметан. Реакционную смесь охлаждают, выливают в воду (100 мл), экстрагируют CH₂Cl₂ (3 × 50 мл), экстракт промывают водой (5 × 25 мл), сушат MgSO₄, растворитель отгоняют в вакууме (15 мм рт. ст.), остаток хроматографируют на колонке с SiO₂ (элюент CH₂Cl₂).

1-Бензил-3-дифторметокси-1Н-индазол (2). Выход 1.10 г. Бесцветное маслообразное вещество. R_f 0.8. Масс-спектр, m/z ($I_{\text{отн}}$, %): 274 [M]⁺ (25), 91 [PhCH₂]⁺ (100).

1-Бензил-1,2-дигидро-2-дифторметил-3Н-индазол-3-он (3). Выход 0.88 г. Белое кристаллическое вещество. R_f 0.5. ИК спектр, v, см⁻¹: 1720 (С=О). Масс-спектр, m/z ($I_{\text{отн}}$, %): 274 [M]⁺(100), 223 [M–CF₂H]⁺(18).

Взаимодействие индазолола 1а с 1,2-дибромтетрафторэтаном и 1,1,2-трифтортрихлорэтаном. А. К раствору 1.12 г (5 ммоль) индазолола 1а в 50 мл безводного ДМФА добавляют 0.2 г (5 ммоль) 60% NaH (в вазелиновом масле) и перемешивают при комнатной температуре до прекращения выделения водорода (2 ч). Добавляют 0.02 г (0.05 ммоль) тетрабутиламмонийбромида и 3.9 г (15 ммоль) 1,2-дибромтетрафторэтана или 2.8 г (15 ммоль) 1,1,2-трифтортрихлорэтана и нагревают 30 ч при 90 °C (в случае индазола 4) или 48 ч при 110 °C (в случае 1655 индазола 5). Реакционную смесь охлаждают, выливают в воду (150 мл), экстрагируют CH_2Cl_2 (4 × 50 мл), экстракт промывают водой (5 × 40 мл), сушат MgSO₄, растворитель отгоняют в вакууме (15 мм рт. ст.), остаток хроматографируют на колонке с SiO₂ (элюент CH_2Cl_2).

Б. К раствору 0.67 г (3 ммоль) индазолола **1а** в 15 мл безводного *трет*бутанола добавляют 0.34 г (3 ммоль) *трет*-бутилата калия и перемешивают при комнатной температуре 2 ч. Растворитель отгоняют при пониженном давлении (15 мм рт. ст.), остаток растворителя удаляют в вакууме (6 ч, 40 °C, 0.05 мм рт. ст.). К полученной таким образом калиевой соли **1а** добавляют 25 мл безводного ДМФА, 1.69 г (9 ммоль) 1,1,2-трифтортрихлорэтана и нагревают 48 ч при 100 °C. Реакцию обрабатывают как в методе А.

1-Бензил-3-(2-бром-1,1,2,2-тетрафторэтокси)-1Н-индазол (4). Выход 1.21 г (метод А). Белое кристаллическое или бесцветное маслообразное вещество. R_f 0.8. Масс-спектр, m/z ($I_{\text{отн}}$, %): 403 [M]⁺ (100), 223 [M–CF₂CF₂Br]⁺ (25), 91 [PhCH₂]⁺ (82).

1-Бензил-3-(1,1,2-трифтор-2,2-дихлорэтокси)-1Н-индазол (5). Выход 1.31 г (метод А) и 0.83 г (метод Б). Белое кристаллическое вещество. R_f 0.8. Масс-спектр, m/z ($I_{\text{отн}}$ %): 376 [M(³⁷Cl)]⁺ (8), 374 [M]⁺ (21), 223 [M–CF₂CFCl₂]⁺ (10), 91 [PhCH₂]⁺ (100).

