И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, О. В. Шишкин^а, А. В. Туров⁶

4-ГИДРОКСИХИНОЛОНЫ-2

108*. N-R-АМИДЫ 1-ГИДРОКСИ-5-МЕТИЛ-3-ОКСО-9-ФТОР-6,7-ДИГИДРО-3H,5H-ПИРИДО[3,2,1-*ij*]ХИНОЛИН-2-КАРБОНОВОЙ КИСЛОТЫ И ИХ ПРОТИВОТУБЕРКУЛЕЗНАЯ АКТИВНОСТЬ

Реакция 2-метил-6-фтор-1,2,3,4-тетрагидрохинолина с триэтилметантрикарбоксилатом приводит к образованию ди(1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо-[3,2,1-*ij*]хинолин-2-ил)метана и этилового эфира 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты, на основе которого получены алкил-, диалкиламиноалкил- и гетариламиды, а также гидразиды. Обсуждаются строение синтезированных соединений и их противотуберкулезные свойства.

Ключевые слова: гетероциклические производные трикарбонилметана, сложные эфиры и амиды 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот, противотуберкулезная активность, РСА.

В арсенале современных антибактериальных химиотерапевтических средств важное место занимают препараты фторхинолонового ряда, среди которых можно отметить $C_{(8)}/N_{(1)}$ аннелированные трициклические производные общей формулы **1**, отличающиеся высокой активностью и хорошими фармакокинетическими свойствами [2, 3]. До недавнего времни считалось, что модификация карбоксильной группы фторхинолонов приводит к резкому снижению противомикробных свойств, и карбоксипроизводные могут быть активными только в том случае, если для них существует возможность *in vivo* достаточно легко превращаться в исходные

1 а X = CH₂, R = H (флумехин); b X = CH₂, R = имидазол-1-ил (S-25932); c X = CH₂, R = 4-метилпиперазин-1-ил (OPC-7241); d X = O, R = 4-метилпиперазин-1-ил (офлоксацин); e X = S, R = 4-метилпиперазин-1-ил (руфлоксацин)

^{*}Сообщение 107 см. [1].

8 а R = 2-хлорбензил, b R = 2-(3,4-диметоксифенил)этил, c R = 3-фенилпропил, d R = фурфурил, e R = тетрагидрофурфурил, f R = пиколил-2, g R = пиколил-3, h R = пиколил-4; 9 а R = 2-диметиламиноэтил, b R = 2-этиламиноэтил, c R = 2-(2-гидроксиэтиламино)этил, d R = 2-диэтиламиноэтил, e R = 3-диметиламинопропил, f R = 3-диэтиламинопропил, g R = 1-этилпирролидин-2-илметил, h R = 2-пиперазин-1-илэтил, i R = 2-морфолин-4-илэтил, j R = 3-морфолин-4-илпропил, k R = 3-пиперидин-1-илпропил; 10 а Het = пиридин-4-ил, b Het = пиридин-3-ил, c Het = пиридин-2-ил, g Het = 6-метилпиридин-2-ил, e Het = 4-метилпиридин-2-ил, f Het = 5-метилпиридин-2-ил, g Het = пиразин-2-ил; 12 а Het = пиридин-4-ил, b Het = пиридин-3-ил, c Het = пиридин-2-ил

кислоты. Однако постепенно это утверждение было неоднократно опровергнуто многими исследователями. В результате появились так называемые антибиотики "двойного действия", представляющие собой сложные эфиры фторхинолонкарбоновых кислот и цефалоспоринов [4]. 3-Хинолинкарбоксамиды и их циклические аналоги в ряде случаев также оказались более эффективными, чем исходные фторхинолоны [3]. Кроме того, амидирование приводит к появлению новых полезных свойств – противогерпесной [5], антиаллергической [6], противоопухолевой [7] и других видов биологической активности.

Учитывая изложенное выше, представляет интерес продолжить поиск потенциальных противотуберкулезных средств, проводимый нами в ряду амидированных производных 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот, с вовлечением в круг исследований структурных аналогов флумехина 1а. Для этого 2-метил-6-фтор-1,2,3,4-тетрагидрохинолин (2) конденсировали с триэтилметантрикарбоксилатом (3) по описанной ранее [8], хотя и несколько модифицированной методике – с учетом стерических препятствий у группы NH хинолина 2, обусловленных соседней метильной группой, в реакцию вводили не эквивалент, а 10% избыток триэфира 3. Образовавшийся этиловый эфир 1-гидрокси-5-метил-3-оксо-9фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты (4) выде-ляют из реакционной смеси в виде водорастворимой 4-О-натриевой соли, которую затем подкислением переводят в целевую 4-OH-форму.

По данным РСА (рисунок), в симметрически независимой части элементарной ячейки кристалла этого соединения находятся две молекулы (**A** и **B**), различающиеся конформацией частично гидрированных циклов и сложноэфирной группы. В молекуле **A** дигидропиридоновый цикл плоский, а в молекуле **B** этот фрагмент находится в конформации сильно уплощенной искаженной *софы*. Атомы N₍₁₎ и C₍₁₂₎ отклоняются от плоскости остальных атомов цикла на 0.08 и 0.12 Å соответственно. Некоторые отличия наблюдаются и в конформации тетрагидроцикла N₍₁₎,C₍₁₎...C₍₄₎,C₍₉₎. В молекуле **A** он имеет конформацию *софа* (отклонение атома C₍₂₎ равно -0.69 Å), а в **B** *софа* искажена в сторону *полукресла* (отклонения атомов C₍₁₎ и C₍₂₎ составляют 0.09 и -0.60 Å соответственно). Метильная группа C₍₁₆₎ в обеих молекулах находится в аксиальном положении (торсионный угол C₍₉₎–N₍₁₎–C₍₁₎–C₍₁₆₎ 92.7(5)° в **A**, 94.0(6)° в **B**).

