Р. Р. Гатауллин^а, Р. Р. Ишбердина⁶, А. В. Антипин^а, К. Ю. Супоницкий, Н. Н. Кабальнова^а, О. В. Шитикова^а, Л. В. Спирихин^а, М. Ю. Антипин, И. Б. Абдрахманов^а

РЕАКЦИЯ N-МЕЗИЛАТОВ 1,3a,4,8b-ТЕТРАГИДРОЦИКЛОПЕНТ[*b*]ИНДОЛОВ И 3,4,4a,9a-ТЕТРАГИДРОКАРБАЗОЛОВ С ДИМЕТИЛДИОКСИРАНОМ И БРОМОМ

При взаимодействии с диметилдиоксираном N-мезил-1,3а,4,8b-тетрагидроциклопент-[*b*]индолы и -3,4,4а,9а-тетрагидрокарбазолы преимущественно образуют *транс*-эпоксид. Реакция с молекулярным бромом приводит к продукту галогенирования в ароматическое ядро – соответствующему N-мезил-7-бром-1,3а,4,8b-тетрагидроциклопент[*b*]индолу или -6-бром-3,4,4а,9а-тетрагидрокарбазолу.

Ключевые слова: диметилдиоксиран, тетрагидрокарбазолы, тетрагидроциклопент[*b*]-индолы, эпоксид, РСА.

Циклоалк[b]индолины входят в состав значительного количества природных соединений, лекарственных препаратов и находят применение в синтезе алкалоидоподобных систем. Благодаря этому разработка новых методов их получения привлекает внимание широкого круга исследователей [1–3]. В качестве промежуточных веществ в синтезе ряда алкалоидов интерес представляют также индолины с ненасыщенной двойной связью в алициклическом фрагменте молекулы. Ранее нами был предложен способ получения таких соединений из соответствующих продуктов галогенциклизации [4] *орто*-(2-циклоалкен-1-ил)анилинов. В данной работе мы исследовали реакции синтезированных таким путем индолинов **1–3** с электрофильными реагентами [4].

Установлено, что взаимодействие соединений 1–4 с диметилдиоксираном (ДМДО) приводит к эпоксидам 5a,b, 6a,b, 7 и 8. В случае окисления соединений 1 и 2 получены эпоксиды 5a,b и 6a,b, где соотношение изомеров a и b составляет примерно 1:19. При окислении карбазолов 3 и 4 образуются только эпоксиды 7 и 8 соответственно. Второй изомер не обнаружен. Обработка эпоксида 7 катионитом КУ-2-08 в метаноле приводит к единственному гексагидрокарбазолу 9a с хорошим выходом. Поскольку получен только один продукт, мы предположили протекание реакции по механизму S_N 2-замещения на стадии образования протонированного эпоксида 7a. В случае же образования карбокатиона 7b в реакционной смеси мог быть получен также изомер 9b в результате последующей атаки карбкатиона 7b метоксильной частицей (метанолом) с двух сторон плоскости.

1 R = X = H, n = 1; **2** R = Me, X = H, n = 1; **3** R = X = H, n = 2; **4** R = H, X = Br, n = 2; **5** R = H; **6** R = Me; **7** X = H; **8** X = Br

Установление ориентации функциональных групп в эпоксидах осуществлено с помощью спектральных методов, а строение соединения **5b** подтверждено также методом PCA. Общий вид молекулы представлен на рисунке.

Оба пятичленных цикла достаточно плоские. Среднеквадратичные отклонения составляют 0.062 Å для $C_{(4)}-N_{(1)}-C_{(5)}-C_{(10)}-C_{(11)}$ и 0.066 Å для $C_{(1)}-C_{(2)}-C_{(3)}-C_{(4)}-C_{(11)}$. Первый находится в плоскости бензольного кольца, а угол перегиба между пятичленными циклами равен 60.3(1)°. Угол между трехчленным эпокси- и соответствующим пятичленным циклами составляет 79.6(1)°. Связи $C_{(4)}-N_{(1)}$ и $C_{(3)}-O_{(1)}$ имеют *транс*-расположение (торсионный угол $N_{(1)}-C_{(4)}-C_{(3)}-O_{(1)}$ равен 170.6(2)°) или антирасположение эпокси- и азотсодержащего циклов (обозначения C, O, N согласно рисунку). Торсионный угол $H_{(3)}-C_{(3)}-C_{(4)}-H_{(4)}$ равен 72.3(1.7)°, т. е. близок к 90°,

Общий вид молекулы 5b в тепловых эллипсоидах (50%)

а КССВ между соответствующими протонами близка к нулю. Протоны у узловых атомов $C_{(4)}$ и $C_{(11)}$ имеют взаимное *цис*-расположение (угол $H_{(4)}-C_{(4)}-C_{(11)}-H_{(11)}$ равен 13(2)°), что подтверждает КССВ J = 8.6 Гц. Протоны $H_{(1a)}$ и $H_{(1b)}$ находятся в скошенной конформации по отношению к $H_{(11)}$ (углы $H_{(11)}-C_{(11)}-C_{(1)}-H_{(1a)}$ и $H_{(11)}-C_{(11)}-C_{(1)}-H_{(1b)}$ равны –22(2) и –129(2)° соответственно) и их КССВ составляют 6.0–8.8 Гц. Протоны $H_{(2)}$ и $H_{(3)}$ ориентированы вдоль кольца и не имеют больших КССВ $J_{2-3} = J_{2-1a} = 2.0$ Гц.

Спектральные данные для минорного изомера **5a** получены из спектра смеси изомеров **5b–5a**, 95:5. Химические сдвиги ¹³С *син-***5a** и *анти-***5b** изомеров близки ($\Delta \delta_{max} = 1.5 \text{ м. д.}$), что обусловлено возможностью конформационной подвижности защитной группы при азоте, из-за влияния которой меняется конформация циклопентанового кольца. В спектре ЯМР ¹Н наиболее различаются сигналы диастереотопных протонов AB системы при С₍₁₎. В *син-*изомере **5a** они резонируют в виде сложного мультиплета при 2.4 м. д., тогда как в *анти-*изомере **5b** сдвиги этих протонов различаются почти на 1 м. д., что и обусловлено различным 1,2-взаимодействием и эпоксидного кольца в *син-* или *анти-*ориентации.

Сигнал H-3a в *анти*-изомере **5b** экранирован эпоксидной группой, расположенной по отношению к нему *син*-, поэтому его сигнал находится в более сильном поле ($\Delta \delta = 0.2$ м. д.) по сравнению с *син*-изомером.

Получены и охарактеризованы спектральными методами аналогичные изомеры **6а,b**, содержащие *орто*-метильную группу в ароматическом кольце. Основной изомер **6b** охарактеризован в индивидуальном виде, ему

приписана *анти*-структура. Присутствие минорного изомера **6a** обнаружено в спектре смеси изомеров **6b–6a**, 93:7. Минорный изомер **6a** охарактеризо-ван из обогащенной смеси **6a–6b**, 1:1. В этих соединениях подвижность мезильной группы ограничена наличием *орто*-заместителя в арома-тической части. Мезильный заместитель отклоняется от плоскости кольца, ориентируясь *анти*- по отношению к циклопентановому фрагменту. В результате уменьшается экранирование атомов углерода циклопентанового кольца, что проявляется в спектрах ЯМР ¹³С, они резонируют на 5–2 м. д. в более слабом поле в **6b**, чем в **5b**. При этом в циклопентановом кольце сохраняется величина диэдральных углов между протонами H₍₂₎, H₍₃₎, H_(3b), и изменяются углы между H_(8b) и H_(1a), H_(1b), о чем свидетельствует J_{8b-1a} = 2.3 Гц (вместо 6.0 Гц).

С применением метода двойного резонанса проведено однозначное отнесение химического сдвига и КССВ в спектре ЯМР ¹Н соединения 9. Соединение 9 является продуктом *транс*-раскрытия эпоксида с диаксальным расположением гидроксильных и метоксильной групп, поскольку каждый из протонов $H_{(1)}$ и $H_{(2)}$ имеет по две диаксальные КССВ $J_{1,4} = 8.3$; $J_{1,2} = 9.5$; $J_{2,3a} = 11.0$ Гц [5]. Расположение гидроксильной группы у первого атома углерода и конфигурация этого центра определяются по величине химического сдвига протона $H_{(1)}$ и его КССВ [5].

В отличие от эпоксидирования, взаимодействие соединений 1–3 и 10 с Br₂ приводит к продукту электрофильного замещения в ароматическое ядро 4, 11–13. Образование этих бромидов является неожиданным, поскольку в рамках сложившихся представлений олефиновая связь C=C обладает большей реакционной способностью по сравнению с ароматическим кольцом в реакциях с бромом. В данном случае одна из предполагаемых причин следующая. Двойная связь циклоалкенового фрагмента, естественно, участвует в реакции с образованием бромониевого комплекса **A**.

1–4 $R^1 = Me$; **10** R = H, $R^1 = p \cdot C_6 H_4 Me$, n = 2; **11** R = H, $R^1 = Me$, n = 1; **12** $R = R^1 = Me$, n = 1; **13** R = H, $R^1 = p \cdot C_6 H_4 Me$, n = 2

1309

Однако, вероятно, из-за пространственных препятствий *транс*-атака анионом Br⁻ этого комплекса не происходит, а идет его разрушение. Поскольку реакция электрофильного присоединения, имеющая большую скорость по сравнению с реакцией электрофильного замещения в ароматическом ядре не идет, реализуется именно последнее направление.

Состав и структура полученных галогенпроизводных установлены спектральными методами и подтверждены элементным анализом. В алифатической области спектры соединений 4, 11–13 аналогичны спектрам исходных гетероциклов 1–3 и 10, в то время как в ароматической области наблюдаются существенные изменения в значениях химических сдвигов и мультиплетности сигналов протонов и атомов углерода.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе UR-20. Спектры ЯМР 1 Н и 13 С записаны на приборе Bruker AM-300 (300 и 75 МГц соответственно) в CDCl₃, внутренний стандарт TMC.

Для качественного анализа TCX использовались пластинки силуфола фирмы Люминофор (Россия) с обнаружением веществ УФ облучением (λ 254 нм) и иодом. Массспектры получены на спектрометре MX 1320 (70 эВ). Температуры плавления определялись на столике Boetius.

Рентгеноструктурное исследование. Кристаллы 5b для РСА выращены из метанола (50 мг вещества 5b в 2 мл метанола), при температуре 120 К моноклинные, пространственная группа P_{2l}/n , a = 5.2089(14), b = 8.988(2), c = 24.371(6) Å, $\beta = 90.092(5)^{\circ}$, V = 1141.0(5) Å³, Z = 4, $d_{\text{выч}} = 1.463$ г·см⁻³, $\mu = 0.279$ мм⁻¹. Интенсивности 5850 отражений измерялись на дифрактометре SMART 1000 CCD ($\lambda MoK\alpha = 0.71073$ Å, графитовый монохроматор, $2\theta < 56^{\circ}$) при 120 К. Обработку исходного массива измеренных интенсивностей проводили по программам SAINT Plus [6] и SADABS [7]. Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов по F²_{hkl}. Атомы водорода локализованы из разностного синтеза электронной плотности и уточнены в изотропном приближении. При уточнении использовалось 2752 независимых отражения (R_{int} = 0.0366). Сходимость уточнения по всем независимым отражениям $wR_2 = 0.1420$, GOF 0.998 ($R_1 = 0.0571$ по 1796 отражениям с I>2o(I)). Все расчеты проводились на IBM PC AT с использованием програм-много комплекса SHELXTL-97 [8]. Элементный анализ выполнен на приборе С-H-N Analyzer M-185B. Колоночная хроматография осуществлялась на силикагеле 40/70 мкм фирмы Lancaster.

Метилсульфонил-6-бром-4,4а,9,9а-тетрагидрокарбазол (4). К раствору 0.2 г (0.8 ммоль) соединения **3** в 10 мл CH₂Cl₂ при перемешивании прибавляют по каплям 0.128 г (0.8 ммоль) Br₂ в 1 мл CH₂Cl₂. Реакционную смесь оставляют на 18 ч при 20 °C при постоянном перемешивании, контролируя ход реакции по TCX. По исчезновении исходного амида реакционную смесь разбавляют 50 мл CH₂Cl₂ и промывают 10% раствором NaHCO₃ (2 × 20 мл) и водой (2 × 50 мл). Органический слой сушат над Na₂SO₄. Растворитель удаляют в вакууме. Выход 0.125 г (48%). Аморфная масса. R_f 0.6 (C₆H₆–EtOAc, 9:1). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.93–2.13 (4H, м, 2CH₂); 2.93 (3H, с, CH₃); 3.71 (1H, т, J_1 =5.0, J_2 =8.5, H-4a); 4.84 (1H, д. д, J_1 = 1.5, J_2 = 8.5, H-9a); 5.88 (1H, д. д. д, J_1 = 1.3, J_2 = 3.0, J_3 = 10.0, H-2); 6.00 (1H, д. д, J_1 = 1.5, J_2 = 10.0, H-1); 7.23 (1H, с, H-5); 7.25 (1H, д, J=7.0, H-7); 7.33 (1H, д, J=7.0, H-8). Спектр ЯМР ¹³С, δ, м. д.: 20.5 (C₍₄₎), 23.0 (C₍₃₎); 37.4 (C_(4a)); 39.0 (CH₃); 61.7 (C_(9a)); 116.7 (C_{(6b}); 116.8 (C₍₈₎); 125.0 (C₍₁₁)); 126.9 (C₍₇₎); 130.9 (C₍₅₎); 132.1 (C₍₂₎); 136.7 (C_{(4b})); 140.5 (C_{(8a})). Найдено, %: C 47.55; H 4.2; Br 24.32; N 4.26; S 9.74. C₁₃H₁₄BrNO₂S. Вычислено, %: C 47.57; H 4.3; Br 24.34; N 4.27; S 9.77.

Окисление диметилдиоксираном (общая методика). В реакционный сосуд помещают субстрат (~0.1 ммоль) и растворяют его в минимальном количестве ацетона (~1–2 мл). Затем при комнатной температуре и постоянном перемешивании добавляют раствор диметилдиоксирана порциями по ~1 мл с интервалом в 5 мин. Исходная концентрация

диметилдоксирана ~70 ммоль/л. В зависимости от субстрата соотношение субстратокислитель, 1:1 либо 1:2. Окончание реакции определяют по расходованию субстрата, методом TCX. По окончании реакции растворитель упаривают и анализируют продукты.

(2*S*,3*R*,3a*R*,8b*S*)-N-Метилсульфонил-2,3-эпокси-1,2,3,3a,4,8b-гексагидроциклопент-[*b*]индол (5a). Анализируют в смеси с соединением 5b в соотношении 5b–5a, 95:5. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 2.42 (1H, д. д, *J* = 7.0, *J*_{гем} = 14.5, H-1a); 2.44 (1H, д, *J*_{гем} = 14.5, H-1b); 3.08 (3H, c, CH₃); 3.90 (1H, уш. c, H-3); 4.83 (1H, д. д, *J*_{3a-3} = 2.0, *J*_{3a-8b} = 8.5, H-3a); 7.08 (1H, т, *J*₇₋₆ = *J*₇₋₈ = 7.5, H-7); 7.17 (1H, д, *J*₇₋₈ = 7.5, H-8); 7.21 (1H, д. д, *J*₆₋₇ = 7.5, *J*₆₋₅ = 8.1, H-6); 7.41 (1H, д, *J*₅₋₆ = 8.1, H-5). Спектр ЯМР ¹³С, δ , м. д.: 33.47 (C₍₁₎); 37.22 (CH₃); 42.58 (C_(8b)); 55.39 (C₍₂₎); 60.34 (C₍₃₎); 68.22 (C_{(3a})); 112.41 (C₍₆₎); 123.39 (C₍₇₎); 123.79 (C₍₆₎); 127.78 (C₍₈₎); 133.70 (C_{(8a})); 141.26 (C_{(4a})).

(2*R*,3*S*,3a*R*,8b*S*)-N-Метилсульфонил-2,3-эпокси-1,2,3,3a,4,8b-гексагидроциклопент-[*b*]индол (5b) выделяют хроматографированием сухого остатка после удаления растворителя из реакционной смеси, полученной при окислении 0.2 г (0.8 ммоль) соединения 1 диметилдиоксираном. Выход соединения 5b 0.199 г (95%). Т. пл. 145–147 °С. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.80 (1H, д. д. д. $J_{1a-2} = 2.0, J_{1a-8b} = 6.0, J_{2eM} = 14.5, H-1a)$; 2.63 (1H, д. д. $J_{1b-8b} = 8.8, J_{ceM} = 14.5, H-1b)$; 2.90 (3H, с, CH₃); 3.60 (1H, т, $J_{2-1a} = J_{2-3} = 2.0, H-2$); 3.75 (1H, д. д. д. $J_{3b-1b} = 6.0, J_{8b-1a} = 8.8, J_{8b-3a} = 8.6, H-8b)$; 4.09 (1H, д. $J_{3-2} = 2.0, H-3$); 4.60 (1H, д. д. $J_{3a-8b} = 8.6, H-3a$); 7.08 (1H, т, $J_{7-6} = J_{7-8} = 7.5, H-7$); 7.17 (1H, д. $J_{7-8} = 7.5, H-8$); 7.21 (1H, д. д. $J_{6-7} = 7.5, J_{6-5} = 8.1, H-6$); 7.41 (1H, д. $J_{5-6} = 8.1, H-5$). Спектр ЯМР ¹³С, δ, м. д.: 33.81 (C₍₁₎); 36.59 (CH₃); 42.98 (C_(8b)); 59.18 (C₍₂₎); 60.15 (C₍₃₎); 68.88 (C_(3a)); 113.73 (C₍₅₎); 124.33 (C₍₇₎); 124.74 (C₍₆₎); 128.24 (C₍₈₎); 134.25 (C_(8a)); 141.26 (C_(4a)). Найдено, %: C 58.83; H 5.69; N 5.26; S 12.05. C₁₃H₁₅NO₃S. Вычислено, %: C 58.85; H 5.70; N 5.28; S 12.08.

3-Метил-(2*S***,3***R***,3***aR***,8***bS***)-N-метилсульфонил-2,3-эпокси-1,2,3,3***a***,4,8***b***-гексагидроциклопент[***b***]индол (6***b***) выделяют хроматографированием сухого остатка после удаления растворителя из реакционной смеси, полученной при окислении 0.1 г (0.4 ммоль) соединения 2** диметилдиоксираном. Выход соединения **6b** 0.098 г (93%). Аморфное вещество. *R*_f 0.4 (C₆H₆-EtOAc, 0.8:0.2). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.95 (1H, т. д, $J_{1a-8b} = J_{1a-2} = 2.3$, $J_{2eM} = 14.7$, H-1a); 2.50 (3H, с, Ar CH₃); 2.51 (1H, д. д, $J_{1b-8b} = 7.2$, $J_{2eM} = 14.7$, H-1b); 2.72 (3H, с, CH₃); 3.40 (1H, т, $J_{2-1a} = J_{2-3} = 2.3$, H-2); 3.70 (1H, д, $J_{2-3} = 2.3$, H-3); 3.95 (1H, д. т, $J_{8b-1a} = 2.3$, $J_{8b-3a} = J_{8b-1b} = 7.2$, H-8b); 4.70 (1H, д. $J_{8-7} = 7.5$, H-8). Спектр ЯМР ¹³С, δ, м. д.: 20.39 (CH₃); 35.65 (CH₃); 36.73 (C₍₁₇)); 47.23 (C_{(8b})); 59.03 (C₍₂₎); 62.60 (C₍₃₎); 68.53 (C_{(3a})); 122.29 (C₍₆₎); 127.29 (C₍₇₎); 131.14 (C₍₅₎); 131.40 (C₍₈₎); 139.23 (C_{(8a})); 140.27 (C_{(4a})). Найдено, %: C 58.83; H .69; N 5.23; O 18.07; S 12.07. C₁₃H₁₅NO₃S. Вычислено, %: C 58.85; H 5.70; N 5.28; O 18.09; S 12.08.

3-Метил-(*2R*,*3S*,*3aR*,*8bS***)**-**N**-метилсульфонил-2,3-эпокси-1,2,3,3a,4,8b-гексагидроциклопент[*b*]индол (6а). Анализируют в смеси с соединением 6b в соотношении 6а–6b, 1:1. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.30 (1Н, д. д, *J*_{1b–8b} = 7.8, *J*_{2ем} = 14.8, H-1b); 2.40 (1Н, д, *J*_{2ем} = 14.8, H-1a); 2.48 (3H, с, CH₃); 2.77 (3H, с, CH₃); 3.50 (1H, уш. с, H-2); 3.80 (1H, уш. с, H-3); 3.98 (1H, т, *J*_{8b–3a} = *J*_{8b–1b} = 7.8, H-8b); 4.93 (1H, д. д, *J*_{3a–3} = 1.5, *J*_{3a–8b} = 7.8, H-3a); 7.00–7.20 (3H, м, Ar). Спектр ЯМР ¹³С, δ , м. д.: 20.12 (CH₃); 33.15 (C₍₁₎); 36.30 (CH₃); 41.63 (C_(8b)); 57.80 (C₍₂₎); 59.80 (C₍₃₎); 68.59 (C_(3a)); 120.75 (C₍₆₎); 126.79 (C₍₇₎); 130.84 (C₍₈₎); 131.14 (C₍₅₎); 139.23 (C_(8a)); 140.77 (C_(4a)).

(1*S*,2*R*,4*aS*,9*aR*)-N-Метилсульфонил-1,2-эпокси-1,2,3,4,4а,9а-гексагидрокарбазол (7). После удаления растворителя в вакууме из реакционной смеси, полученной окислением 0.249 г (1 ммоль) соединения **3** диметилдиоксираном, остаток для удаления смолистых веществ хроматографируют на колонке (2 × 20 см) через слой силикагеля (0.25 г, элюент C₆H₆). Выход 0.207 г (78%). Вязкая масса. R_f 0.6 (C₆H₆-EtOAc, 0.8:0.2). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.60 (1H, д. т. $J_1 = 4.7$, $J_2 = 14.0$, H-3*ax*); 1.85 (1H, т. д. д. $J_1 = 3.3$, $J_2 = 4.7$, $J_3 = 14.0$, H-4*eq*); 1.98 (1H, т. д. д. $J_1 = 3.3$, $J_2 = 4.2$, $J_3 = 14.0$, H-3*eq*); 2.08 (1H, т. τ , $J_1 = 4.2$, $J_2 = 14.0$, H-4*ax*); 3.10 (1H, τ , J = 3.3, H-2); 3.30 (1H, τ , J = 3.3, H-1); 3.61 (1H, τ , σ , σ , $J_1 = 3.3$, J = 4.2, $J_2 = 9.5$, H-4a); 4.70 (1H, σ , J = 9.5, H-9a); 2.90 (3H, c, CH₃); 7.12–7.30 (3H, м. ArH); 7.50 (1H, σ , J = 7.5, ArH). Спектр ЯМР ¹³C, δ , м. σ .: 16.62 (C₃); 21.0 (C₄); 36.7 (C_{4a}); 37.4 (CH₃); 51.7 (C₍₂₎); 53.3 (C₁₁); 59.3 (C_{9a}); 116.1 (C₍₇₎); 123.9 (C₈); 125.1 (C₅); 128.5 (C₆); 133.2 (C_{4b}); 141.5 (C_{8a}). Найдено, %: C 58.84; H 5.68; N 5.25; O 18.08; S 12.06. C₁₃H₁₅NO₃S. Вычислено, %: C 58.85; H 5.70; N 5.28; O 18.09; S 12.08.

(1*S*,2*R*,4*aS*,9*aR*)-N-Метилсульфонил-6-бром-1,2-эпокси-1,2,3,4,4а,9а-гексагидрокарбазол (8) получают аналогично соединению 7 из 0.344 г (1 ммоль) бромида 4. Выход соединения 8 0.33 г (96%). Аморфное вещество. R_f 0.6 (C_6H_6 -EtOAc, 0.8:0.2). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.65 (1H, д. т, $J_1 = 3.4$, $J_2 = 14.0$, H-3*ax*); 1.80 (1H, кв. д, $J_1 = 4.4$, $J_2 = 14.0$, H-4*eq*); 2.01 (1H, т. д. д, $J_1 = 3.4$, $J_2 = 4.4$, $J_3 = 14.0$, H-3*eq*); 2.08 (1H, т. т, $J_1 = 4.4$, $J_2 = 14.0$, H-4*eq*); 2.90 (3H, c, CH₃); 3.14 (1H, т, J = 3.4, H-2); 3.30 (1H, д, J = 3.4, H-1); 3.60 (1H, д. д. д, $J_1 = 3.4$, $J_2 = 4.4$, $J_3 = 9.5$, H-4a); 4.70 (1H, д, J = 9.5, H-9a); 7.23 (1H, д, J = 1.0, ArH); 7.40 (2H, д, J = 1.0, ArH). Найдено, %: C 45.35; H 4.08; Br 23.18; N 4.05; O 13.93; S 9.30. $C_{13}H_{14}BrNO_3S$. Вычислено, %: C 45.36; H 4.10; Br 23.21; N 4.07; O 13.94; S 9.31.

N-Метилсульфонил-2-метокси-1,2,3,4,4а,9а-гексагидрокарбазол-1-ол (9а). Реакционную смесь, состоящую из 0.06 г (2 ммоль) эпоксида 7 и катионита КУ-2-08 в 5 мл метанола оставляют на 1 ч при 50 °C при постоянном перемешивании, контролируя ход реакции по ТСХ. По исчезновении исходного соединения реакционную смесь охлаждают до комнатной температуры, отфильтровывают от катионита. После удаления растворителя в вакууме выход соединения **9a** 0.065 г (97%). Аморфная масса. R_f 0.5 (C₆H₆-EtOAc, 8.5:1.5). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.19 (1Н, д. д. т, *J*₁ = 3.8, *J*₂ = 11.0, *J*_{2ем} = 13.5, H-3*ax*); 1.30 (1H, c, OH); 1.85 (1H, д. д. т, J₁ = 3.8, J₂ = 6.0, J₃ = 13.5, H-4*ax*); 2.00 (1H, к. д, J₁=3.8, J₂=13.5, H-3eq); 2.37 (1Н, д. к. д, J₁=2.0, J₂=3.8, J₃=13.5, H-4eq); 3.08 (1Н, д. д. д. $J_1 = 3.8, J_2 = 9.5, J_3 = 11.0, H-2ax$; 3.19 (3H, c, OCH₃); 3.38 (1H, π . π , $J_1 = 8.1, J_2 = 9.5, H-1ax$); 3.72 (1Н, д. д. д. J. = 2.0, J. = 6.0, J. = 8.1, Н-4а); 4.34 (1Н, т. J = 8.1, Н-9а); 7.05–7.16 (2Н, м. ArH); 7.23 (1H, т, *J* = 7.8, ArH); 7.35 (1H, д, *J* = 7.8, ArH). Спектр ЯМР ¹³С, δ, м. д.: 21.4 (C₍₄₎); 23.7 (C₍₃₎); 39.7 (CH₃), 41.3 (C_(4a)); 56.9 (OCH₃); 69.7 (C_(9a)); 76.0 (C₍₁₎); 81.34 (C₍₂₎); 116.7 (C₍₈₎); 122.6 (С₍₆₎); 124.3 (С₍₇₎); 128.2 (С₍₅₎); 134.2 (С_(4b)), 141.3 (С_(8a)). Найдено, %: С 56.52; Н 6.43; N 4.89; S 10.75. С₁₄Н₁₉NO₄S. Вычислено, %: С 56.55; Н 6.44; N 4.71; S 10.78.

N-Метилсульфонил-7-бром-1,3а,4,8b-тетрагидроциклопент[*b*]индол (11) получают аналогично карбазолу 4 из 0.244 г (0.1 ммоль) соединения 1 и 0.166 г (1 ммоль) Вг₂. После удаления растворителя в вакууме, полученный продукт перекристаллизовывают из 1 мл этилового спирта. Выход 0.322 г (98.7%). Т. пл. 152–153 °C. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.52 (1H, д, J = 17.1, H-1*eq*); 3.07 (1H, д. д, J = 17.1, $J_1 = 9.1$, H-1*ax*); 2.89 (3H, с, CH₃); 4.09 (1H, т, J = 8.5, H-8b); 5.38 (1H, д, J = 8.5, H-3a); 5.89–5.98 (2H, м, H-2,3); 7.23 (1H, д, J = 7.5, H-5); 7.30 (1H, с, H-8); 7.33 (1H, д, J = 7.5, H-6). Спектр ЯМР ¹³С, δ, м. д.: 37.1 (CH₃); 39.9 (CH₂); 42.2 (C_(8b)); 73.7 (C_{(3a})); 116.1 (C₍₅₎); 116.7 (C₍₇₎); 128.3 (C₍₆₎); 128.5 (C₍₃₎); 131.3 (C₍₈₎); 133.9 (C₍₂₎); 138.3 (C_(8a)); 139.5 (C_(4a)). Найдено, %: C 45.86; H 3.83; Br 25.41; N 4.45; S 10.18. C₁₂H₁₂BrNO₂S. Вычислено, %: C 45.87; H 3.85; Br 25.43; N 4.46; S 10.20.

N-Метилсульфонил-5-метил-7-бром-1,3а,4,8b-тетрагидроциклопент[b]индол (12) получают аналогично карбазолу **4** из 0.1 г (0.4 ммоль) соединения **2** и 0.064 г (0.4 ммоль) Вг₂. После удаления растворителя в вакууме, полученный продукт перекристаллизовывают из 1 мл этилового спирта. Выход 0.129 г (98%). Аморфная масса. *R*_f 0.7 (C₆H₆-EtOAc, 9:1). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.13 (3H, с, CH₃); 2.94 (3H, с, CH₃); 2.95–3.19 (2H, м, CH₂); 4.00 (1H, т. д, *J*₁ = 2.0, *J*₂ = 8.5, H-8b); 5.31 (1H, д. д, *J*₁ = 1.5, *J*₂ = 8.5, H-3a); 5.83–5.95 (2H, м, H-2,3); 7.25 (1H, с, H-8); 7.32 (1H, с, H-6). Спектр ЯМР ¹³С, δ, м. д.: 19.9 (CH₃); 35.7 (CH₃); 39.1 (CH₂); 42.9 (C_(8b)); 74.4 (C_(3a)); 119.9 (C₍₇₎); 122.1 (C₍₃₎); 126.9 (C₍₂₎); 130.9 (C₍₈₎); 132.4 (C₍₅₎); 132.6 (C₍₆₎); 134.4 (C_(8a)); 140.5 (C_(4a)). Найдено, %: C 47.55; H 4.27; Br 24.33; N 4.25; S 9.75. C₁₃H₁₄BrNO₂S. Вычислено, %: C 47.57; H 4.30; Br 24.34; N 4.27; S 9.77.

N-Толуолсульфонил-6-бром-4,4а,9,9а-тетрагидрокарбазол (13) получают аналогично соединению **4** реакцией 0.675 г (2 ммоль) соединения **10** с 0.32 г (2 ммоль) Вг₂. После перекристаллизации из этанола выход 0.62 г (77.5%). Т. пл. 110–113 °C (ЕtOH). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.81–1.95 (4H, м, 2CH₂); 2.38 (3H, с, CH₃); 3.06 (1H, м, H-4a); 4.70 (1H, д. д, *J*₁ = 1.7, *J*₂ = 8.0, H-9a); 5.95 (2H, м, H-1,2); 7.12 (1H, с, H-5); 7.20 (2H, д, *J* = 8.0, H-3,5); 7.33 (1H, д, *J* = 8.4, H-7); 7.53 (1H, д, *J* = 8.4, H-8); 7.59 (2H, д, *J* = 8.5, H-2',6'). Спектр ЯМР ¹³С, δ , м. д.: 19.9 (C₍₄₎); 21.4 (CH₃); 22.4 (C₍₃₎); 36.56 (C_(4a)); 61.54 (C_(9a)); 117.50 (C₍₆₎); 119.23 (C₍₈₎); 125.72 (C₍₁₎); 126.59 (C₍₇₎); 126.77 (C_(3',5')); 129.66 (C_(2',6')); 130.69 (C₍₅₎); 135.26 (C_(4')), 131.30 (C₍₂₎); 137.45 (C_{(4b})); 140.84 (C_(8a)); 143.98 (C_(1')). Найдено, %: C 56.42; H 4.47; Br 19.75; N 3.43; S 7.91. C₁₉H₁₈BrNO₂S. Вычислено, %: C 56.44; H 4.49; Br 19.76; N 3.46; S 7.93.

- 1. J. A. Murphy, K. A. Scot, R. S. Sinclan, N. Lewis, Tetrahedron Lett., 38, 7295 (1997).
- 2. J. A. Murphy, F. Rasheed, S. Gastraldi, T. Ravishander, N. Lewis, J. Chem. Soc., Perkin Trans. 1, 1549 (1997).
- 3. Р. Р. Гатауллин, Ф. Ф. Миннигулов, А. А. Фатыхов, Л. В. Спирихин, И. Б. Абдрахманов, *ЖОрХ*, **37**, 1357 (2001).
- Р. Р. Гатауллин, Р. Р. Ишбердина, О. В. Шитикова, Ф. Ф. Миннигулов, Л. В. Спирихин, И. Б. Абдрахманов, XTC, 1184 (2006).
- 5. E. Pretsch, T. Clerk, J. Seible, W. Simon, *Tables of Spectral Data for Structure Determination of Organic Compounds*, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 730 (1983).
- 6. *SMART and SAINT, Release 5.0, Area Detector Control and Integration Software*, Bruker AXS, Analytical X-Ray Instruments, Madison, Wisconsin, USA, 1998.
- 7. G. M. Sheldrick, SADABS: A Program for Exploiting the Redundancy of Area-detector X-Ray Data, Univ. of Göttingen, Göttingen, Germany, 1999.
- 8. G.M. Sheldrick, *SHELXTL-97. Program for Solution and Refinement of Crystal Structure*, Bruker AXS Inc., Madison, WI-53719, USA, 1997.

Институт элементоорганических соединений им. Н. А. Несмеянова РАН, Москва 117813 Поступило 30.03.2005

^aИнститут органической химии Уфимского научного центра РАН, Уфа 450054 e-mail: chemorg@anrb.ru e-mail: railg@rambler.ru

⁶Башкирский государственный аграрный университет, кафедра общей химии, Уфа 450003