Взаимодействие индазолола 1а с 1,2-дибромдифторметаном. К раствору 1.12 г (5 ммоль) индазолола 1а в 50 мл безводного ДМФА добавляют 0.2 г (5 ммоль) 60% NaH (в вазелиновом масле) и перемешивают при комнатной темпе- ратуре до прекращения выделения водорода (2 ч). Добавляют 0.02 г (0.05 ммоль) тетрабутиламмонийбромида и 5.25 г (25 ммоль) 1,2-дибромдифторметана и нагревают 80 ч при 130 °С. Реакционную смесь охлаждают, выливают в воду (150 мл), экстрагируют CH₂Cl₂ (4 × 50 мл), экстракт промывают водой (5 × 40 мл), сушат MgSO₄, растворитель отгоняют в вакууме (15 мм рт. ст.), остаток хроматографируют на колонке с SiO₂ (элюент CH₂Cl₂–гексан, 10:15).

1-Бензил-3-бромдифторметокси-1Н-индазол (6). Дополнительно очищают методом препаративной TCX (элюент CH₂Cl₂-гексан, 10:15). Выход 0.21 г. Бесцветное маслообразное вещество. R_f 0.6. Масс-спектр, m/z ($I_{\text{отн}}$, %): 353 [M]⁺(26), 223 [M–CF₂Br]⁺(19), 91 [PhCH₂]⁺(100).

1-Бензил-2-[(1-бензил-1Н-индазол-3-илокси)дифторметил]-1,2-дигидроиндазол-3-он (7). Выход 0.09 г. Бесцветное маслообразное вещество. R_f 0.2. ИК спектр, v, см⁻¹: 1730 (С=О). Масс-спектр, m/z ($I_{\text{отн}}$, %): 496 [М]⁺(40), 91 [РhCH₂]⁺(100).

1-Бензил-2-бромдифторметил-3Н-индазол-3-он (8). Дополнительно очищают методом препаративной ТСХ (элюент CH₂Cl₂–гексан, 10:15). Выход 0.03 г. Белое кристаллическое вещество. R_f 0.4. ИК спектр, v, см⁻¹: 1720 (С=О). Масс-спектр, m/z ($I_{\text{отн}}$, %): 353 [M]⁺(100), 223 [M–CF₂Br]⁺(25).

Выделены также соединения **2** (выход 0.12 г, R_f 0.5) и **3** (выход 0.03 г, R_f 0.35), которые по данным ЯМР ¹H, ¹⁹F и хромато-масс-спектров идентичны образцам, полученным в реакции с дифторхлорметаном.

Взаимодействие индазололов 1а–с с тетрафторэтиленом и индазолола 1а с трифторхлорэтиленом. К раствору 5 ммоль соответствующего индазолола 1а–с в 50 мл ДМФА добавляют 0.2 г (0.5 ммоль) металлического калия и перемешивают при комнатной температуре 4 ч (до полного растворения K). Через полученный раствор при интенсивном перемешивании и нагревании при 115 °С в течение 4–6 ч барботируют тетрафторэтилен или трифторхлорэтилен в случае соединения 10. Реакционную смесь охлаждают, выливают в воду (150 мл), экстрагируют CH₂Cl₂ (4 × 50 мл), экстракт промывают водой (5 × 40 мл), сушат MgSO₄, растворитель отгоняют в вакууме (15 мм рт. ст.), остаток хроматографируют на колонке с SiO₂ (элюент CH₂Cl₂).

1-Бензил-3-(1,1,2,2-тетрафторэтокси)-1Н-индазол (9а). Выход 1.38 г. Бесцветное маслообразное вещество. R_f 0.6. Масс-спектр, m/z ($I_{\text{отн}}$, %): 324 [M]⁺(22), 1656 91 $[PhCH_2]^+$ (100).

1-(*п***-Метоксибензил)-3-(1,1,2,2-тетрафторэтокси)-1Н-индазол (9b).** Выход 1.51 г. Бесцветное маслообразное вещество. R_f 0.6. Масс-спектр, m/z ($I_{\text{отн}}$, %): 354 $[M]^+(27)$, 121 $[CH_3OPhCH_2]^+$ (100).

1-(2-Пиридилметил)-3-(1,1,2,2-тетрафторэтокси)-1Н-индазол (9с). Выход 1.33 г. Жёлтое маслообразное вещество. R_f 0.6. Масс-спектр, m/z ($I_{\text{отн}}$, %): 325 [M]⁺ (100), 246 [M–C₅H₄N+H]⁺ (87), 208 [M–OCF₂CF₂H]⁺ (29), 93 [C₅H₄NCH₂+H]⁺ (27).