Сложноэфирная группа имеет трансоидную конформацию (торсионные углы $C_{(11)}-C_{(13)}-O_{(4)}-C_{(14)}-178.5(5)^{\circ}$ в **A** и 179.0(4)^o в **B**, $C_{(13)}-O_{(4)}-C_{(14)}-C_{(15)}$ 165.3(6)^o **A**, 173.9(5)^o **B**) и несколько развернута относительно плоскости хинолонового фрагмента (торсионный угол $C_{(10)}-C_{(11)}-C_{(13)}-O_{(3)}-6.5(8)^{\circ}$ **A**, -7.3(7)^o **B**), однако на реакционную способность это существенного влияния не оказывает.

Образование трехмерной сетки внутри- и межмолекулярных водородных связей $O_{(1A)}$ -H... $O_{(3A)}$ 2.05 Å (угол O-H...O 113°), $O_{(1A)}$ -H... $O_{(3B)}$ 2.43 Å (угол O-H...O 128°), $O_{(1B)}$ -H... $O_{(3A)}$ 2.46 Å (угол O-H...O 146°), $C_{(3A)}$ -H... $O_{(3B)'}$ (1-*x*, -*y*, -*z*) 2.52 Å (угол C-H...O 144°), $C_{(3B)}$ -H... $O_{(2A)''}$ (-*x*, 1-*y*, -*z*) 2.44 Å (угол C-H...O 170°) приводит к удлинению связей $C_{(12A)} = O_{(2A)}$ 1.243(6) Å, $C_{(13A)} = O_{(3A)}$ 1.256(6) Å по сравнению со средним значением 1.210 Å [9].

Строение молекулы эфира 4 с нумерацией атомов

Необходимо отметить, что выделенное соединение 4 оказалось не единственным продуктом реакции хинолина 2 с триэфиром 3, поскольку при обработке реакционной смеси водным раствором Na₂CO₃ минорная часть остается нерастворенной. Принимая во внимание результаты предыдущих аналогичных исследований [1], логично было бы предположить, что нерастворимый в щелочи остаток представляет собой результат амидирования соединением 2 одной, двух или всех трех сложноэфирных групп метантрикарбоксилата 3. Тем не менее, анализ спектра $\text{ЯМР}^{-1}\text{H}$ показывает, что данное вещество содержит как минимум один 2-замещенный 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-ij]хинолиновый фрагмент (а не 2-метил-6-фтор-1,2,3,4-тетрагидрохинолиламидный, как предполагалось). Этоксикарбонильные группы в образце отсутствуют, а по синглету с относительной интегральной интенсивностью 1Н при 3.87 м. д. вряд ли можно идентифицировать группу СН метантрикарбоновой кислоты, так как у ее моно-, ди- и триамидов данный сигнал находится в гораздо более слабом поле (среднее значение 5.5 м. д. [1]).

Хромато-масс-спектрометрическое исследование показало, что анализируемое соединение является индивидуальным веществом с молекулярной массой 478. Следовательно в его состав входят не один, а два пиридохинолиновых цикла, причем соединены они метиленовым звеном, поскольку первичный распад молекулярного иона сопровождается разрывом связи HetCH₂—Het и образованием двух фрагментов – с m/z 246 и 232 соответственно. Таким образом, сопоставив данные спектроскопии ЯМР ¹Н и хромато-масс-спектрометрии, побочный продукт конденсации соединения **2** и триэфира **3** следует характеризовать как ди(1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-ил)метан (**5**).

Образование подобных веществ не отмечалось ни в одной из описанных ранее реакций триэтилметантрикарбоксилата с N-алкиламинами [10], дифениламином [11], индолином [1, 12], 1,2,3,4-тетрагидрохинолином

Таблица 1

Соеди-	Брутто-	Н Вь	айдено, ічислен	% 0, %	Т. н. ⁰ С	Выход,
нение	формула	С	Н	N	т. пл, с	%
1	2	3	4	5	6	7
8a	$C_{21}H_{18}ClFN_2O_3$	<u>62.81</u> 62.93	$\frac{4.44}{4.53}$	<u>6.85</u> 6.99	177–179	94
8b	$C_{24}H_{25}FN_2O_5$	<u>65.40</u> 65.44	<u>5.81</u> 5.72	<u>6.27</u> 6.36	124–126	95
8c	$C_{23}H_{23}FN_2O_3$	$\frac{70.10}{70.04}$	<u>5.95</u> 5.88	<u>7.02</u> 7.10	103–105	88
8d	$C_{19}H_{17}FN_2O_4$	<u>64.09</u> 64.04	<u>4.70</u> 4.81	<u>7.94</u> 7.86	142–144	97
8e	$C_{19}H_{21}FN_2O_4$	<u>63.41</u> 63.32	<u>5.76</u> 5.87	<u>7.65</u> 7.77	131–133	83
8f	$C_{20}H_{18}FN_3O_3$	<u>65.31</u> 65.39	<u>4.90</u> 4.94	<u>11.37</u> 11.44	126–128	86
8g	$C_{20}H_{18}FN_3O_3$	<u>65.46</u> 65.39	<u>4.86</u> 4.94	<u>11.51</u> 11.44	162–164	90
8h	$C_{20}H_{18}FN_3O_3$	<u>65.48</u> 65.39	<u>4.99</u> 4.94	<u>11.44</u> 11.38	170–172	92
9a	C ₁₈ H ₂₂ FN ₃ O ₃ [•] HCl	<u>56.44</u> 56.32	<u>6.15</u> 6.04	<u>10.88</u> 10.95	166–168	82
9b	C ₁₈ H ₂₂ FN ₃ O ₃ · HCl	<u>56.30</u> 56.32	$\frac{6.00}{6.04}$	<u>10.91</u> 10.95	235–237	85
9c	C ₁₈ H ₂₂ FN ₃ O ₄ ·HCl	<u>54.14</u> 54.06	<u>5.72</u> 5.80	<u>10.43</u> 10.51	197–199	77
9d	$C_{20}H_{26}FN_3O_3\cdot HCl$	<u>58.40</u> 58.32	<u>6.70</u> 6.61	<u>10.14</u> 10.20	240-242	84
9e	$C_{19}H_{24}FN_3O_3\cdot HCl$	<u>57.27</u> 57.36	<u>6.39</u> 6.33	<u>10.67</u> 10.56	214–216	80
9f	$C_{21}H_{28}FN_3O_3 \cdot HCl$	<u>59.34</u> 59.22	<u>6.96</u> 6.86	<u>9.98</u> 9.87	177–179	76
9g	$C_{21}H_{26}FN_3O_3\cdot HCl$	<u>59.41</u> 59.50	<u>6.53</u> 6.42	<u>9.82</u> 9.91	205–207	88
9h	$C_{20}H_{25}FN_4O_3^{}}^{}2HCl$	<u>52.00</u> 52.07	<u>5.77</u> 5.90	<u>12.01</u> 12.14	238–240	83
9i	$C_{20}H_{24}FN_3O_4\cdot HCl$	<u>56.50</u> 56.40	<u>5.83</u> 5.92	<u>9.97</u> 9.86	181–183	89
9j	$C_{21}H_{26}FN_3O_4$ ·HCl	<u>57.46</u> 57.34	<u>6.28</u> 6.19	<u>9.50</u> 9.55	215–217	84
9k	$C_{22}H_{28}FN_3O_3 \cdot HCl$	$\frac{60.30}{60.34}$	<u>6.57</u> 6.67	<u>9.67</u> 9.59	237–239	75
10a	$C_{19}H_{16}FN_3O_3$	<u>64.69</u> 64.58	<u>4.68</u> 4.56	<u>11.77</u> 11.89	213–215	86
10b	$C_{19}H_{16}FN_3O_3$	<u>64.71</u> 64.58	<u>4.65</u> 4.56	<u>11.95</u> 11.89	206–208	85
10c	$C_{19}H_{16}FN_{3}O_{3}$	<u>64.50</u> 64.58	<u>4.49</u> 4.56	<u>11.80</u> 11.89	238–240	80
10d	$C_{20}H_{18}FN_3O_3$	<u>65.47</u> 65.39	<u>4.99</u> 4.94	<u>11.37</u> 11.44	180–182	77

