Б. Ж. Элмурадов*, Х. А. Бозоров, Х. М. Шахидоятов

ТИЕНО[2,3-d]ПИРИМИДИН-4-ОНЫ

1*. КОНДЕНСАЦИЯ 2,3-ДИМЕТИЛ- И 2,3-ТРИ-, 2,3-ТЕТРА-И 2,3-ПЕНТАМЕТИЛЕН-7,8-ДИГИДРОПИРРОЛО[1,2-*a*]ТИЕНО[2,3-*d*]-ПИРИМИДИН-4(6Н)-ОНОВ С АРОМАТИЧЕСКИМИ АЛЬДЕГИДАМИ И ФУРФУРОЛОМ

Взаимодействием 2,3-диметил- и 2,3-три-, 2,3-тетра- и 2,3-пентаметилен-7,8дигидропирроло[1,2-*a*]тиено[2,3-*d*]пиримидин-4(6Н)-онов с бензальдегидом, его 4-диметиламино-, 3,4-диметокси- и 3,4-метилендиоксизамещёнными, а также фурфуролом в присутствии NaOH синтезированы 2,3-диметил- и 2,3-три-, 2,3-тетраи 2,3-пентаметилензамещённые 8-арилиден-6,7-дигидропирроло[1,2-*a*]тиено[2,3-*d*]пиримидин-4-оны.

Ключевые слова: арилиденпроизводные, ароматические альдегиды, тиено[2,3-*d*]пиримидин-4-оны, фурфурол, конденсация.

Среди большого числа соединений ряда тиено[2,3-*d*]пиримидин-4-она [1, 2] аннелированные по обоим гетероциклам производные типа **I** изучены мало. Вместе с тем, среди них известны вещества, обладающие различной биологической активностью (фунгицидной, бактерицидной, противовоспалительной и др.) [3–9], что указывает на перспективность дальнейшего синтеза и изучения свойств подобных структур.

Задача настоящей работы – синтез новых производных соединений типа **I**. Последние традиционно синтезируют из 2-амино-3-этоксикарбонил-4,5-дизамещённых тиофенов путём конденсации с лактамами [10, 11] или О-алкиловыми эфирами лактамов [3], а также из циклических кетонов реакцией Гевальда [12, 13]. Окисление [14, 15] и формилирование [16, 17] таких соединений происходит исключительно по группе CH₂ кольца A, связанного с гетероциклической системой колец B и C по положению 2.

Известно также, что трициклические хиназолиновые алкалоиды – 2,3-три- и 2,3-тетраметилен-3,4-дигидрохиназолин-4-оны, их замещённые и гомологи – конденсируются с ароматическими и гетероциклическими альдегидами по группе CH₂, связанной с ядром хиназолинона, подобно группе 6-CH₂ соединений типа I, и при этом образуются либо арилиден-, либо арилгидроксиметилпроизводные [18–22]. Данные по аналогичному взаимодействию три(тетра)циклических 7,8-дигидропирроло[1,2-*a*]тиено-

[2,3-*d*]пиримидин-4(6Н)-онов – тиофеновых аналогов указанных алкалоидов в литературе отсутствуют.

Нами из 4,5-диметил-, и 4,5-три-, 4,5-тетра- и 4,5-пентаметилензамещенных 2-амино-3-этоксикарбонилтиофенов 1–4 и γ-бутиролактама в присутствии хлороксида фосфора получены известные 2,3-диметил-, 2,3-три-, 2,3-тетра-, 2,3-пентаметилен-7,8-дигидропирроло[1,2-*a*]тиено[2,3-*d*]пиримидин-4(6H)-оны 5–8 и изучена конденсация последних с бензальдегидом (9а), 4-диметиламино- (9b), 3,4-диметокси- (9c), 3,4-метиленбисоксибензальдегидом (9d), а также с фурфуролом (9е).

Синтез соединений **5–8** был осуществлён по измененной нами методике работы [11]. Добавление к реагентам POC1₃ при охлаждении, а не при комнатной температуре, увеличение продолжительности реакции и обработка реакционной смеси ледяной водой позволили получить целевые продукты **5–8** с высокими выходами (82–96%).