1-Бензил-3-(1,1,2-трифтор-2-хлорэтокси)-1Н-индазол (10). Выход 1.62 г. Бесцветное маслообразное вещество. R_f 0.7. Масс-спектр, m/z ($I_{\text{отн}}$, %): 342 $[M(^{37}\text{Cl})]^+(19)$, 340 $[M]^+(56)$, 223 $[M-\text{CF}_2\text{CFClH}]^+(18)$, 91 $[Ph\text{CH}_2]^+(100)$.

Взаимодействие индазолола 1a с 1,1-дифторэтиленом. К раствору 1 г (4.5 ммоль) индазолола 1a в 15 мл безводного *трет*-бутанола добавляют 0.54 г (4.5 ммоль) *трет*-бутилата калия и перемешивают при комнатной температуре 2 ч. Растворитель отгоняют при пониженном давлении (15 мм рт. ст.), остаток растворителя удаляют в вакууме (6 ч, 40 °C, 0.05 мм рт. ст.). К полученной таким образом калиевой соли 1a добавляют 40 мл безводного ДМФА. Через полученный раствор при интенсивном перемешивании и нагревании при 140 °C в течение 16 ч барботируют 1,1-дифторэтилен. Реакционную смесь охлаждают, выливают в воду (150 мл), экстрагируют CH₂Cl₂ (4 × 50 мл), экстракт промывают водой (5 × 40 мл), сушат MgSO₄, растворитель отгоняют в вакууме (15 мм рт. ст.), остаток хроматографируют на колонке с SiO₂ (элюент CH₂Cl₂–гексан, 10:3).

1-Бензил-3-(1-фторвинилокси)-1Н-индазол (11). Выход 0.46 г. Бесцветное маслообразное вещество. R_f 0.5. Масс-спектр, m/z ($I_{\text{отн}}$, %): 268 [M]⁺ (31), 91 [PhCH₂]⁺ (100).

1-Бензил-3-(1,1-дифторэтокси)-1Н-индазол (12). Выход 0.07 г. Бесцветное маслообразное вещество. R_f 0.4. Масс-спектр, $m/z(I_{\text{отн}}, \%)$: 288 [M]⁺ (20), 91 [PhCH₂]⁺ (100).

1-Бензил-3-(1,2-дифтор-2-хлорвинилокси)-1Н-индазол (13). К раствору 1.12 г (5 ммоль) индазолола **1а** в 50 мл безводного ДМФА добавляют 0.2 г (5 ммоль) 60% NaH (в вазелиновом масле) и перемешивают при комнатной температуре до прекращения выделения водорода (2 ч). Добавляют раствор 1.33 г (10 ммоль) 1,2-дифтордихлорэтилена в 5 мл ДМФА и нагревают 8 ч при 95 °C. Реакционную смесь охлаждают, выливают в воду (150 мл), экстрагируют CH₂Cl₂ (4 × 50 мл), экстракт промывают водой (5 × 40 мл), сушат MgSO₄, растворитель отгоняют в вакууме (15 мм рт. ст.), остаток хроматографируют на колонке с SiO₂ (элюент CH₂Cl₂). Выход 1.43 г. Бесцветное маслообразное вещество. R_f 0.6. Масс-спектр, m/z (I_{orth} , %): 322 [M(³⁷Cl)]⁺ (7), 320 [M]⁺ (16), 91 [PhCH₂]⁺ (100).

3-(1,1,2,2-Тетрафторэтокси)индазол (14). Раствор 0.4 г (1.1 ммоль) индазола **9b** в 5 мл трифторуксусной кислоты нагревают 4 ч при 72 °С. Кислоту отгоняют в вакууме (15 мм рт. ст.). Твёрдый остаток очищают сублимацией при 70 °С в вакууме (0.05 мм рт. ст.). Выход 0.25 г. Белое кристаллическое вещество. Массспектр, m/z ($I_{\text{отн}}$, %): 234 [M]⁺ (100), 133 [M–OCF₂CF₂H]⁺ (68).