Характеристики N-R-амидов 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5Hпиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты 8–10

Окончание таблицы 1

1	2	3	4	5	6	7
10e	$C_{20}H_{18}FN_{3}O_{3}$	<u>65.50</u> 65.39	<u>4.85</u> 4.94	<u>11.48</u> 11.44	251–253	88
10f	$C_{20}H_{18}FN_3O_3$	<u>65.52</u> 65.39	<u>5.03</u> 4.94	<u>11.37</u> 11.44	256–258	83
10g	C ₂₀ H ₁₈ FN ₃ O ₃	<u>65.30</u> 65.39	<u>4.88</u> 4.94	<u>11.51</u> 11.44	222–224	90
10h	$C_{19}H_{16}FN_3O_4$	<u>61.67</u> 61.79	<u>4.48</u> 4.37	<u>11.47</u> 11.38	225–227	75
10i	$C_{18}H_{15}FN_4O_3$	<u>61.13</u> 61.01	<u>4.20</u> 4.27	<u>15.94</u> 15.81	264–266	73
10j	$C_{18}H_{15}FN_4O_3$	<u>61.11</u> 61.01	<u>4.33</u> 4.27	<u>15.90</u> 15.81	246–248	86

[12] или азагетериламинами [13]. Лишь пиролитическая трансформация IR-4-гидрокси-2-оксо-3-этоксикарбонил-1,2-дигидрохинолинов в 5,9-ди-R-6,7,8-триоксодихинолино[3,4-*b*;3',4'-*e*]-4H-пираны предполагалась через схожие по строению ди(1R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-ил)кетоны [14]. Однако вопрос о том, каким образом в таком случае восстанавливается мостиковая карбонильная группа и почему это происходит в реакции триэтилметантрикарбоксилата только с 2-метил-6фтор-1,2,3,4-тетрагидрохинолином остается неясным. Кроме того, экспериментально подтверждено, что эфир **4** в условиях пиролиза не циклизуется в соответствующий дихинолинопиран, а разлагается до 1-гидрокси-5-метил-9-фтор-6,7-дигидро-5H-пиридо[3,2,1-*ij*]хинолин-3-она (**6**). Из этого следует, что дигетарилметан **5**, очевидно, образуется по иному механизму.

Эфир 4 оказался чрезвычайно устойчив к щелочному гидролизу. Кроме того, длительное кипячение в водном растворе КОН сопровождается декарбоксилированием и приводит в конечном итоге к 2H-производному 6. Поэтому 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-ij]-хинолин-2-карбоновую кислоту (7) получали гидролизом эфира 4 предварительно приготовленным раствором концентрированной хлористоводородной кислоты в уксусном ангидриде (т. е. фактически раствором HCl в уксусной кислоте с низким содержанием воды) по известному методу [10].

Напротив, амидирование эфира 4 алкиламинами в этаноле проходит легко и соответствующие амиды 8 получены с высокими выходами (табл. 1). Образующиеся в аналогичных условиях основания диалкиламиноалкиламидов очень легко растворимы в большинстве органических растворителей и имеют низкие температуры плавления. По этой причине их удобнее выделять и очищать в виде гидрохлоридов 9. Гетариламины в кипящем этаноле с эфиром 4 не реагируют, тогда как термолиз эквимолярных количеств реагентов приводит к гетариламидам 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты (10) с хорошими результатами (табл. 1). Гидразинолиз количественно проходит в спиртовой среде уже при комнатной температуре и на основе полученного таким образом гидразида 11 синтезированы изомерные пиридинметилиденгидразиды 12.

