Я и мои соавторы посвящают эту статью 70-летнему юбилею академика профессора Эдмунда Лукевица и от всего сердца желают ему доброго здоровья, дальнейшего продолжения его выдающейся научной деятельности, счастья и успеха во всех деяниях.

Я лично горжусь тем, что в течение 10 лет Эдмунд работал в моей лаборатории в Институте органического синтеза Латвийской академии наук. Вместе с ним мы начали исследования в несколько новых направлениях кремнийорганической химии. В дальнейшем он блестяще продолжил их самостоятельно, внеся огромный вклад в химию силатранов, герматранов и биологически активных кремнийорганических соединений, принесший ему мировую известность.

Вместе с Э. Лукевицем мы провозгласили рождение новой отрасли химии кремния – биокремнеорганической химии и совместно опубликовали б монографий на русском языке (5 из которых переведены в США, Германии, Румынии и Польше).

Мы высоко ценим плодотворную деятельность Э. Лукевица на посту главного редактора журнала ХГС, который он превратил в международное периодическое издание.

М. Г. Воронков, Л. И. Ларина, Ю. И. Болгова, О. М. Трофимова, Н. Ф. Чернов, В. А. Пестунович

СТРОЕНИЕ N-(1-СИЛАТРАНИЛМЕТИЛ)- И N-(ТРИМЕТОКСИ-СИЛИЛМЕТИЛ)ПРОИЗВОДНЫХ АЗОТСОДЕРЖАЩИХ ГЕТЕРОЦИКЛОВ ПО ДАННЫМ ЯМР, ИК И УФ СПЕКТРОСКОПИИ

Изучены ЯМР ¹H, ¹³C, ¹⁵N, ²⁹Si, ИК и УФ спектры N-(1-силатранилметил)- и N-(триметоксисилилметил)производных азотистых гетероциклов. Зависимость и взаимосвязь химических сдвигов ядер ²⁹Si и ¹⁵N силатранильной группы в спектрах N-(1-силатранилметил)замещенных азотистых гетероциклов определяется природой гетероциклической системы.

Ключевые слова: N-(1-силатранилметил)производные азотсодержащих гетероциклов, силатраны, триэтаноламин, ЯМР спектроскопия.

Внутрикомплексные соединения пентакоординированного кремния – силатраны привлекают внимание своей высокой биологической активностью, структурными особенностями, а также как возможные интермедиаты в реакциях нуклеофильного замещения у атома кремния.

Силатранильная группа $-Si(OCH_2CH_2)_3N$ (Sa) проявляет весьма высокий электронодонорный индуктивный эффект ($\sigma_I = -0.56$, $\sigma^* = -3.40$) [1, 2]. Благодаря этому значителен и +I-эффект группы $-CH_2Sa$ ($\sigma_I = -0.36$,

 $\sigma^* = -2.24$ [1, 3]) в производных силатрана XCH₂Sa, где X – неорганический или органический заместитель. На это указывают также высокая основность соединений ряда XCH₂Sa (X = F, Cl, Br, I, -O, -S, >N, CH₂=CH– и т. п.), определенная при изучении их межмолекулярного взаимодействия с фенолом, и низкие потенциалы ионизации [4].

Особый интерес представляют N-(1-силатранилметильные) производные азотсодержащих гетероциклов HetCH₂Si(OCH₂CH₂)₃N (Het – азолил), в которых силатранильная группа (Sa) связана с эндоциклическим атомом азота гетероароматической системы экзоциклическим мостиком CH₂.

С целью изучения влияния высокого электронодонорного индуктивного эффекта силатранилметильной группы (CH₂Sa) на стереоэлектронную структуру и реакционную способность азотсодержащих гетероциклов методами ЯМР, ИК и УФ спектроскопии нами исследованы N-(1-силатранилметил)замещенные имидазола (1), 3,5-диметилпиразола (2), 2-метилиндола (3), бензимидазола (4), 1,2,4-триазола (5), сукцинимида (6), глутаримида (7) и фталимида (8). Все они синтезированы с высоким выходом (89–97%) переэтерификацией соответствующих триметокси-(N-гетерилметил)силанов 9–16 трис(2-гидроксиэтил)амином в отсутствие катализатора [5–7].

Соединения 1–8 – бесцветные кристаллические вещества с т. пл. от 127 (4) до 267 °C (6), растворимые в галогеноуглеводородах, MeCN, ДМСО и ДМФА.

Нами сопоставлены УФ спектры поглощения N-(1-силатранилметил)- (2– 4, 8) и N-(триметоксисилилметил)производных (10–12, 16) азотистых гетероциклов в растворе ацетонитрила. В УФ спектрах растворов соединений 2–4, 8 и 10–12, 16 наблюдается общая тенденция – длинноволновой сдвиг полос при замене триметоксисилильной группы на силатранильную (табл. 1). Величина этого сдвига колеблется от 3 до 10 нм. В спектре соединения 8 длинноволновая полоса дублетна (213 и 230 нм), тогда как в спектре соединения 16 она наблюдается при 222 нм. Кроме того в спектре соединения 8 наблюдается длинноволновая полоса при 322 нм, которая, по-видимому, обусловлена $n \rightarrow \pi^*$ -переходом с несвязывающей орбитали

Таблица 1

Соеди- нение	Het	λ_1 , нм (ε)	λ ₂ , нм (ε)
2	Me N.N	224 (7800)	-
3	Me N	290 (6300)	229 (41 000)
4		259 (6200), 269 (5400) 276 (5100) 283 (3700)	211 (38 300)
8		283 (1050), 291 (1250) 299 (1120), 322 (600)	213 (30 800) 230 (28 500)
10	Me N ^{Me}	221 (5900)	_
11	Me N	284 (8050)	227 (47 200)
12		255 (7100), 269 (5300) 277 (5050), 285 (4050)	208 (25 000)
16		293 (1800), 299 (1750)	222 (51 200)
3,5-Диметил- пиразол	Me Ne Me N H	210 (3650)	_
2-Метилиндол	Me H	270 (6600), 288 (4700)	220 (30 300)
Бензимидазол	N N H	244 (5500), 250 (5300) 268 (3900), 273(5100 280 (5800)	203 (30 500)

УФ спектры поглощения растворов HetCH₂Si(OCH₂CH₂)₃N (2–4, 8) и HetCH₂Si(OMe)₃ (10–12, 16) в MeCN

1859

неподеленной пары карбонильного кислорода на вакантные π -орбитали гетероцикла. До сих пор эта полоса наблюдалась только в спектрах α,β -ненасыщенных кетонов в области 300–330 нм. Батохромный сдвиг в УФ спектрах поглощения 1-(N-гетерилметил)силатранов 2–4, 8 по сравнению с УФ спектрами соответствующих N-(триметоксисилилметильных)производных 10–12, 16 обусловлен тем, что силатранильную группу можно рассматривать как внутримолекулярный донорно-акцепторный комплекс *n*, σ -типа. Мезомерное влияние силатранильной группы на π -электронную систему гетероциклов можно приписать перекрыванию аксиального фрагмента C–Si \leftarrow N силатранильной группы с неподеленной электронной парой атома азота гетероцикла.

Для оценки электронодонорного эффекта силатранилметильной группы нами изучены ИК спектры 1-(N-гетерилметил)силатранов 2–5, 8 и (N-гетерилметил)триметоксисиланов 10–13, 16 в MeCN. В ИК спектрах производных силатрана 2, 5 и 8 частота ненасыщенных фрагментов C=N и C=O гетероцикла по сравнению с соответствующими триметоксисилилметилзамещенными 10, 13, 16 значительно понижена (табл. 2). Групповые характеристические частоты в ИК спектрах производных силатрана 2–5 практически не зависят от природы гетероцикла за исключением соединения 8. В его спектре полосы группировки SiO₃ в области 600–650 см⁻¹ дублетны (607, 634 см⁻¹) (табл. 2). Это соответствует

Таблица 2

Соеди- нение	$\nu, Si(OR)_3^*, cm^{-1}$	ν , Het, cm^{-1}
2	580, 647, 787, 798, 807, 918, 948, 1022, 1091, 1144	1552, 3122
3	574, 630, 640, 767, 791, 801, 908, 914, 941, 1018, 1088, 1121	737, 1542, 1572, 1609, 3022, 3038
4	590, 650, 774, 784, 794, 814, 921, 948, 958, 1031, 1088, 1128	754, 761, 1010, 1499, 1502, 1626, 3045, 3060, 3095
5	594, 644, 771, 801, 824, 924, 950, 968, 1018, 1091, 1121	1519, 3128
8	574, 607, 634, 781, 794, 804, 914, 938, 944, 1018, 1088, 1115	717, 724, 1482, 1489, 1499, 1616, 1696, 3035, 3048
10	844, 1095, 1200, 2848	1559, 3121
11	821, 1085, 1188, 2841	747, 1550, 1572, 1610, 3050, 3075
12	831, 1075, 1188, 2841	741, 1002, 1492, 1585, 1612, 3052, 3075
13	845, 1090, 1200, 2852	1559, 3121
16	832, 1081, 1185, 2841	717, 1469, 1616, 1709, 3025, 3050

Характеристические групповые частоты в спектрах HetCH₂Si(OCH₂CH₂)₃N 2-5, 8 и HetCH₂Si(OMe)₃ (10-13, 16

* 2–5, 8 $Si(OR)_3 = Sa;$ 10–13, 16 $Si(OR)_3 = Si(OMe)_3$.

Таблица З

Соеди-	Химические сдвиги (CDCl ₃), б, м. д. (<i>J</i> , Гц)			
нение	¹ H	¹³ C	¹⁵ N	²⁹ Si
1	2.86 (r, ${}^{3}J$ = 5.9, NCH ₂); 3.23 (c, CH ₂); 3.77 (r, ${}^{3}J$ = 5.9, OCH ₂); 6.91 (μ , ${}^{3}J$ = 1.1, H-4,); 6.94 (μ , ${}^{3}J$ = 1.1, H-5); 7.49 (c, H-2)	38.12 (${}^{1}J_{C-Si} = 108.7, CH_2$); 50.97 (NCH ₂); 57.07 (OCH ₂); 121.31 (C-4); 127.06 (C-5); 138.41 (C-2)	-121.8 (N-3); -218.9 (N-1); -351.6 (N-Si)	-80.3
2	2.20 (c); 2.21 (c, CH ₃); 2.82 (r, ${}^{3}J$ = 5.9, NCH ₂); 3.42 (c, CH ₂); 3.77 (r, ${}^{3}J$ = 5.9, OCH ₂); 5.67 (c, H-4)	11.46 (CH ₃ , (C-5)); 13.71 (CH ₃ , (C-3)); 41.23 (${}^{1}J_{C-Si} = 111.7$, CH ₂); 50.77 (NCH ₂); 57.09 (OCH ₂); 103.22 (C-4); 138.28 (C-5); 144.23 (C-3)	-77.8 (N-2); -172.9 (N-1); -351.0 (N-Si)	-79.7
3	2.45 (c, CH ₃); 2.77 (r, ${}^{3}J = 5.8$, NCH ₂); 3.40 (c, CH ₂); 3.72 (r, ${}^{3}J = 5.8$, OCH ₂); 6.14 (c, H-3); 6.96 (д. д, ${}^{3}J = 8.2$, ${}^{3}J = 7.1$, H-6); 7.01 (д. д, ${}^{3}J = 8.7$, ${}^{3}J = 7.1$, H-5); 7.42 (д, ${}^{3}J = 8.7$, H-4); 7.46 (д, ${}^{3}J = 8.2$, H-7)	13.24 (CH ₃); 34.85 (CH ₂); 50.88 (NCH ₂); 57.09 (OCH ₂); 97.46 (C-3); 111.32 (C-7); 117.71 (C-6); 118.55 (C-5); 118.74 (C-4); 127.59 (C-9); 137.45 (C-8); 138.28 (C-2)	–351.9 (N–Si)	-77.6
4	2.87 (r, ${}^{3}J = 5.8$, NCH ₂); 3.37 (c, CH ₂); 3.79 (r, ${}^{3}J = 5.8$, OCH ₂); 7.17 (μ . μ . μ , ${}^{3}J = 8.1$, ${}^{4}J = 7.1$, ${}^{4}J = 1.3$, H-5); 7.21 (μ . μ . μ , ${}^{3}J = 8.1$, ${}^{4}J = 7.1$, ${}^{4}J = 1.3$, H-6); 7.43 (μ . μ . μ , ${}^{3}J = 8.1$, ${}^{4}J = 1.3$, ${}^{5}J = 0.7$, H-4); 7.71 (μ . μ . μ , ${}^{3}J = 8.1$, ${}^{4}J = 1.3$, ${}^{5}J = 0.7$, H-4); 7.71 (μ . μ , μ , ${}^{3}J = 8.1$, ${}^{4}J = 1.3$, ${}^{5}J = 0.7$, H-7); 8.10 (c, H-2)	35.05 (${}^{1}J_{C-Si} = 110.6$, CH ₂); 50.71 (NCH ₂); 56.94 (OCH ₂); 110.64 (C-7); 119.22 (C-4); 120.76 (C-5); 121.54 (C-6); 135.88 (C-8); 143.23 (C-9); 145.02 (C-2)	-142.9 (N-3); -255.5 (N-1); -350.6 (N-Si)	-80.1
5	2.87 (r, ³ <i>J</i> = 5.9, NCH ₂); 3.49 (c, CH ₂); 3.78 (r, ³ <i>J</i> = 5.9, OCH ₂); 7.77 (c, H-3); 8.16 (c, H-5)	40.86 (${}^{1}J_{C-Si}$ = 105.8, CH ₂); 50.77 (${}^{1}J_{C-C}$ = 35.0, NCH ₂); 56.86 (${}^{1}J_{C-C}$ = 35.0, OCH ₂); 143.37 (C-5); 149.69 (C-3)	-79.1 (N-2); -132.1 (N-4); -160.1 (N-1); -350.6 (N-Si)	-81.2
6	2.60 (c, H-3,4); 2.80 (r, ${}^{3}J = 5.9$, NCH ₂); 2.90 (c, CH ₂); 3.74 (r, ${}^{3}J = 5.9$, OCH ₂)	28.31 (C-3,4); 30.34 (CH ₂); 51.23 (NCH ₂); 57.36 (¹ <i>J</i> _{C-C} = 35.0, OCH ₂); 177.47 (C=O)	-200.1 (N-1); -354.9 (N-Si)	-78.7

Спектры ЯМР ¹H, ¹³C, ¹⁵N и ²⁹Si HetCH₂Si(OCH₂CH₂)₃N (1-8) и HetCH₂Si(OMe)₃ (9-16)

1861

7	1.83 (M, H-4); 2.57 (T, ${}^{3}J$ = 6.6, H-3,5); 2.76 (T, ${}^{3}J$ = 5.9, NCH ₂); 3.24 (c, CH ₂); 3.72 (T, ${}^{3}J$ = 5.9, OCH ₂)	17.43 (C-4); 31.05 (CH ₂); 33.25 (C-3,5); 51.35 (NCH ₂) 57.57 (OCH ₂); 172.41 (C=O)	–201.9 (N-1); –356.4 (N–Si)	-77.0
8	2.81 (r, ${}^{3}J$ = 6.0, NCH ₂); 3.07 (c, CH ₂); 3.77 (r, ${}^{3}J$ = 6.0, OCH ₂); 7.59 (μ . μ , ${}^{3}J$ = 5.3, ${}^{3}J$ = 3.0, H-5,6); 7.77 (μ . μ , ${}^{3}J$ = 5.3, ${}^{3}J$ = 3.0, H-4,7)	29.23 (${}^{1}J_{C-Si}$ = 111.7, CH ₂); 51.22 (NCH ₂); 57.34 OCH ₂); 122.46 (C-4,7); 132.87 (C-5,6); 133.07 (C-8,9); 168.68 (C=O)	–221.0 (N-1); –351.6 (N–Si)	-78.4
9	3.54 (ОСН ₃); 4.14 (СН ₂); 7.26 (д, ³ <i>J</i> = 2.0, H-4); 7.38 (д, ³ <i>J</i> = 2.0, H-5)	32.31 (CH ₂); 50.30 (OCH ₃); 140.79 (C-2); 114.49 (C-4); 123.32 (C-5)	-112.0 (N-3); -201.1 (N-1)	-55.6
10	2.10 (c, CH ₃ (C-3)); 2.12 (c, CH ₃ (C-5)); 3.49 (c, OCH ₃); 3.50 (c, CH ₂); 5.66 (c, H-4)	10.93 (CH ₃ (C-5)); 13.27 (CH ₃ (C-3)); 34.18 (CH ₂); 50.80 (OCH ₃); 104.40 (C-4); 138.78 (C-5); 143.18 (C-3)	-80.6 (N-2); -187.3 (N-1)	-54.1
12	3.36 (с, OCH ₃); 3.47 (с, CH ₂); 7.11 (м, H-5,6); 7.24 (д, ³ <i>J</i> = 8.1, H-4); 7.65 (д, ³ <i>J</i> = 8.1, H-7); 7.81 (с, H-2)	28.37 (CH ₂); 50.37 (OCH ₃); 109.21 (C-7); 119.46 (C-4); 121.24 (C-5); 122.10 (C-6); 134.38 (C-8); 142.95 (C-9); 143.07 (C-2)	-140.5 (N-3); -238.3 (N-1)	-54.5
13	3.39 (c, OCH ₃); 3.65 (c, CH ₂); 7.72 (c, H-3); 7.95 (c, H-5)	34.23 (CH ₂); 50.66 (OCH ₃); 143.29 (C-5); 150.81 (C-3)	-82.8 (N-2); -132.7 (N-4); -173.1 (N-1)	-55.7
14	2.53 (c, H-3,4); 2.88 (c, CH ₂); 3.40 (c, OCH ₃)	22.76 (CH ₂); 27.89 (C-3,4); 50.52 (OCH ₃); 176.54 (C=O)	-208.3 (N-1)	-53.5
15	1.82 (м, H-4); 2.54 (м, H-3,5); 3.25 (с, CH ₂); 3.45 (с, ОСН ₃)	17.05 (C-4); 24.09 (CH ₂); 32.50 (C-3,5); 50.65 (OCH ₃); 172.05 (C=O)	-208.9 (N-1)	-52.3
16	3.24 (CH ₂); 3.52 (OCH ₃); 7.65 (д. д. ${}^{3}J$ = 5.5, ${}^{3}J$ = 3.1, H-5,6); 7.77 (д.д., ${}^{3}J$ = 5.5, ${}^{3}J$ = 3.1, H-4,7)	22.90 (${}^{1}J_{C-Si} = 111.7$, (CH ₂)); 50.75 (OCH ₃); 122.91 (C-4,7); 133.72 (C-5,6); 132.22 (C-8,9); 168.07 (C=O)	-225.0	-61.3

данным УФ спектроскопии, свидетельствующим о наличии у молекулы соединения 8 двух структур. Групповые частоты в ИК спектрах (N-гетерилметил)триметоксисиланов **10–13**, **16** практически не зависят от структуры гетероцикла. Спектры ЯМР ¹H, ¹³C, ¹⁵N и ²⁹Si N-(1-силатранилметил)производных

соединений 1-8 приведены в табл. 3.

Таблица 4

Соеди-	MeNHet	Химические сдвиги, б, м. д. *		
нение		¹³ C [9]	¹⁵ N [8]	
17		119.7 (C-5); 129.3 (C-4); 137.6 (C-2)	-219.5 (N-1); -124.3 (N-3)	
18	N N Me	105.1 (C-4); 129.5 (C-5); 138.7 (C-3)	-73.7 (N-2); -179.3 (N-1)	
19	Me N Me	100.0 (C-3); 109.2 (C-7); 119.6 (C-6); 120.7 (C-5); 120.0 (C-4); 128.9 (C-9); 137.0 (C-8); 138.1 (C-2)	-253.6	
20	N N Me	108.9 (C-7); 119.7 (C-4); 121.5 (C-5); 122.4 (C-6); 134.1 (C-8); 143.1 (C-2); 143.2 (C-9)	–136.3 (N-3); –236.4 (N-1)	
21	N N N Me	142.7 (C-5); 150.7 (C-3)	-82.2 (N-2); -129.1 (N-4); -171.3 (N-1)	
22	O N-Me O	28.7 (C-3,4); 177.7 (C=O)	-199.3 (N-1)	

Спектры ЯМР¹³С и ¹⁵N соединений 17-22 (Ме-NHet)

^{*} Спектры ЯМР 13 С снимали в CDCl₃, ЯМР 15 N – в CDCl₃ (соединения 17, 18) и ДМСО-d₆ (соединения **19–22**).

Химические сдвиги ядер ¹Н и ¹³С гетероциклического фрагмента (Het) соединений **1–8** (табл. 3) мало отличаются от соответствующих N-метилпроизводных азолов (табл. 4) [8, 9]. В спектре ЯМР ¹³С соединений **1–8** наблюдается прямая КССВ ¹³С в экзоциклическом фрагменте NCH₂Si и ²⁹Si (¹J_{C-Si} ~106–112 Гц), характерная для силатранов (табл. 3).

Среди сигналов ЯМР ¹⁵N наиболее чувствителен к влиянию силатранилметильного заместителя сигнал ¹⁵N атома азота, находящегося в положении один (N-1), который изменяется на 0.6–20.0 м. д. (табл. 3) по сравнению с аналогичным сигналом в спектрах 1-метилазолов (табл. 4) [8]. Другие сигналы ¹⁵N атомов N-2, N-3 и N-4 мало отличаются от сигналов в спектрах соответствующих 1-метилпроизводных азолов. При этом с увеличением электроноакцепторного эффекта гетероциклического заместителя (зависящего от числа, расположения и характера связывания эндоциклических атомов азота) увеличивается экранирование ядра ²⁹Si и дезэкранирование ядра ¹⁵N в силатрановом остове. Такая зависимость δ^{15} N и δ^{29} Si характерна для силатранов ряда XCH₂Sa [10]. В ряду изученных соединений химические сдвиги ядер ²⁹Si и ¹⁵N силатранильного фрагмента в зависимости от заместителя Неt изменяются взаимосвязано (табл. 3).

Повышение экранирования ядер ²⁹Si в соединениях 7, 3, 8, 4 и 5 сопровождается пропорциональным уменьшением экранирования ядер ¹⁵N (табл. 3). Близким значениям химических сдвигов ядер ²⁹Si ($-77 \div -81$ м. д.) и ¹⁵N ($-350 \div -356$ м. д.) соответствует незначительное различие длины трансаннулярной связи N—Si в силатрановом остове в соединениях 1, 2, 4 и 5 [11–13]. Это указывает, что в этих молекулах электроноакцепторные индуктивные эффекты заместителей Неt и HetCH₂ весьма близки. Последнее наблюдение должно отразиться на комплексообразующей способности 1-(N-гетерилметил)силатранов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H, ¹³C, ¹⁵N, ²⁹Si синтезированных соединений получены на спектрометре Bruker DPX-400 (резонансная частота 400, 101, 41 и 80 МГц, соответственно) в CDCl₃ при комнатной температуре, внутренний стандарт для ядер ¹H, ¹³C и ²⁹Si TMC, а для ядер ¹⁵N – Me¹⁵NO₂. Для получения спектров ЯМР ²⁹Si использовали импульсную последовательность INEPT. Химические сдвиги ЯМР ¹⁵N измеряли из инверсных двумерных спектров ¹H–¹⁵N по методике HMBC-GP. Точность измерения химических сдвигов ядер ¹H и ¹³C составляла 0.01 и 0.02 м. д., соответственно, а ¹⁵N и ²⁹Si – 0.1 м. д. УФ спектры растворов соединений зарегистрированы на спектрофотометре Specord UV-vis, а ИК спектры – на спектрометре Specord IR-75 в микрослое или в таблетках KBr.*

N-(Триметоксисилилметил)- и N-(1-силатранилметил)производные имидазола (1, 9), 3,5-диметилпиразола (2, 10), 2-метилиндола (3, 11), бензимидазола (4, 12), 1,2,4-триазола (5, 13), сукцинимида (14), глутаримида (15) и фталимида (8, 16) получены по ранее описанной методике [5–7].

^{*} ИК и УФ спектры изучены совместно с А. М. Шулуновой и Э. И. Бродской.

N-(1-Силатранилметил)сукцинимид (6). Смесь 4.31 г (17 ммоль) соединения 14 и

2.54 г (17 ммоль) триэтаноламина перемешивают 10 мин при 25 °С. Выпавший белый осадок перекристаллизовывают из смеси хлороформ-гексан, 1:1. Получают 5.01 г соединения **6**. Т. пл. 267 °С. Выход 89%. Найдено, %: С 46.02; Н 6.08; N 9.93; Si 9.63. $C_{11}H_{18}N_2O_5Si$. Вычислено, %: С 46.14; Н 6.34; N 9.78; Si 9.81.

N-(1-Силатранилметил)глутаримид (7) получают аналогично. Т. пл. 238 °С. Выход 90%. Найдено, %: С 47.86; Н 6.62; N 9.39; Si 9.46. С₁₂Н₂₀N₂O₅Si. Вычислено, %: С 47.98; Н 6.71; N 9.32; Si 9.35.

Работа выполнена при финансовой поддержке Совета по грантам Президента РФ (грант НШ-4575.2006.3).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. И. Глухих, М. Г. Воронков, О. Г. Ярош, С. Н. Тандура, Н. В. Алексеев, Н. Ю. Хромова, Т. К. Гар, *ДАН*, **258**, 387 (1981).
- 2. М. Г. Воронков, В. В. Беляева, ЖОХ, 72, 2012 (2002).
- 3. A. Daneshrad, C. Eaborn, D. R. M. Walton, J. Organomet. Chem., 85, 35 (1975).
- М. Г. Воронков, Э. И. Бродская, В. В. Беляева, Т. В. Кашик, В. П. Барышок, О. Г. Ярош, *ЖОХ*, 56, 621 (1986).
- 5. Н. Ф. Чернов, Ю. И. Болгова, О. М. Трофимова, М. Г. Воронков, *ЖОХ*, **69**, 1453 (1999).
- 6. М. Г. Воронков, Э. А. Зельбст, А. А. Кашаев, Н. Ф. Чернов, О. М. Трофимова, Ю. И. Болгова, В. С. Фундаменский, *ДАН*, **376**, 204 (2001).
- М. Г. Воронков, О. М. Трофимова, В. К. Турчанинов, Э. А. Зельбст, Ю. И. Болгова, В. В. Беляева, Л. И. Ларина, Т. Н. Аксаментова, Л. В. Клыба, А. И. Михалева, Н. Ф. Чернов, *ЖОрХ*, **39**, 1527 (2003).
- 8. M. Witanowski, L. Stefaniak, G. A. Webb, in *Annual Reports on NMR Spectroscopy*, G. A. Webb(Ed.), London, 1974, p. 316.
- 9. Г. Леви, Г. Нельсон, *Руководство по ядерному магнитному резонансу углерода-13 для химиков органиков*, Мир, Москва, 1975.
- V. Pestunovich, S. Kirpichenko, M. Voronkov, in *The Chemistry of Organic Silicon Compounds*, Z. Rappoport Y. Apeloig (Eds.), John Wiley & Sons Ltd., New York, 1998, Vol. 2, Ch. 24, p. 1447.
- М. Г. Воронков, Э. А. Зельбст, А. А. Кашаев, Ю. В. Каткевич, В. С. Фундаменский, Ю. И. Болгова, О. М. Трофимова, Н. Ф. Чернов, *ДАН*, **397**, 57 (2004).
- 12. М. Г. Воронков, Э. А. Зельбст, В. С. Фундаменский, Ю. В. Каткевич, Ю. И. Болгова, О. М. Трофимова, Н. Ф. Чернов, *Журн. структ. химии*, **46**, 1165 (2005).
- М. Г. Воронков, В. С. Фундаменский, Э. А. Зельбст, Ю. В. Каткевич, О. М. Трофимова, Ю. И. Болгова, Н. Ф. Чернов, *ДАН*, 401, 41 (2005).

Иркутский институт химии им. А. Е. Фаворского СО РАН, Иркутск 664033 e-mail: voronkov@irioch.irk.ru Поступило 28.09.2006