СПИСОК ЛИТЕРАТУРЫ

- 1. Л. М. Ягупольский, ДАН, **105**, 100 (1955).
- 2. F. Leroux, P. Jeschke, M. Schlosser, Chem. Rev., 105, 827 (2005).
- D. H. R. Barton, R. H. Hesse, G. P. Jackman, M. M. Pechet, J. Chem. Soc., Perkin Trans. 1, 2604 (1977).

1657

- 4. S. W. Djuric, N. BaMaung, A. Basha, H. Liu, J. R. Luly, D. J. Madar, R. J. Sciotti, N. P. Tu, F. L. Wagenaar, P. E. Wiedeman, X. Zhou, S. Ballaron, J. Bauch, Y.-W. Chen, X. G. Chiou, T. Fey, D. Gauvin, E. Gubbins, G. C. Hsieh, K. C. Marsh, K. W. Mollison, M. Pong, T. K. Shaughnessy, M. P. Sheets, M. Smith, J. M. Trevillyan, U. Warrior, C. D. Wegner, G. W. Carter, J. Med. Chem., 43, 2975 (2000).
- G. P. Lahm, T. M. Stevenson, T. P. Selby, J. H. Freudenberger, D. Cordova, L. Flexner, C. A. Bellin, C. M. Dubas, B. K. Smith, K. A. Hughes, J. G. Hollingshaus, C. E. Clark, E. A. Benner, *Bioorg. Med. Chem. Lett.*, 17, 6274 (2007).
- 6. G. Palazzo, G. Corsi, L. Baiocchi, B. Silvestrini, J. Med. Chem., 9, 38 (1966).
- P. Bruneau, C. Delvare, M. P. Edwards, R. M. McMillan, J. Med. Chem., 34, 1028 (1991).
- X. Li, S. Chu, V. A. Feher, M. Khalili, Z. Nie, S. Margosiak, V. Nikulin, J. Levin, K. G. Sprankle, M. Tedder, R. Almassy, K. Appelt, K. M. Yager, *J. Med. Chem.*, 46, 5663 (2003).
- L. Bouissane, S. El Kazzouli, S. Léonce, B. Pfeiffer, E. M. Rakib, M. Khouili, G. Guillaumet, *Bioorg. Med. Chem.*, 14, 1078 (2006).
- 10. G.-D. Zhu, J. Gong, V. B. Gandhi, K. Woods, Y. Luo, X. Liu, R. Guan, V. Klinghofer, E. F. Johnson, V. S. Stoll, *Bioorg. Med. Chem.*, **15**, 2441 (2007).
- 11. М. Д. Машковский, *Лекарственные средства*, Новая волна, Москва, 2005, с. 177.
- 12. L. Baiocchi, G. Corsi, G. Palazzo, Synthesis, 633 (1978).
- R. E. Banks, B. E. Smart, J. C. Tatlow, Organofluorine Chemistry. Principles and Commercial Applications, Plenum Press, New York, 1994, p. 177.
- K. I. Petko, T. M. Sokolenko, A. V. Bezdudny, L. M. Yagupolskii, J. Fluor. Chem., 126, 1342 (2005).
- 15. Т. М. Соколенко, К. И. Петко, Л. М. Ягупольский, *ХГС*, 550 (2009). [*Chem. Heterocycl. Comp.*, **45**, 430 (2009).]
- 16. Л. М. Ягупольский, Ароматические и гетероциклические соединения с фторсодержащими заместителями, Наукова думка, Киев, 1988.
- 17. E. Nawrot, A. Jonczyk, J. Fluor. Chem., 127, 943 (2006).
- 18. К. И. Петко, Т. М. Соколенко, Л. М. Ягупольский, *XГС*, 1355 (2006). [*Chem. Heterocycl. Comp.*, **42**, 1177 (2006).]
- 19. J. Schmutz, F. Hunziker, W. Michaelis, Helv. Chim. Acta, 47, 1986 (1964).

Институт органической химии НАН Украины, Киев 02094, Украина e-mail: taras_sk@ukr.net Поступило 01.02.2010