В спектрах ЯМР ¹Н всех синтезированных соединений (табл. 3) сигналы алифатических протонов 6,7-дигидропиридохинолонового ядра дают, на первый взгляд, неожиданную картину спин-спиновых взаимодействий. Так, сигналы обеих метиленовых групп (7-CH₂ и 6-CH₂) представляют собой комбинацию дублета и триплета с большими (15-17 Гц) КССВ, каждый компонент которых испытывает дальнейшее расщепление. Вид сигналов становится понятным, если учесть, что каждый из них расщепляется с разными КССВ на протонах соседней метиленовой группы. Например, один фрагмент сигнала группы 7-СН₂ в более слабом поле (т. д при 3.20 м. д.) обусловлен аксиальным протоном, а другой (д. д при 2.95 м. д.) – экваториальным протоном. КССВ для данного сигнала составляют: ${}^{3}J_{7\text{H}_{2,6\text{H}_{9}}} = 3.5-5.5$, ${}^{3}J_{7\text{H}_{2,6\text{H}_{8}}} = 3.5-5.5$; ${}^{3}J_{7\text{H}_{a,6\text{H}_{8}}} = 12.4-13.2$; ${}^{3}J_{7\text{H}_{a,6\text{H}_{9}}} = 5.2-6.2$ Гц. Геминальная КССВ ${}^{2}J_{7\text{H}_{9,7\text{H}_{8}}} = 16.5-18.5$ Гц. Для сигнала 6-CH₂, имеющего компонент, отвечающий экваториальному протону (д. т при 2.15 м. д.) и аксиальному (т. т при 2.05 м. д.), наблюдаются еще и вицинальные КССВ с протоном H-5: ³*J*_{5H,6Ha} = 13–14, ³*J*_{5H,6Ha} = 4.5–5.5 Гц. Геминальная КССВ для сигнала 6-СН $_2^{2J}_{6H_2,6Ha} = 14.0-16.0$ Гц.

Способность синтезированных соединений ингибировать рост *Мусо*bacterium tuberculosis H37Rv ATCC 27294 изучена в опытах *in vitro* радиометрически [15]. Результаты первичных микробиологических испытаний (табл. 2) показывают, что соединения 7 противотуберкулезной активностью

Таблица2

Соеди- нение	Ингибирование роста <i>M. tuberculosis</i> при c = 6.25 мкг/мл, %	Соеди- нение	Ингибирование роста <i>M. tuberculosis</i> при <i>c</i> = 6.25 мкг/мл, %
5	24	9i	18
7	1	9j	58
8a	50	9k	62
8b	25	10a	100
8c	54	10b	76
8d	17	10c	5
8e	18	10d	100
8f	19	10e	20
8g	16	10f	17
8h	7	10g	17
9a	8	10h	14
9b	0	10i	20
9c	26	10j	82
9d	42	11	21
9e	0	12a	1
9f	85	12b	5
9g	95	12c	12
9h	52		

Противотуберкулезная активность синтезированных соединений

Таблица З

						Химич	еские сдвиг	и, б, м. д. (<i>J</i> ,	Гц)		
C.		1-Гидро	окси-5-метил-	3-оксо-9-фто	р-6,7-диги	цро-3H,5H-	пиридо[3,2,	1 <i>-іј</i>]хинолин	ювое ядро		
Со- еди-	1-OH	CONH	H-10	H-8	5-CH	7-0	CH ₂	6-0	CH ₂	CH ₃	R (Het)
нение	(1H, c)	(1Н, т)*	(1Н, д. д)	(1Н, д. д)	(1Н, м)	Н _а -7 (1Н, т. д)	Н _э -7 (1Н, д. д)	Н _э -6 (1Н, д. т)	Н _а -6 (1Н, т. т)	(3Н, д)	
1	2	3	4	5	6	7	8	9	10	11	12
8a	16.87	10.85 (5.8)	7.63 (8.5 и 2.6)	7.38 (6.7 и 2.5)	5.21	3.17	2.92	2.11	1.97	1.28 (6.6)	7.45 (1Н, д. д, <i>J</i> = 6.8 и <i>J</i> = 2.6, Н-3 7.31–7.20 (3Н, м, Н аром.); 4.71 (2Н, <i>J</i> = 8.8)
8b	17.26	10.43 (5.3)	7.58 (8.5 и 2.8)	7.37 (8.7 и 2.4)	5.14	3.14	2.93	2.11	1.92	1.24 (6.6)	6.84–6.73 (3H, м, H-2',5',6'); 3.79 (3H, OCH ₃); 3.75 (3H, с, OCH ₃); 3.61 (2H, <i>J</i> =6.4, NCH ₂); 2.84 (2H, т, <i>J</i> =7.1, C <u>H</u> ₂ Aı
8c	17.23	10.44 (5.8)	7.61 (8.8 и 2.6)	7.32 (8.3 и 2.3)	5.19	3.16	2.93	2.11	См. R	1.27 (6.4)	7.27–7.10 (5H, м, C ₆ H ₅); 3.43 (2H, <i>J</i> = 6.5, NCH ₂); 2.72 (2H, м, CH ₂ C ₆ H 2.01–1.89 (3H, м, H _a -6 + NCH ₂ C <u>H₂</u>)
8d	16.86	10.68 (5.6)	7.63 (8.8 и 2.7)	7.28 (8.7 и 2.5)	5.19	3.16	2.91	2.10	1.96	1.27 (6.1)	7.41 (1H, д, <i>J</i> = 1.9, H-5'); 6.33 (1H, <i>J</i> = 1.8, H-4'); 6.29 (1H, д, <i>J</i> = 3.3, H-2 4.61 (2H, т, <i>J</i> = 4.6, NCH ₂)
8e	17.16	10.47 (5.3)	7.60 (8.8 и 2.6)	7.31 (8.5 и 2.7)	5.19	3.16	2.92	2.11	См. R	1.27 (6.7)	4.03 (1H, M, OCH); 3.93–3.33 (4H, NCH ₂ + OCH ₂); 2.30–1.58 (5H, H _a -6 + 3'-CH ₂ + 4'-CH ₂)

Спектры ЯМР ¹ Н	амидов 8–10

8f	17.03	10.96 (5.1)	7.63 (8.4 и 2.6)	7.26 (8.6 и 2.9)	5.24	3.18	2.92	2.10	1.99	1.30 (7.2)	8.56 (1H, π , $J = 4.4$, H-6');7.68 (1H, T. π , $J = 7.9 \text{ m} J = 1.7$, H-5'); 7.35 (1H, π , $J = 8.1$, H-3'); 7.20 (1H, T, $J = 6.2$, H-4'); 4.74 (2H, T, $J = 6.2$, NCH ₂)
8g	16.86	10.81 (5.0)	7.64 (8.3 и 2.5)	7.30 (8.5 и 2.6)	5.19	3.17	2.92	2.11	1.96	1.27 (6.3)	8.58 (1H, c, H-2'); 8.45 (1H, д, <i>J</i> = 4.2, H-6'); 7.73 (1H, д, <i>J</i> = 7.7, H-4'); 7.25 (1H, т, <i>J</i> = 4.9, H-5'); 4.65 (2H, т, <i>J</i> = 5.3, NCH ₂)
8h	16.77	10.85 (5.3)	7.64 (8.5 и 2.4)	7.31 (8.6 и 2.6)	5.21	3.18	2.93	2.12	1.98	1.29 (6.8)	8.49 (2H, д, <i>J</i> = 5.3, H-2',6'); 7.27 (2H, д, <i>J</i> = 4.6, H-3',5'); 4.66 (2H, т, <i>J</i> = 5.8, NCH ₂)
9a	16.74	10.53 (5.8)	7.60 (8.6 и 2.8)	7.38 (8.8 и 2.4)	5.18	3.15	2.95	2.12	1.95	1.27 (6.6)	11.63 (1H, уш. с, N ⁺ H); 3.85 (2H, к, $J = 6.6$, NHC <u>H</u> ₂); 3.32 (2H, т, $J = 6.2$, NCH ₂ C <u>H</u> ₂); 2.83 (6H, с, 2CH ₃)
9b	16.80	10.49 (5.9)	7.59 (8.8 и 2.9)	7.37 (8.6 и 2.6)	5.18	3.14	2.93	2.12	1.95	1.26 (6.4)	9.49 (2H, уш. с, N ⁺ H ₂); 3.79 (2H, к, <i>J</i> = 6.3, NHC <u>H</u> ₂); 2.99 (4H, м, NH(C <u>H</u> ₂) ₂); 1.32 (3H, т, <i>J</i> = 7.4, NHCH ₂ C <u>H</u> ₃)
9c	16.81	10.48 (6.0)	7.59 (8.6 и 2.6)	7.31 (8.6 и 2.6)	5.19	3.14	См. R	2.12	1.96	1.27 (6.8)	9.47 (2H, уш. с, N ⁺ H ₂); 3.82 (2H, к, <i>J</i> = 6.3, CONHC <u>H</u> ₂); 3.77 (2H, т, <i>J</i> = 5.3, OCH ₂); 3.20 (2H, т, <i>J</i> = 6.2, CH ₂ N); 3.07 (2H, т, <i>J</i> = 4.9, NCH ₂); 2.92 (2H, м, H ₃ -7 + OH)
9d	16.73	10.52 (6.1)	7.60 (8.6 и 2.6)	7.38 (8.8 и 2.6)	5.18	См. К	2.93	2.12	1.95	1.26 (6.5)	11.66 (1H, уш. с, N ⁺ H); 3.84 (2H, к, $J = 7.2$, NHC <u>H</u> ₂); 3.29–3.13 (7H, м, H _a -7 + N(CH ₂) ₃); 1.37 (6H, т, $J = 7.0$, 2CH ₃)
9e	17.05	10.45 (5.9)	7.59 (8.8 и 2.8)	7.30 (8.7 и 2.5)	5.19	См. К	2.93	См. R	1.96	1.27 (6.8)	12.01 (1H, уш. с, N ⁺ H); 3.54 (2H, к, J = 6.3, NHC <u>H</u> ₂); 3.14 (3H, м, H _a -7 + C <u>H</u> ₂ N(CH ₃) ₂); 2.77 (6H, с, 2CH ₃); 2.12 (3H, м, H ₃ -6 + NCH ₂ C <u>H</u> ₂)

Окончание таблицы 2

1	2	3	4	5	6	7	8	9	10	11	12
9f	16.99	10.46 (5.8)	7.59 (8.7 и 2.6)	7.26 (8.7 и 2.7)	5.20	См. R	2.91	См. R	1.98	1.27 (6.8)	12.12 (1H, yui. c, N ⁺ H); 3.56 (2H, κ , J = 6.5, NHC <u>H</u> ₂); 3.14 (7H, M , H _a -7 + N(CH ₂) ₃); 2.13 (3H, M , H ₃ -6 + NHCH ₂ C <u>H</u> ₂); 1.37 (6H, τ , $J = 7.2$, 2CH ₃)
9g	16.66	10.63 (6.5)	7.61 (8.8 и 2.7)	7.30 (8.8 и 2.7)	5.21	См. R	См. R	См. К	См. К	1.28 (6.2)	12.45 (1H, уш. с, N ⁺ H); 4.10–3.00 (9H, м, NHC <u>H</u> ₂ + 7,1',5'-CH ₂ + 2'-CH); 2.30–1.93 (6H, м, 6,3',4'-CH ₂); 1.44 (3H, т. д, $J = 7.1$ и $J = 3.5$, CH ₃)
9h	16.81	10.51 (5.7)	7.60 (8.7 и 2.9)	7.42 (8.8 и 2.6)	5.17	См. К	2.94	2.12	1.93	1.26 (6.2)	9.92 (3H, уш. с, N ⁺ H + N ⁺ H ₂); 3.82 (2H, к, <i>J</i> = 6.4, CONHC <u>H₂</u>); 3.48–3.27 (9H, м, H _a -7 + 4CH ₂ пиперазина); 3.12 (3H, т, <i>J</i> = 6.3, CH ₂ N)
9i	16.72	10.53 (5.6)	7.62 (8.4 и 2.6)	7.30 (8.4 и 2.7)	5.20	См. R	2.93	2.11	1.98	1.28 (7.2)	13.02 (1H, ym. c, N^+H); 3.94 (6H, M, NHC <u>H</u> ₂ + O(CH ₂) ₂); 3.34–3.10 (7H, M, H _a -7 + N(CH ₂) ₃)
9j	17.05	10.45 (5.8)	7.61 (8.7 и 2.8)	7.29 (8.7 и 2.6)	5.20	См. К	2.92	2.12	1.97	1.28 (6.3)	12.81 (1H, ym. c, N ⁺ H); 3.92 (4H, M, O(CH ₂) ₂); 3.56 (2H, κ , $J = 6.3$, NHC <u>H₂</u>); 3.47 (2H, τ , $J = 7.0$, CH ₂ N); 3.18–2.98 (5H, M, H _a -7+N(CH ₂) ₂); 2.20 (2H, κ , $J = 7.7$, NHCH ₂ C <u>H₂</u>)
9k	17.06	10.44 (5.7)	7.59 (8.8 и 2.6)	7.33 (8.8 и 2.6)	5.18	3.16	См. R	См. R	1.95	1.26 (7.2)	11.74 (1H, уш. с, N ⁺ H); 3.52 (2H, к, $J = 6.4$, NHC <u>H₂</u>); 3.46 (2H, т, $J = 6.9$, CH ₂ N); 3.08–2.79 (5H, м, H ₃ -7 + 2',6'-CH ₂); 2.13 (3H, м, H ₃ -6 + NHCH ₂ C <u>H₂</u>); 1.79 (6H, м, 3',4',5'-CH ₂ пиперидина)
10a	16.02	12.96	7.67	7.37	5.25	3.20	2.96	2.16	2.01	1.32	8.47 (2H, д, J = 5.1, H-2',6'); 7.61 (2H, д,

			(8.8 и 2.7)	(8.5 и 2.4)						(7.2)	<i>J</i> = 5.5, H-3',5')
10b	16.19	12.82	7.68 (8.7 и 2.6)	7.38 (8.7 и 2.4)	5.28	3.21	2.97	2.17	2.02	1.34 (6.3)	8.77 (1H, π , $J = 1.6$, H-3'); 8.34 (1H, π , $J = 4.5$, H-6'); 8.17 (1H, π , $J = 8.1$, H-4'); 7.33 (1H, π , $J = 6.4$, H-5')
10c	16.26	12.91	7.66 (8.7 и 2.6)	7.32 (8.7 и 2.6)	5.30	3.19	2.94	2.15	2.02	1.33 (6.9)	8.35 (1H, π , $J = 5.3$, H-6'); 8.23 (1H, π , $J = 8.9$, H-3'); 7.74 (1H, π . π , $J = 7.6$ M $J = 1.8$, H-5'); 7.09 (1H, π , $J = 6.3$, H-4')
10d	16.53	12.44	7.65 (8.8 и 2.6)	7.38 (8.8 и 2.4)	5.27	3.20	2.95	2.15	2.00	1.33 (6.1)	8.28 (1H, д, <i>J</i> = 4.9, H-6'); 7.75 (1H, д, <i>J</i> = 6.4, H-4'); 7.18 (1H, т, <i>J</i> = 6.3, H-5'); 2.34 (3H, c, CH ₃)
10e	16.32	12.85	7.68 (8.8 и 2.6)	7.32 (8.8 и 2.6)	5.30	3.19	2.94	2.15	2.02	1.33 (6.1)	8.19 (1H, д, <i>J</i> = 4.6, H-6'); 8.07 (1H, с, H-3'); 6.91 (1H, д, <i>J</i> = 5.3, H-5'); 2.42 (3H, с, CH ₃)
10f	16.48	12.88	См. R	7.46 (8.7 и 2.5)	5.24	3.13	2.92	2.12	2.00	1.26 (6.4)	8.20 (1H, c, H-6'); 7.97 (1H, д, <i>J</i> = 8.2, H-3'); 7.68–7.57 (2H, м, H-10 + H-4'); 2.29 (3H, c, CH ₃)
10g	16.36	12.81	7.67 (8.5 и 2.6)	7.32 (8.5 и 2.4)	5.29	3.19	2.94	2.16	2.02	1.32 (6.6)	8.03 (1H, д, <i>J</i> = 7.8, H-3'); 7.61 (1H, т, <i>J</i> = 7.8, H-4'); 6.93 (1H, д, <i>J</i> = 7.7, H-5'); 2.44 (3H, с, CH ₃)
10h	15.82	12.96	7.68 (8.7 и 2.1)	7.34 (8.1 и 2.4)	5.30	3.20	2.95	2.15	2.02	1.34 (6.7)	9.73 (1H, c, OH); 7.91 (1H, д, <i>J</i> = 4.4, H- 6'); 7.28 (1H, д, <i>J</i> = 7.8, H-4'); 7.07 (1H, т, <i>J</i> = 6.4, H-5')
10i	16.41	13.19	7.66 (8.4 и 1.8)	7.46 (8.2 и 1.3)	5.25	3.18	2.93	2.16	1.99	1.31 (6.6)	8.71 (2H, д, <i>J</i> = 5.0, H-4',6'); 7.24 (1H, т, <i>J</i> = 4.9, H-5')
10j	15.89	13.10	7.69 (8.4 и 2.6)	7.37 (8.5 и 2.6)	5.29	3.20	2.96	2.16	2.01	1.33 (6.1)	9.49 (1H, c, H-3'); 8.36 (2H, c, H-5',6')

* Соединения 10а-ј – синглеты.

не обладает. Вопреки ожиданиям, неактивными оказались также гидразид 11 и его пиридинметилиден- производные 12. Лишь некоторые из алкиламидов 8 проявляют умеренные антимикобактериальные свойства, что в целом согласуется со структурнобиологическими закономерностями, выявленными ранее в ряду амидированных производных 1R-4-гидрокси-2оксо-1,2-дигидрохинолин-3-карбоновых кислот [16–18]. В то же время, гидрохлорид 1-этилпирролидин-2-илметиламида 1-гидрокси-5-метил-3оксо-9-фтор-6,7-дигидро-3H,5H-пиридо- [3,2,1-*ij*]хинолин-2-карбоновой кислоты (9g) в концентрации 6.25 мкг/мл угнетает рост микобактерий туберкулеза на 95%, хотя обычно для водорастворимых соединений изучаемого класса это нехарактерно. В группе гетариламидов выявлены два вещества: пиридин-4-ил- и 3-метилпиридин-2-иламиды (10а и 10b), способные на 100% блокировать развитие *Муcobacterium tuberculosis* и представляющие интерес для дальнейших исследований.

Таблица4

Связь	l, Å	Связь	<i>l</i> , Å
F _(1A) -C _(6A)	1.363(6)	N _(1A) -C _(9A)	1.384(6)
N _(1A) -C _(12A)	1.406(6)	N _(1A) -C _(1A)	1.502(6)
$O_{(1A)} - C_{(10A)}$	1.343(6)	O _(2A) -C _(12A)	1.243(6)
$O_{(3A)} - C_{(13A)}$	1.256(6)	O _(4A) -C _(13A)	1.282(6)
$O_{(4A)} - C_{(14A)}$	1.490(6)	$C_{(1A)} - C_{(16A)}$	1.516(6)
C _(1A) -C _(2A)	1.517(6)	C _(2A) -C _(3A)	1.547(8)
C _(3A) -C _(4A)	1.461(7)	C(4A)-C(9A)	1.395(6)
C _(4A) -C _(5A)	1.398(7)	C(5A)-C(6A)	1.383(7)
C _(6A) -C _(7A)	1.362(6)	C _(7A) -C _(8A)	1.407(7)
C _(8A) -C _(9A)	1.398(6)	C _(8A) -C _(10A)	1.445(6)
C _(10A) -C _(11A)	1.354(7)	$C_{(11A)} - C_{(12A)}$	1.433(7)
$C_{(11A)} - C_{(13A)}$	1.466(7)	C _(14A) -C _(15A)	1.453(9)
$F_{(1B)}-C_{(6B)}$	1.376(6)	N _(1B) -C _(12B)	1.387(5)
N(1B)-C(9B)	1.398(6)	N _(1B) -C _(1B)	1.485(6)
O _(1B) –C _(10B)	1.330(5)	O _(2B) -C _(12B)	1.225(6)
O _(3B) –C _(13B)	1.213(5)	O _(4B) -C _(13B)	1.300(6)
O _(4B) -C _(14B)	1.464(5)	$C_{(1B)} - C_{(16B)}$	1.514(7)
C _(1B) -C _(2B)	1.514(7)	C _(2B) -C _(3B)	1.517(7)
C _(3B) -C _(4B)	1.498(7)	C _(4B) -C _(5B)	1.374(7)
C _(4B) -C _(9B)	1.420(6)	C _(5B) -C _(6B)	1.356(7)
C _(6B) -C _(7B)	1.359(7)	C _(7B) -C _(8B)	1.375(7)
C _(8B) -C _(9B)	1.403(6)	C _(8B) -C _(10B)	1.452(6)
C _(10B) -C _(11B)	1.372(7)	C _(11B) -C _(12B)	1.443(6)
C _(11B) –C _(13B)	1.488(6)	C _(14B) -C _(15B)	1.512(7)

Длины связей (*l*) в структуре эфира 4

Валентные углы (ω) в струг	стуре эфира 4
----------------------------	---------------

Валентный угол	ω, град.	Валентный угол	ω, град.
C _(9A) -N _(1A) -C _(12A)	123.5(4)	C _(9A) -N _(1A) -C _(1A)	120.5(4)
$C_{(12A)} - N_{(1A)} - C_{(1A)}$	115.9(4)	$C_{(13A)} - O_{(4A)} - C_{(14A)}$	115.8(5)
$N_{(1A)}$ - $C_{(1A)}$ - $C_{(16A)}$	109.4(4)	N _(1A) -C _(1A) -C _(2A)	109.2(4)
$C_{(16A)}$ - $C_{(1A)}$ - $C_{(2A)}$	113.7(4)	$C_{(1A)}$ - $C_{(2A)}$ - $C_{(3A)}$	110.1(5)
$C_{(4A)} - C_{(3A)} - C_{(2A)}$	108.1(4)	$C_{(9A)}$ - $C_{(4A)}$ - $C_{(5A)}$	116.4(4)
$C_{(9A)}$ - $C_{(4A)}$ - $C_{(3A)}$	124.1(5)	C _(5A) -C _(4A) -C _(3A)	119.5(5)
$C_{(6A)} - C_{(5A)} - C_{(4A)}$	122.2(5)	C _(7A) -C _(6A) -F _(1A)	118.9(5)
$C_{(7A)} - C_{(6A)} - C_{(5A)}$	122.1(5)	$F_{(1A)}$ - $C_{(6A)}$ - $C_{(5A)}$	119.0(5)
$C_{(6A)}$ - $C_{(7A)}$ - $C_{(8A)}$	116.9(5)	C _(9A) -C _(8A) -C _(7A)	121.6(4)
C _(9A) -C _(8A) -C _(10A)	118.0(4)	C _(7A) -C _(8A) -C _(10A)	120.4(4)
$N_{(1A)}$ - $C_{(9A)}$ - $C_{(4A)}$	119.6(4)	N _(1A) -C _(9A) -C _(8A)	119.5(4)
$C_{(4A)}$ - $C_{(9A)}$ - $C_{(8A)}$	120.9(4)	O _(1A) -C _(10A) -C _(11A)	125.5(4)
O _(1A) -C _(10A) -C _(8A)	113.1(5)	$C_{(11A)}$ - $C_{(10A)}$ - $C_{(8A)}$	121.4(4)
$C_{(10A)}$ - $C_{(11A)}$ - $C_{(12A)}$	121.1(4)	$C_{(10A)}$ - $C_{(11A)}$ - $C_{(13A)}$	117.1(4)
C _(12A) -C _(11A) -C _(13A)	121.8(5)	O _(2A) -C _(12A) -N _(1A)	117.9(5)
O _(2A) -C _(12A) -C _(11A)	125.7(5)	N _(1A) -C _(12A) -C _(11A)	116.3(5)
O _(3A) -C _(13A) -O _(4A)	120.1(5)	$O_{(3A)} - C_{(13A)} - C_{(11A)}$	120.7(5)
$O_{(4A)} - C_{(13A)} - C_{(11A)}$	119.1(5)	C _(15A) -C _(14A) -O _(4A)	105.7(6)
C _(12B) -N _(1B) -C _(9B)	122.7(4)	C _(12B) -N _(1B) -C _(1B)	116.6(4)
$C_{(9B)}$ - $N_{(1B)}$ - $C_{(1B)}$	120.7(4)	$C_{(13B)}$ - $O_{(4B)}$ - $C_{(14B)}$	116.5(4)
N _(1B) -C _(1B) -C _(16B)	109.6(4)	N _(1B) -C _(1B) -C _(2B)	109.4(5)
$C_{(16B)}$ - $C_{(1B)}$ - $C_{(2B)}$	114.0(5)	C _(1B) -C _(2B) -C _(3B)	112.0(5)
$C_{(4B)}$ - $C_{(3B)}$ - $C_{(2B)}$	109.2(4)	C _(5B) -C _(4B) -C _(9B)	116.9(5)
$C_{(5B)}$ - $C_{(4B)}$ - $C_{(3B)}$	121.4(5)	C _(9B) -C _(4B) -C _(3B)	121.7(5)
$C_{(6B)}$ - $C_{(5B)}$ - $C_{(4B)}$	122.1(5)	C _(5B) -C _(6B) -C _(7B)	123.0(6)
$C_{(5B)}$ - $C_{(6B)}$ - $F_{(1B)}$	118.7(5)	$C_{(7B)}$ - $C_{(6B)}$ - $F_{(1B)}$	118.2(5)
$C_{(6B)}$ - $C_{(7B)}$ - $C_{(8B)}$	116.8(5)	C _(7B) -C _(8B) -C _(9B)	122.4(5)
$C_{(7B)}$ - $C_{(8B)}$ - $C_{(10B)}$	121.3(4)	$C_{(9B)}$ - $C_{(8B)}$ - $C_{(10B)}$	116.2(4)
$N_{(1B)}$ - $C_{(9B)}$ - $C_{(8B)}$	121.0(4)	N _(1B) -C _(9B) -C _(4B)	120.2(5)
$C_{(8B)}$ - $C_{(9B)}$ - $C_{(4B)}$	118.8(5)	$O_{(1B)}$ - $C_{(10B)}$ - $C_{(11B)}$	121.8(5)
$O_{(1B)}$ - $C_{(10B)}$ - $C_{(8B)}$	116.0(5)	$C_{(11B)}$ - $C_{(10B)}$ - $C_{(8B)}$	122.2(4)
$C_{(10B)}$ - $C_{(11B)}$ - $C_{(12B)}$	120.0(4)	$C_{(10B)}$ - $C_{(11B)}$ - $C_{(13B)}$	117.5(4)
C _(12B) -C _(11B) -C _(13B)	122.5(5)	O _(2B) -C _(12B) -N _(1B)	118.4(4)
$O_{(2B)} - C_{(12B)} - C_{(11B)}$	124.4(4)	$N_{(1B)}$ - $C_{(12B)}$ - $C_{(11B)}$	117.2(5)
O _(3B) -C _(13B) -O _(4B)	122.5(4)	$O_{(3B)} - C_{(13B)} - C_{(11B)}$	121.6(5)
$O_{(4B)} - C_{(13B)} - C_{(11B)}$	115.9(4)	$O_{(4B)}$ - $C_{(14B)}$ - $C_{(15B)}$	106.1(4)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Bruker WM-360 (360 МГц) в ДМСО- d_6 , внутренний стандарт ТМС. Хромато-масс-спектр дигетарилметана 5 зарегистрирован на квадрупольном спектрометре Finnigan MAT Incos 50 в режиме полного сканирования в диапазоне 33–700 *m/z*, ионизация ЭУ 70 эВ, прямой ввод, скорость нагрева ~5 °/с. В синтезе эфира 4 использованы коммерческие 2-метил-6-фтор-1,2,3,4-тетрагидрохинолин и триэтилметантрикарбоксилат, соответственно, фирм Aldrich и Fluka.

Этиловый 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3Н,5Н-пиридоэфир [3,2,1-іј]хинолин-2-карбоновой кислоты (4). В 23.2 мл (0.11 моль) триэтилметантрикарбоксилата (3), нагретые до 220 °С, при перемешивании небольшими порциями прибавляют 16.52 г (0.1 моль) хинолина 2 таким образом, чтобы температура реакционной смеси поддерживалась в пределах ±5 °С от начальной. Выделяющийся в процессе реакции этанол отгоняют через подходящий дефлегматор. После прибавления всего хинолина 2 реакционную смесь выдерживают 10-15 мин при той же температуре, после чего охлаждают. Прибавляют 300 мл 10% водного раствора Na₂CO₃, нагревают до 70-80 °C и фильтруют. Остаток на фильтре промывают горячей водой. Полученный раствор натриевой соли эфира 4 чистят углем и после охлаждения подкисляют разбавленной (1:1) HCl до pH 4.5-5. Выделившийся осадок эфира 4 отфильтровывают, промывают водой, сушат. Выход 23.2 г (76%). Т. пл. 131–133 °С (из гексана). Спектр ЯМР ¹Н. б. м. д. (*J*, Гц): 12.86 (1Н, с, ОН), 7.57 (1Н, д. д, J = 9.1 и J = 3.0, Н-10), 7.46 (1Н, д. д, J = 9.0 и J = 3.0, Н-8), 5.00 (1H, м, 5-CH), 4.30 (2H, к, J = 7.0, OCH₂), 3.06 (1H, т. д, J = 17.1 и J = 5.3, H_a-7), 2.85 (1H, д. д. J = 17.0 и J = 5.1, H₃-7), 2.02 (1H, д. т, J = 13.4 и J = 5.0, H₃-6), 1.82 (1H, т. т, J = 13.6 и J = 5.1, H_a-6), 1.28 (3H, т, J = 7.1, ОСН₂С<u>Н</u>₃), 1.14 (3H, д, J = 6.6, СН₃). