А. Ю. Кузнецов, Н. Л. Нам^а, С. В. Чапышев

СИНТЕЗ ПИРИДО[3,4-*d*]ПИРИМИДИНОВ НА ОСНОВЕ КОНДЕНСАЦИИ 1-БЕНЗИЛ-3-ОКСОПИПЕРИДИН-4-ЭТОКСИКАРБОКСИЛАТА С МОРФОЛИН-4-КАРБОКСАМИДИНОМ

Разработан метод синтеза 4-аминозамещенных производных 7-бензил-2-морфолин-4-ил-5,6,7,8-тетрагидропиридо[3,4-*d*]пиримидина на основе конденсации 1-бензил-3-оксопиперидин-4-этоксикарбоксилата с морфолин-4-карбоксамидином и последующих реакций 7-бензил-2-морфолин-4-ил-5,6,7,8-тетрагидро-3Н-пиридо[3,4-*d*]пиримидин-4-она с трифторметансульфоновым ангидридом и вторичными аминами.

Ключевые слова: 1-бензил-3-оксопиперидин-4-этоксикарбоксилат, морфолин-4-карбоксамидин, пиридо[3,4-*d*]пиримидины, конденсация.

Пиридо[3,4-*d*]пиримидины проявляют высокую биологическую активность, в частности, селективно ингибируют тирозинкиназу, полностью подавляя рост многих видов злокачественных опухолей [1-3]. Отдельные представители данного класса соединений являются антагонистами α₁-адренорецепторов и используются в медицине при лечении нервных расстройств [4], а также эффективно ингибируют деятельность дегидрофолатредуктазы, вызывая гибель многих патогенных микроорганизмов [5]. Направление и эффективность биологического действия пиридо-[3,4-d]пиримидинов во многом зависят от заместителей в их пиридопиримидиновом ядре. Наиболее распространенными методами синтеза пиридо[3,4-d]пиримидинов являются реакции циклизации производных 3-ациламиноизоникотиновой кислоты под действием уксусного ангидрида и затем аммиака [6-8], а также реакции конденсации 3-аминоизоникотиновой кислоты либо ее эфиров, амидов и нитрилов с муравьиной кислотой, формамидом, цианамидами, амидинами и орто-эфирами [3, 7-9]. Значительно реже производные пиридо[3,4-d]пиримидинов получают на основе конденсации эфиров 1-бензил-3-оксопиперидин-4-карбоновой кислоты с амидинами [4, 10], синтетический потенциал которой остается во многом не раскрытым.

С целью разработки новых методов синтеза производных пиридо-[3,4-*d*]пиримидинов в настоящей работе изучены конденсация этилового эфира 1-бензил-3-оксопиперидин-4-карбоновой кислоты (1) с морфолин-4-карбоксамидином (2) и последующие реакции получаемого 7-бензил-2-морфолин-4-ил-5,6,7,8-тетрагидро-3Н-пиридо[3,4-*d*]пиримидин-4-она (3) с трифторметансульфоновым ангидридом и вторичными аминами.

Конденсацию кетоэфира 1 с эквимолярным количеством карбоксамидина 2 проводили кипячением в этаноле, используя 3 экв. этилата натрия в качестве катализатора. Контроль за реакцией методом TCX показал, что реакция полностью завершается за 3 ч, приводя к образованию нового соединения. Согласно данным элементного анализа, ИК, ЯМР ¹Н и масс-спектров (табл. 1–3), продуктом реакции является соединение **3**, выход которого составил 87%.

4-Аминозамещенные производные пиридо[3,4-*d*]пиримидинов обычно синтезируют в две стадии, сначала хлорируя 3H-пиридо[3,4-*d*]пиримидин-4-оны с помощью SOCl₂ либо POCl₃ и затем замещая атомы хлора в промежуточно получаемых 4-хлорпиридо[3,4-*d*]пиримидинах на аминогруппы [3]. Другим возможным методом синтеза 4-аминопиридо[3,4-*d*]пиримидинов могут быть реакции 3H-пиридо[3,4-*d*]пиримидин-4-онов с трифторметансульфоновым ангидридом и затем с аминами [11]. Реакцию Таблица 1

Соеди-	Брутто-		<u>Найдено, %</u> Вычислено, %	Т. пл.,	Выход, %	
нение	формула	С	Н	Ν	Ĵ	
3	$C_{18}H_{22}N_4O_2$	<u>66.46</u> 66.24	<u>6.96</u> 6.80	<u>16.96</u> 17.17	247–248	87
6a	$C_{22}H_{29}N_5O$	<u>69.87</u> 69.63	<u>7.96</u> 7.70	<u>18.28</u> 18.45	125–126	76
6b	$C_{22}H_{29}N_5O_2$	<u>66.93</u> 66.81	<u>7.57</u> 7.39	<u>17.54</u> 17.71	147–148	72
6c	$C_{22}H_{29}N_5OS$	<u>64.41</u> 64.20	<u>7.29</u> 7.10	<u>16.82</u> 17.02	137–138	70
6d	$C_{25}H_{36}N_6O$	<u>69.02</u> 68.78	<u>8.48</u> 8.31	<u>18.98</u> 19.25	107–108	69
6e	$C_{25}H_{36}N_6O$	<u>68.94</u> 68.78	<u>8.54</u> 8.31	<u>19.02</u> 19.25	128–129	71
6f	$C_{24}H_{32}N_6O_2$	<u>66.26</u> 66.03	<u>7.51</u> 7.39	<u>19.06</u> 19.25	190–191	74
6g	$C_{24}H_{32}N_6O_2$	<u>66.28</u> 66.03	<u>7.57</u> 7.39	<u>18.96</u> 19.25	177–178	73
6h	$C_{26}H_{36}N_6O$	<u>69.82</u> 69.61	<u>8.31</u> 8.09	<u>18.46</u> 18.73	101-102	70
6i	$C_{26}H_{32}N_6O$	<u>70.52</u> 70.24	<u>7.43</u> 7.25	<u>18.78</u> 18.90	103–104	67

Характеристики соединений 3 и 6а-і

соединения **3** с трифторметансульфоновым ангидридом проводили в хлористом метилене при -40 °C, получая трифлатное производное **4** с выходом 90%. Данное соединение взаимодействовало с аминами **5а**-і при кипячении в диоксане, образуя соединения **6а**-і с выходом 67–76%.

Состав и строение соединений **6а–і** подтверждены данными элементного анализа, ИК, ЯМР ¹Н спектроскопии и масс-спектрометрии (табл. 1–3). Интересную информацию о свойствах соединений **6а–і** представляют данные масс-спектрометрии.

Наличие в масс-спектрах интенсивных пиков молекулярных ионов ($I_{\text{отн}}$ 100%) на фоне небольшого числа слабых по интенсивности (<20%) пиков фрагментарных ионов указывает на значительную стабильность соединений **ба–і** к действию электронного удара (табл. 2). При этом одним из наиболее интенсивных пиков в масс-спектрах всех соединений **ба–і** является пик иона с массой 187, что свидетельствует о единой для данных соединений схемы распада, продуктом которой является ион, не содержащий фрагмент NR¹R². Анализ масс-спектров показывает (табл. 2), что первая стадия процесса фрагментации соединений **ба–і** включает элиминирование их молекулярными ионами фрагментов R¹R²N–CN с образованием ионов Φ_1 , которые далее претерпевают элиминирование бензильного заместителя и дегидрирование, образуя относительно стабильные ионы Φ –187.

Элиминирование молекулярными ионами соединений **6а**-і фрагментов R^1R^2N -CN подтверждается данными полуэмпирических расчетов методом PM3 молекул данных соединений, а также их катион-радикалов. Так, например, расчеты показывают, что нейтральная молекула соединения **6а** имеет существенно удлиненную связь $C_{(4)}$ - $C_{(4a)}$ и аномально большой валентный угол N- $C_{(4)}$ - $C_{(4a)}$ вследствие отталкивания пирролидинового заместителя от атомов водорода пиперидинового цикла.

Таблица 2

Соеди- нение	ИК спектр (KBr), v, см $^{-1}$	Масс-спектр, <i>m/z</i> (<i>I</i> _{отн} , %)		
3	3380 (NH), 1725 (C=O), 1610, 1585, 1574, 1545 (C=N, C=C)	326 [M] ⁺ (100), 236 (18), 187 (40), 163 (30)		
6a	1590, 1575, 1535 (C=N, C=C)	379 [M] ⁺ (100), 282 (5), 236 (7), 213 (5), 187 (7)		
6b	1590, 1575, 1535 (C=N, C=C)	395 [M] ⁺ (100), 277 (14), 187 (5)		
6c	1588, 1573, 1540 (C=N, C=C)	411 [M] ⁺ (100), 187 (10)		
6d	1585, 1570, 1535 (C=N, C=C)	436 [M] ⁺ (100), 187 (12), 163 (5)		
6e	1585, 1572, 1535 (C=N, C=C)	436 [M] ⁺ (100), 187 (15), 163 (17)		
6f	3350, 3180 (NH), 1725 (C=O), 1645, 1620 (NH), 1585, 1570, 1530 (C=N, C=C)	436 [M] ⁺ (100), 187 (5)		
6g	3345, 3175 (NH), 1730 (C=O), 1640, 1615 (NH), 1585, 1570, 1530 (C=N, C=C)	436 [M] ⁺ (100), 187 (17), 163 (8)		
6h	1585, 1570, 1535 (C=N, C=C)	448 [M] ⁺ (100), 256 (7), 187 (7), 163 (8)		
6i	1590, 1585, 1570, 1540, 1530 (C=N, C=C)	444 [M] ⁺ (100), 187 (8), 176 (12), 106 (8)		

ИК и масс-спектры соединений 3 и 6а-і

Таблица З

Соеди-	Спектр ЯМР ¹ Н, ДМСО-d ₆ , δ, м. д. (<i>J</i> , Гц)						
нение	5-CH ₂ , уш. с	6-CH ₂ , уш. с	8-CH ₂ , c	CH ₂ C ₆ H ₅	2-N(CH ₂) ₄ O, м	NR ¹ R ²	
3	2.50	2.68	3.7	3.15 (2H, с), 7.2–7.4 (5H, м)	3.5 (4H), 3.6 (4H)	11.1 (1Н, уш. с)	
6a	2.58	2.68	3.7	3.30 (2H, c), 7.2–7.4 (5H, м)	3.6 (8H)	1.65 (4H, м, CH ₂), 3.40 (4H, уш. с, NCH ₂)	
6b	2.58	2.68	3.7	3.30 (2H, c), 7.2–7.4 (5H, м)	3.6 (8H)	3.20 (4H, м, NCH ₂), 3.60 (4H, уш. с, OCH ₂)	
6c	2.65	2.70	3.7	3.28 (2H, с), 7.2–7.4 (5H, м)	3.6 (8H)	2.60 (4H, уш. с, SCH ₂), 3.50 (4H, уш. с, NCH ₂)	
6d	2.72	2.72	3.7	3.28 (2H, с), 7.2–7.4 (5H, м)	3.6 (8H)	0.9 (3H, т, <i>J</i> = 7.1, CH ₃), 1.50 (2H, м, CH ₂), 2.30 (2H, уш. с, NCH ₂), 2.48 (4H, м, NCH ₂), 3.40 (4H, уш. с, NCH ₂)	
6e	2.63	2.70	3.7	3.30 (2H, с), 7.2–7.4 (5H, м)	3.6 (8H)	0.95 (6H, д, <i>J</i> = 6.4, CH ₃), 2.40 (4H, уш. с, NCH ₂), 2.60 (1H, м, NCH), 3.20 (4H, уш. с, NCH ₂)	
6f	2.64	2.70	3.7	3.30 (2H, с), 7.2–7.4 (5H, м)	3.6 (8H)	1.54 (2H, м, β-CH ₂), 1.70 (2H, м, β-CH ₂), 2.40 (1H, м, γ-CH), 2.70 (4H, т, <i>J</i> = 6.2, NCH ₂), 3.72 (4H, т, <i>J</i> = 6.3, NCH ₂), 6.74 и 7.14 (2H, уш. с, CONH ₂)	
6g	2.72	2.72	3.7	3.30 (2H, с), 7.2–7.4 (5H, м)	3.6 (8H)	1.50 (2H, м, β-CH ₂), 1.65 (2H, м, γ-CH ₂), 1.70 (2H, м, β-CH ₂), 2.45 (1H, м, H-β), 2.98 (4H, т, <i>J</i> = 6.2, NCH ₂), 3.72 (4H, τ, <i>J</i> = 6.2, NCH ₂), 5.15 и 5.92 (2H, уш. с, CONH ₂)	
6h	2.64	2.70	3.7	3.35 (2H, с), 7.2–7.4 (5H, м)	3.6 (8H)	1.0–2.1 (9H, м, CH, CH ₂), 2.15 (2H, м, NCH ₂), 2.70 (2H, м, NCH ₂), 2.90 и 3.45 (2H, д, <i>J</i> = 6.2, NCH ₂)	
6i	2.60	2.68	3.7	3.45 (2H, с), 7.2–7.4 (5H, м)	3.6 (8H)	2.38 (3H, с, NCH ₃), 2.95 (2H, т, <i>J</i> = 6.5, CH ₂), 3.58 (2H, м, NCH ₂), 7.18 (2H, м, H-β пиридина), 7.65 (1H, м, H-γ пиридина), 8.00 (1H, д, <i>J</i> = 4.8, H-α пиридина)	

Спектры ЯМР ¹Н соединений 3 и 6а-і

Еще заметнее эти эффекты проявляются в молекуле катион-радикала КР-**6a**, в которой связи $C_{(4)}$ – $C_{(4a)}$ и $C_{(2)}$ – $N_{(3)}$, соответственно, удлинены на 0.0220 и 0.0011 Å, а связь $N_{(1)}$ – $C_{(8a)}$ укорочена на 0.0341 Å по сравнению с аналогичными связями в нейтральной молекуле **6a** (табл. 4). Искаженные валентные углы N– $C_{(4)}$ – $C_{(4a)}$ и сильно удлиненные связи $C_{(4)}$ – $C_{(4a)}$ в молекулах **6a** и КР-**6a** свидетельствуют о наличии у данных молекул значительной энергии напряжения, понизить которую удается благодаря элиминиро-ванию фрагмента R¹R²N–CN. Удлинение связей $C_{(4)}$ – $C_{(4a)}$ и $C_{(2)}$ – $N_{(3)}$ в ряду молекул **6a** и КР-**6a** описывает лишь начальную стадию процесса, завер-шением которого становится полная диссоциация данных связей.

6a, KP-6a

Таблица 4

Рассчитанные методом РМЗ отдельные валентные углы (@) и длины связей (*l*) в молекулах пиридопиримидина ба и его катион-радикала КР-ба

VEOU	ω, Γ	рад.	Cogor	l, Å	
910,1	6a	KP -6a	Связь	6a	KP -6a
C _(4a) -C ₍₄₎ -N	127.7	127.9	N(1)-C(8a)	1.3651	1.3310
N(3)-C(4)-N	111.8	111.1	C ₍₂₎ -N ₍₃₎	1.3677	1.3688
			$C_{(4)} - C_{(4a)}$	1.4223	1.4443

Синтезированные пиридопиримидины **3** и **6а–і** представляют собой белые кристаллические соединения, плохо растворимые в воде и неполярных органических растворителях. Более высокая температура плавления соединений **6f,g** обусловлена наличием в их молекулах карбамидных групп, способных образовывать водородные связи.

Исследование показало, что конденсация этилового эфира 1-бензил-3оксопиперидин-4-карбоновой кислоты с морфолин-4-карбоксамидином и последующие реакции 7-бензил-2-морфолин-4-ил-5,6,7,8-тетрагидро-3Hпиридо[3,4-*d*]пиримидин-4-она с трифторметансульфоновым ангидридом и аминами позволяют получать с высоким выходом разнообразные производные 5,6,7,8-тетрагидропиридо[3,4-*d*]пиримидина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на приборе Specord M-80, спектры ЯМР ¹Н — на приборе Bruker АМХ-400 (400 МГц), внутренний стандарт ТМС. Масс-спектры регистрировали на приборе Finnigan MAT-90 при энергии ионизации 70 эВ. Для колоночной хроматографии использовали силикагель марки L 40/100. Контроль за реакциями осуществляли методом TCX на пластинах Silufol UV-254.

Геометрию молекул пиридопиримидина ба и его катион-радикала КР-ба рассчитывали полуэмпирическим методом PM3, входящим в пакет программ HyperChem [12]. Все расчеты проводили с полной оптимизацией геометрических параметров.

В работе использован кетоэфир 1 компании Acros. Метод получения соединения 2 описан в работе [13].

7-Бензил-2-морфолин-4-ил-5,6,7,8-тетрагидро-3Н-пиридо[3,4-d]пиримидин-4-он (3). К перемешиваемому раствору NaOEt, полученному из 3.5 г (0.15 моль) Na и 200 мл абсолютного этанола, добавляют небольшими порциями 24.8 г (0.15 моль) гидрохлорида соединения 2, а затем по каплям 35.5 г (0.148 моль) кетоэфира 1. Реакционную смесь кипятят 3 ч, после чего 100 мл этанола отгоняют в вакууме. К оставшемуся раствору добавляют гидрохлорид аммония до насыщения, выпавший осадок отфильтровывают, промывают водой и сушат на воздухе, перекристаллизовывают из этилацетата.

4-Амино-7-бензил-2-морфолин-4-ил-5,6,7,8-тетрагидропиридо[3,4-*d*]пиримидины ба-і (общая методика). К охлажденной до -40 °C суспензии 2.36 г (10 ммоль) соединения 3 и 4 г (30 ммоль) К₂CO₃ в 150 мл сухого хлористого метилена при перемешивании добавляют по каплям 3.28 г (12 ммоль) трифторметансульфонового ангидрида, после чего температуру реакционной смеси медленно доводят до комнатной. Реакционную смесь перемешивают 2 ч при комнатной температуре, затем выливают в 200 мл воды. Органический слой отделяют, сушат Na₂SO₄ и хроматографируют на короткой колонке, заполненной сили-кагелем. Растворитель отгоняют в вакууме, остаток растворяют в 150 мл сухого диоксана. Краствору добавляют 4 г (30 ммоль) К₂СО₃ и 15 ммоль соответствующего амина, кипятят 2 ч, охлаждают и выливают в 300 мл воды, экстрагируют этилацетатом, экстракт сушат Na₂SO₄ и хроматографируют на короткой колонке, заполненной силикагелем. Растворитель отгоняют в вакууме, остаток сушат на воздухе и перекристаллизовывают из этилацетата.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. J. Bridges, Chem. Rev., 101, 2541 (2001).
- 2. H. Daub, K. Specht, A. Ullrich, Nat. Rev., Drug Discov., 3, 1001 (2004).
- G. W. Rewcastle, W. A. Denny, H. D. H. Showwalter, *Curr. Org. Chem.*, 4, 679
 T. J. Connolly, M. Matchett, K. Sarma, *Org. Process Res.* & *Dev.*, 9, 80 (2005). G. W. Rewcastle, W. A. Denny, H. D. H. Showwalter, Curr. Org. Chem., 4, 679 (2000).
- 5. G. Wollein, R. Troschute, J. Heterocycl. Chem., 39, 1195 (2002).
- 6. J. Audoux, N. Ple, A. Turck, G. Queguiner, Tetrahedron, 60, 4107 (2004).
- 7. W. J. Irwin, D. G. Wibberley, Adv. Heterocycl. Chem., 10, 149 (1969).
- 8. Comprehensive Heterocyclic Chemistry, A. R. Katritzky (Ed.), Pergamon, Oxford, 1984, vol. 3, p. 199.
- 9. J. H. Maguire, R. L. McKee, J. Org. Chem., 39, 3434 (1974).
- 10. J. Reiter, E. Rivo, J. Heterocycl. Chem., 25, 1497 (1988).
- 11. S. Sarkar, Synlett, 390 (2004).
- 12. HyperChem version 6.03, Hypercube Inc., 2000.
- 13. M. S. Bernatowitcz, Y. Wu, G. R. Matsueda, J. Org. Chem., 57, 2497 (1992).

Институт проблем химической физики РАН, Черноголовка 142432, Московской обл. e-mail: chap@icp.ac.ru

Поступило 10.03.2006

^аРоссийский государственный аграрный *университет – МСХА им. К. А. Тимирязева*, Москва 127550 e-mail: dimlorg@timacad.ru