Строение синтезированных соединений подтверждают приведенные в экспериментальной части данные их спектров ЯМР ¹Н, хорошо согласующиеся с известными данными для родственных структур [10, 20–22]. Характеристичными, важными для дальнейшего анализа направленности взаимодействия соединений **5–8** с альдегидами **9** являются сигналы протонов H-6 и H-8, имеющие каждый форму двухпротонного триплета в области 4.10–4.11 (J = 7.1-7.3) и 3.07–3.10 м. д. (J = 7.9-8.1 Гц) соответственно.

В результате конденсации дигидротиенопирролопиримидин-4-онов **5–8** с альдегидами **9а–е** в найденных оптимальных условиях (кипячение исходных реагентов в течение 7–8 ч в этиловом спирте в присутствии NaOH, соотношение **5–8** : **9** : NaOH, 1 : 1 : 0.3) с выходами 61–96% получены соответствующие 8-арилиденгетарилидензамещённые **10а–е–13а–е**. Наиболее высокие выходы были достигнуты в случае фурфурола (89–96%). О синтезе соединений **10**, **11** мы сообщали также ранее (см. [23, 24]).

Таблица 1

Соеди- нение	Брутто- формула	<u>Найдено,%</u> Вычислено, % N	R_f^*	Т. пл., °С (бензол)	Выход, %
10a	$C_{18}H_{16}N_2OS$	<u>8.91</u> 9.09	0.87	225–227	69
10b	$C_{20}H_{21}N_3OS$	<u>11.87</u> 11.96	0.75	260–261	65
10c	$C_{20}H_{20}N_2O_3S$	<u>7.51</u> 7.60	0.59	249–250	64
10d	$C_{19}H_{16}N_2O_3S$	<u>8.04</u> 7.95	0.81	233–235	68
10e	$C_{16}H_{14}N_2O_2S$	<u>9.50</u> 9.39	0.67	264	89
11a	$C_{19}H_{16}N_2OS$	<u>8.66</u> 8.75	0.81	250	72
11b	$C_{21}H_{21}N_3OS$	<u>11.69</u> 11.57	0.84	274–275	71
11c	$C_{21}H_{20}N_2O_3S$	<u>7.45</u> 7.36	0.68	242–244	64
11d	$C_{20}H_{16}N_2O_3S$	<u>7.54</u> 7.69	0.83	260–262	65
11e	$C_{17}H_{14}N_2O_2S$	<u>8.90</u> 9.03	0.83	242**	93
12a	$\mathrm{C_{20}H_{18}N_{2}OS}$	<u>8.23</u> 8.38	0.87	238–240	79
12b	C ₂₂ H ₂₃ N ₃ OS	<u>11.22</u> 11.14	0.79	264–266	68
12c	$C_{22}H_{22}N_2O_3S$	<u>6.98</u> 7.13	0.80	253–255	72
12d	$C_{21}H_{18}N_2O_3S$	<u>7.13</u> <u>7.23</u> 7.40	0.89	278–280	66
12e	$C_{18}H_{16}N_2O_2S$	<u>8.80</u> 8.64	0.77	236–238	96
13 a	$\mathrm{C_{21}H_{20}N_2OS}$	<u>7.90</u> 8.04	0.87	233–235	61
13b	C ₂₃ H ₂₅ N ₃ OS	<u>10.59</u> 10.74	0.90	263–265	71
13c	$C_{23}H_{24}N_2O_3S$	<u>6.99</u>	0.86	230–231	78
13d	$C_{22}H_{20}N_2O_3S$	<u>7.01</u> 7.14	0.83	254–255	84
13e	$C_{19}H_{18}N_2O_2S$	<u>8.09</u> 8.28	0.88	241–242	90

Характеристики синтезированных соединений

* Системы для ТСХ – бензол-метанол, 5:1 (соединения 10а-е, 11а,с,d, 12 а-е, 13 а-е), бензол-метанол, 3:1 (соединения **11b,e**). ** Соединение **11е** перекристаллизовано из смеси бензол-гексан, 2:1.

Для выяснения влияния различных факторов на рассматриваемое взаимодействие альдегидов 9 с соединениями 6–8 (например, можно было ожидать, что оно будет происходить также по группе 2-CH₂ последних) нами была осуществлена конденсация альдегидов 9b–е с соединением 6 при разных соотношениях этих реагентов (9b–е : 6 = 2:1, 3:1, 4:1) в разных условиях: в этаноле с NaOH при комнатной температуре (течение 2–24 ч) и при 80 °C (2–8 ч), а также в кипящей ледяной уксусной кислоте (2–4 ч). Однако во всех случаях наблюдалось образование только продуктов 11b–е. Наиболее высокие выходы последних были достигнуты в указанных выше оптимальных условиях синтеза соединений 10–13.

Состав и строение синтезированных соединений **10а-е** – **13а-е** подтверждены результатами элементного анализа (табл. 1), а также данными их ИК и ЯМР ¹Н спектров (табл. 2, 3).

В ИК спектрах этих соединений полосы валентных колебаний связей C=O, C=N и C-N наблюдаются в области 1651–1670, 1531–1596 и 1466–1514 см⁻¹, соответственно, что согласуется с литературными данными [10, 12].

Основным отличием спектров ЯМР ¹Н продуктов **10а–е** – **13а–е** от спектров исходных соединений **5–8** является отсутствие в них сигналов протонов H-8 и наличие сигналов группировки =СНАг(Het). Кроме того, мультиплетный сигнал протонов H-7 приобретает форму триплет дублетов с дальней константой (J = 2.4–2.7 Гц) с протонами группировки =СНАг(Het), что отмечалось и ранее [10, 20–22, 25]. Исключение составляют спектры соединений **10b,с,** в которых сигналы протонов H-7 имеют форму триплетов, а метиновых протонов – уширенных синглетов, как было указано в работе [26] для 3-диметиламинометилиден-1,2,3,9-тетрагидропирроло[2,1-*b*]хиназолона-4. Следует также отметить сдвиги сигналов протонов H-6 и H-7 в слабое поле порядка 0.1 в первом случае и 1 м. д. – во втором.

Таблица 2

Соеди-	v, cm ⁻¹			Соеди-	v, cm ⁻¹		
нение	C=O	C=N	C–N	нение	C=O	C=N	C–N
10a	1664	1575	1507	12a	1652	1570	1475
10b	1651	1538	1467	12b	1652	1570	1475
10c	1664	1576	1514	12c	1668	1596	1470
10d	1668	1551	1503	12d	1661	1546	1488
10e	1653	1553	1509	12e	1656	1552	1475
11 a	1656	1572	1490	13 a	1670	1582	1470
11b	1659	1531	1475	13b	1660	1552	1481
11c	1668	1577	1466	13c	1662	1579	1466
11d	1668	1533	1489	13d	1661	1546	1488
11e	1663	1542	1474	13e	1661	1554	1471

ИК спектры синтезированных соединений

Спектры ЯМР ¹Н синтезированных соединений

Соеди- нение	Химические сдвиги, м. д. $(J, \Gamma \mathfrak{u})^*$					
1	2					
10a	2.33 (3H, c, 2-CH ₃); 2.43 (3H, c, 3-CH ₃); 3.24 (2H, т. д, <i>J</i> = 6.5, <i>J</i> = 2.8, H-7) 4.19 (2H, т, <i>J</i> = 6.5, H-6); 7.29–7.47 (5H, м, H Ph); 7.64 (1H, т, <i>J</i> = 2.8, CHPh)					
10b	2.09 (3H, c, 2-CH ₃); 2.11 (3H, c, 3-CH ₃); 3.06 (6H, c, N(CH ₃) ₂); 3.16 (2H, T J = 6.5, H-7); 4.23 (2H, T, $J = 6.5$, H-6); 7.37 (2H, $A, J = 8.9$, H-3,5 Ar); 7.44 (2H, $A, J = 8.9$, H-2,6 Ar); 7.54 (1H, ym. c, CHAr)					
10c	2.07 (3H, c, 2-CH ₃); 2.09 (3H, c, 3-CH ₃); 3.16 (2H, т, <i>J</i> = 6.8, H-7); 3.58 (6H, c 2OCH ₃); 4.19 (2H, т, <i>J</i> = 6.8, H-6); 6.72 (1H, д, <i>J</i> = 8.6, H-5 Ar); 6.80 (1H, д <i>J</i> = 2.0, H-2 Ar); 6.95 (1H, д. д, <i>J</i> = 8.6, <i>J</i> = 2.0, H-6 Ar); 7.43 (1H, уш. c, CHAr)					
10d	2.32 (3H, c, 2-CH ₃); 2.42 (3H, c, 3-CH ₃); 3.18 (2H, T. \pm , $J = 6.7$, $J = 2.7$, H-7); 4.17 (2H, T, $J = 6.7$, H-6); 5.96 (2H, c, OCH ₂); 6.80 (1H, \pm , $J = 8.0$, H-5 Ar); 6.9. (1H, \pm , $J = 1.8$, H-2 Ar); 6.98 (1H, \pm , $J = 8.0$, $J = 1.8$, H-6 Ar); 7.54 (1H, \pm); $J = 2.7$, CHAr)					
10e	2.06 (3H, c, 2-CH ₃); 2.09 (3H, c, 3-CH ₃); 3.19 (2H, T. π , $J = 7.2$, $J = 2.4$, H-7); 4.16 (2H, T, $J = 7.2$, H-6); 6.28 (1H, π , π , $J = 3.4$, $J = 1.7$, H-4 Het); 6.63 (1H, π , $J = 3.4$, H-3 Het); 7.27 (1H, T, $J = 2.4$, CHHet); 7.38 (1H, π , $J = 1.7$, H-5 Het)					
11a	2.37–2.43 (2H, м, 2-CH ₂ C <u>H</u> ₂); 2.90 (2H, т, <i>J</i> = 7.0, 2-CH ₂); 3.02 (2H, т, <i>J</i> = 7.0, 3-CH ₂); 3.25 (2H, т. д, <i>J</i> = 7.2, <i>J</i> = 2.7, H-7); 4.20 (2H, т, <i>J</i> = 7.2, H-6); 7.30–7.4 (5H, м, H Ph); 7.65 (1H, т, <i>J</i> = 2.7, CHPh)					
11b	2.39–2.41 (2H, M, 2-CH ₂ C <u>H₂</u>); 2.90 (2H, T, J = 7.0, 2-CH ₂); 3.03 (6H, c, N(CH ₃) ₂) 3.10 (2H, T, J = 7.0, 3-CH ₂); 3.23 (2H, T. π , J = 7.2, J = 2.6, H-7); 4.21 (2H, T J = 7.2, H-6); 6.85 (2H, π , J = 8.9, H-3,5 Ar); 7.43 (2H, π , J = 8.9, H-2,6 Ar); 7.60 (1H, T, J = 2.6, CHAr)					
11c	2.38–2.41 (2H, M, 2-CH ₂ C <u>H</u> ₂); 2.89 (2H, T, $J = 7.1$, 2-CH ₂); 3.01 (2H, T, $J = 7.3$; 3-CH ₂); 3.23 (2H, T. π , $J = 6.7$, $J = 2.8$, H-7); 3.86, 3.87 (3H, c μ 3H, c, OCH ₃ ; 4.21 (2H, T, $J = 6.7$, H-6); 6.87 (1H, π , $J = 8.3$, H-5 Ar); 6.98 (1H, π , $J = 2.0$, H-Ar); 7.08 (1H, π , $J = 8.3$, $J = 2.0$, H-6 Ar); 7.60 (1H, T, $J = 2.8$, CHAr)					
11d	2.38–2.41 (2H, M, 2-CH ₂ C <u>H</u> ₂); 2.89 (2H, T, $J = 6.9$, 2-CH ₂); 3.02 (2H, T, $J = 7.3$ 3-CH ₂); 3.20 (2H, T, $J, J = 7.1, J = 2.8, H-7$); 4.19 (2H, T, $J = 7.1, H-6$); 5.96 (2H c, OCH ₂); 6.81 (1H, $J, J = 8.0, H-5$ Ar); 6.96 (1H, $J, J = 1.6, H-2$ Ar); 6.98 (1H J, J, J = 8.0, J = 1.6, H-6 Ar); 7.56 (1H, T, $J = 2.8, CH$ Ar)					
11e	2.37–2.40 (2H, M, 2-CH ₂ C <u>H₂</u>); 2.90 (2H, T, $J = 7.2$, 2-CH ₂); 3.01 (2H, T, $J = 7.3$ 3-CH ₂); 3.27 (2H, T. π , $J = 6.8$, $J = 2.7$, H-7); 4.18 (2H, T, $J = 6.8$, H-6); 6.46 (1H π . π , $J = 3.4$, $J = 1.7$, H-4 Het); 6.52 (1H, π , $J = 3.4$, H-3 Het); 7.40 (1H, T, $J = 2.7$ CHHet); 7.50 (1H, π , $J = 1.7$, H-5 Het)					
12a	1.76–1.84 (4H, M, 2-CH ₂ (C <u>H</u> ₂) ₂); 2.72 (2H, T, J = 6.1, 2-CH ₂); 2.97 (2H, T, J = 6.1, 2 CH ₂); 3.24 (2H, T. π , J = 6.6, J = 2.9, H-7); 4.18 (2H, T, J = 6.6, H-6); 7.27–7.4 (5H, M, H Ph); 7.64 (1H, T, J = 2.9, CHPh)					
12b	1.76–1.83 (4H, M, 2-CH ₂ (C <u>H</u> ₂) ₂); 2.70 (2H, T, $J = 5.8$, 2-CH ₂); 2.96 (6H, or N(CH ₃) ₂); 2.98 (2H, T, $J = 5.4$, 3-CH ₂); 3.19 (2H, T. π , $J = 7.1$, $J = 2.6$, H-7); 4.1 (2H, T, $J = 7.1$, H-6); 6.66 (2H, π , $J = 9.0$, H-3,5 Ar); 7.38 (2H, π , $J = 9.0$, H-2, Ar); 7.56 (1H, T, $J = 2.6$, CHAr)					
12c	1.78–1.82 (4H, M, 2-CH ₂ (C <u>H</u> ₂) ₂); 2.71 (2H, T, $J = 6.0$, 2-CH ₂); 2.96 (2H, T, $J = 6.0$, 3-CH ₂); 3.22 (2H, T. A , $J = 7.2$, $J = 2.7$, H-7); 3.86, 3.87 (3H, c μ 3H, c, OCH ₃); 4.18 (2H, T, $J = 7.2$, H-6); 6.87 (1H, A , $J = 8.4$, H-5 Ar); 7.0 (1H, A , $J = 1.9$, H-Ar); 7.08 (1H, A , $J = 8.4$, $J = 1.9$, H-6 Ar); 7.58 (1H, T, $J = 2.7$, CHAr)					
12d	1.77–1.82 (4H, M, 2-CH ₂ (C <u>H</u> ₂) ₂); 2.71 (2H, T, $J = 6.0$, 2-CH ₂); 2.96 (2H, T, $J = 6.0$ 3-CH ₂); 3.19 (2H, T. π , $J = 7.1$, $J = 2.8$, H-7); 4.17 (2H, T, $J = 7.1$, H-6); 5.96 (2H c, OCH ₂); 6.81 (1H, π , $J = 8.0$, H-5 Ar); 6.95 (1H, π , $J = 1.4$, H-2 Ar); 6.98 (1H π , π , $J = 8.0$, $J = 1.4$, H-6 Ar); 7.55 (1H, T. $J = 2.8$ CHAr)					

1721

1	2
12e	1.77–1.82 (4H, м, 2-CH ₂ (C <u>H</u> ₂) ₂); 2.70 (2H, т, $J = 6.0$, 2-CH ₂); 2.96 (2H, т, $J = 6.0$, 3-CH ₂); 3.26 (2H, т. д, $J = 7.1$, $J = 2.8$, H-7); 4.16 (2H, т. $J = 7.1$, H-6); 6.45 (1H, д. д, $J = 3.4$, $J = 1.7$, H-4 Het); 6.51 (1H, д. $J = 3.4$, H-3 Het); 7.40 (1H, т. $J = 2.8$, CHHet); 7.49 (1H, д. $J = 1.7$, H-5 Het)
13 a	1.62–1.68 (4H, m, 2-CH ₂ (CH ₂) ₂); 1.82–1.85 (2H, m, 3-CH ₂ CH ₂); 2.79 (2H, τ , $J = 5.7$, 2-CH ₂); 3.25 (2H, τ . μ , $J = 6.4$, $J = 2.8$, H-7); 3.29 (2H, τ , $J = 5.7$, 3-CH ₂); 4.19 (2H, τ , $J = 6.4$, H-6); 7.28–7.48 (5H, m , H Ph); 7.65 (1H, τ , $J = 2.8$, CHPh)
13b	1.62–1.66 (4H, M, 2-CH ₂ (CH ₂) ₂); 1.81–1.83 (2H, M, 3-CH ₂ CH ₂); 2.77 (2H, T, $J = 5.8, 2$ -CH ₂); 2.97 (6H, c, N(CH ₃) ₂); 3.20 (2H, T. $\pi, J = 6.6, J = 2.6, H$ -7); 3.29 (2H, T, $J = 5.5, 3$ -CH ₂); 4.16 (2H, T, $J = 6.6, H$ -6); 6.66 (2H, $\pi, J = 9.0, H$ -3,5 Ar); 7.38 (2H, $\pi, J = 9.0, H$ -2,6 Ar); 7.55 (1H, T, $J = 2.6, CHAr$)
13c	1.63–1.67 (4H, m, 2-CH ₂ (CH ₂) ₂); 1.82–1.84 (2H, m, 3-CH ₂ CH ₂); 2.78 (2H, r, $J = 5.6, 2$ -CH ₂); 3.22 (2H, r. $\pi, J = 6.7, J = 2.7, H$ -7); 3.29 (2H, r, $J = 5.4, 3$ -CH ₂); 3.86, 3.87 (3H, c n 3H, c, OCH ₃); 4.19 (2H, r, $J = 6.7, H$ -6); 6.87 (1H, $\pi, J = 8.4, H$ -5 Ar); 6.98 (1H, $\pi, J = 2.0, H$ -2 Ar); 7.10 (1H, $\pi, J = 8.4, J = 2.0, H$ -6 Ar); 7.58 (1H, r, $J = 2.7, CHAr$)
13d	1.62–1.68 (4H, M, 2-CH ₂ (CH ₂) ₂); 1.81–1.84 (2H, M, 3-CH ₂ CH ₂); 2.78 (2H, T, $J = 5.5$, 2-CH ₂); 3.19 (2H, T. I , $J = 6.9$, $J = 2.7$, H-7); 3.29 (2H, T, $J = 5.7$, 3-CH ₂); 4.17 (2H, T, $J = 6.9$, H-6); 5.96 (2H, c, OCH ₂); 6.81 (1H, I , $J = 8.0$, H-5 Ar); 6.96 (1H, I , $J = 1.6$, H-2 Ar); 6.98 (1H, I , $I = 8.0$, $J = 1.6$, H-6 Ar); 7.54 (1H, T, $J = 2.7$, CHAr)
13e	1.62–1.66 (4H, M, 2-CH ₂ (C <u>H</u> ₂) ₂); 1.81–1.83 (2H, M, 3-CH ₂ C <u>H</u> ₂); 2.78 (2H, T, $J = 5.6, 2$ -CH ₂); 3.26 (2H, T. $A, J = 7.0, J = 2.7, H$ -7); 3.29 (2H, T, $J = 5.6, 3$ -CH ₂); 4.17 (2H, T, $J = 7.0, H$ -6); 6.45 (1H, $A, A, J = 3.4, J = 1.8, H$ -4 Het); 6.51 (1H, $A, J = 3.4, H$ -3 Het); 7.39 (1H, T, $J = 2.7, CHHet$); 7.49 (1H, $A, J = 1.8, H$ -5 Het)

* Спектры ЯМР ¹Н соединений **10b,с,е** снимали в смеси трифторуксусная кислота– CD₃COOD, остальных соединений – в CDCl₃.

Сигналы протонов метиленовых групп цикла, аннелированного с тиофеновым кольцом, в сравниваемых соединениях (5–8 и 10–13) практически не различаются. Некоторые различия наблюдаются для сигналов заместителей 2-CH₃ и 3-CH₃ соединений 10b,c,e: они сдвинуты относительно аналогичных сигналов соединения 5 в более сильное поле (на 0.2–0.3 м. д.).

Таким образом, взаимодействие изученных производных 7,8-дигидропирроло[1,2-*a*]тиено[2,3-*d*]пиримидин-4(6H)она **5–8** с ароматическими альдегидами и фурфуролом происходит исключительно по фрагменту $C(8)H_2$, что, вероятно, связано с влиянием на него электроноакцепторной группировки C=N.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе ИК Фурье система 2000 в таблетках KBr, спектры ЯМР ¹H – на приборе Unity 400⁺ (400 МГц) в CDCl₃ (соединения **5–8**) или в смеси трифторуксусная кислота–CD₃COOD, внутренний стандарт ГМДС.

Температуру плавления определяли на приборах Boetius (Германия) и MEL-1722 ТЕМР (США). Чистоту продуктов и ход реакции контролировали методом TCX на пластинках Sorbfil (Россия) и Whatman[®] UV-254 (Германия) в системах бензол–гексан, 2:1 (соединения 5 и 6) и бензол–метанол, 5:1 (соединения 7 и 8).

2-Амино-4,5-диметил- (1), 2-амино-4,5-три- (2), 2-амино-4,5-тетра- (3) и 2-амино-4,5-пентаметилен-3-этоксикарбонилтиофен (4) синтезировали по методике [12].

2,3-Диметил- (5) и **2,3-три-** (6), **2,3-тетра-** (7) и **2,3-пентаметилен-7,8дигидропирроло[1,2-***a***]тиено[2,3-***d***]пиримидин-4(6Н)-он (8) (общая методика). К смеси 200 ммоль замещённого тиофена 1**–4 и 300 ммоль γ -бутиролактама, при охлаждении (ледяная баня) в течение 0.5 ч по каплям добавляют 720 ммоль хлороксида фосфора ($\rho = 1.80$ г/см³). Реакционную массу выдерживают 2 ч на кипящей водяной бане, далее около 16 ч при комнатной температуре, затем выливают на измельчённый лёд и подщелачивают раствором аммиака до рН 9. Выпавший осадок отфильтровывают, промывают несколько раз водой, высушивают и перекристаллизовывают из соответствующего растворителя.

Соединение 5. Выход 86%, т. пл. 144–145 °С (гексан) (т. пл. 144–145 °С [10]), *R*_f 0.70. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.18–2.24 (2H, м, H-7); 2.30 (3H, с, 2-CH₃); 2.41 (3H, с, 3-CH₃); 3.07 (2H, т, *J* = 8.1, H-8); 4.10 (2H, т, *J* = 7.1, H-6).

Соединение 6. Выход 90%, т. пл. 202–204 °С (метанол) (т. пл. 200–201°С [4]), *R*_f 0.65. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.19–2.25 (2H, м, H-7); 2.35–2.41 (2H, м, 2-CH₂C<u>H₂</u>); 2.87 (2H, т, *J* = 7.1, 2-CH₂); 3.0 (2H, т, *J* = 7.1, 3-CH₂); 3.10 (2H, т, *J* = 8.0, H-8); 4.11 (2H, т, *J* = 7.2, H-6).

Соединение 7. Выход 82%, т. пл. 215–217 °С (этанол) (т. пл. 212–214 °С [4]), *R*_f 0.43. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.75–1.81 (4H, м, 2-CH₂(C<u>H</u>₂)₂); 2.19–2.24 (2H, м, H-7); 2.69 (2H, т, *J* = 5.8, 2-CH₂); 2.94 (2H, т, *J* = 6.2, 3-CH₂); 3.07 (2H, т, *J* = 7.9, H-8); 4.09 (2H, т, *J* = 7.3, H-6).

Соединение 8. Выход 96%, т. пл. 156–158 °С (гептан) (т. пл. 156–158 °С [4]), *R*_f 0.74. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.59–1.62 (4H, м, 2-CH₂(C<u>H₂)</u>₂); 1.82 (2H, м, 3-CH₂C<u>H₂</u>); 2.18–2.24 (2H, м, H-7); 2.76 (2H, т, *J* = 5.7, 2-CH₂); 3.07 (2H, т, *J* = 7.9, H-8); 3.27 (2H, т, *J* = 5.7, 3-CH₂); 4.10 (2H, т, *J* = 7.3, H-6).

2,3-Диметил- (10а-е) и 2,3-триметилен- (11а-е), 2,3-тетраметилен- (12а-е) и 2,3-пентаметилензамещённые 8-арилидендигидропирроло[1,2-а]тиено[2,3-d]пиримидин-4-оны 13а-е (общая методика). К раствору 0.6 ммоль NaOH в 10 мл этанола добавляют 2.0 ммоль замещённого дигидропирролопиримидинона 5-8 и 2.0 ммоль альдегида 9а-е. Смесь кипятят на водяной бане в течение 7-8 ч. Растворитель отгоняют, остаток перекристаллизовывают из бензола или из смеси бензол-гексан, 2:1 (в случае продукта 11е).

СПИСОК ЛИТЕРАТУРЫ

- Р. Г. Мелик-Оганджанян, В. Э. Хачатрян, А. С. Гапоян, *Успехи химии*, 54, 450 (1985).
- М. Шодиев, Б. А. Ураков, Н. И. Мукаррамов, Х. М. Шахидоятов, XTC, 1574 (1993). [Chem. Heterocycl. Comp., 29, 1358 (1993)].
- 3. M. V. Kapustina, I. A. Kharizomenova, V. I. Shvedov, T. P. Radkevich, L. D. Shipilova, *Pharm. Chem. J.*, **26**, 73 (1992).
- 4. K. Csukonyi, J. Lazar, G. Bernath, I. Hermecz, Z. Meszaros, *Monatsh. Chem.*, **117**, 1295 (1986).
- P. Blaskiewich, H. Vorbrueggen, H. Koch, Ger. Offen. DE 2411273, 18, (1975); Chem. Abstr., 83, 206324 (1975).

- S. Gerd, L. Wilfried, B. Alferd, E. Franz, W. Karsten, H. T. Juergen, B. Berthold, K. Frank, C. Sharon, Ger. Offen. DE 19636769; *Chem. Abstr.*, **128**, 217381 (1998).
- 7. A. Lilienkampf, S. Heikkinen, I. Mutikainen, K. Wähälä, Synthesis, 2699 (2007).
- S. Sasaki, N. Cho, Y. Nara, M. Harada, S. Endo, N. Suzuki, S. Furuya, M. Fujino, J. Med. Chem., 46, 113 (2003).
- S. Moore, H. Jaeschke, G. Kleinau, S. Neumann, S. Costanzi, J.-K. Jiang, J. Childress, B. M. Raaka, A. Colson, R. Paschke, G. Krause, C. J. Thomas, M. C. Gershengorn, *J. Med. Chem.*, 49, 3888 (2006).
- 10. В. И. Шведов, И. А. Харизоменова, А. Н. Гринев, *ХГС*, 765 (1975). [*Chem. Heterocycl. Comp.*, **11**, 664 (1975)].
- 11. Х. М. Шахидоятов, Дис. докт. хим. наук, Москва, 1983, 232 с.
- 12. K. Gewald, E. Schinke, H. Böttcher, Chem. Ber., 99, 94 (1966).
- 13. N. P. Peet, S. Sunder, R. J. Barbuch, A. P. Vinogradoff, *J. Heterocycl. Chem.*, 23, 129 (1986).
- 14. M. V. Bhatt, P. T. Perumal, Tetrahedron Lett., 22, 2605 (1981).
- 15. F. M. Hauser, S. R. Ellenberger, Synthesis, 723 (1987).
- 16. C. M. Marson, Tetrahedron, 48, 3659 (1992).
- Á. Horváth, H. István, L. Vasvári-Debreczy, S. Kálmán, M. Pongor-Csákvári, Z. Mészáros, J. Chem. Soc., Perkin Trans. 1, 369 (1983).
- 18. Х. М. Шахидоятов, М. Я. Яманкулов, Ч. Ш. Кадыров, *Химия природ. coed.*, 552 (1977).
- 19. Х. М. Шахидоятов, И. Кайсаров, Химия природ. соед., 79 (1998).
- 20. А. Ш. Абдуразаков, Б. Ж. Элмурадов, Х. М. Шахидоятов, Узб. хим. журн., **6**, 46 (2007).
- 21. Б. Ж. Элмурадов, А. Ш. Абдуразаков, Х. М. Шахидоятов, *Химия природ. coed.*, 383 (2008).
- 22. А. Ш. Абдуразаков, Б. Ж. Элмурадов, Ж. Э. Турдибаев, Х. М. Шахидоятов, *Химия природ. coed.*, 342 (2009).
- 23. Х. А. Бозоров, Б. Ж. Элмурадов, Х. М. Шахидоятов, в кн. Материалы научнопрактической конференции "Актуальные вопросы образования, науки и производства в фармации", Ташкент, 2008, с. 379.
- 24. Б. Ж. Элмурадов, Х. А. Бозоров, Х. М. Шахидоятов, в кн. Конференция "Актуальные проблемы химии природных соединений", Ташкент, 2009, с. 93.
- Á. Horváth, H. István, M. Pongor-Csákvári, Z. Mészáros, J. Heterocycl. Chem., 21, 219 (1984).
- 26. Э. Орипов, Х. М. Шахидоятов, Ч. Ш. Кадыров, Н. Д. Абдуллаев, XГС, 684 (1979). [Chem. Heterocycl. Comp., 15, 556 (1979)].

Институт химии растительных веществ им. С. Ю. Юнусова АН Республики Узбекистан, Ташкент 100170, Республика Узбекистан e-mail:b elmuradov@yahoo.com Поступило 19.11.2009 После доработки 25.05.2010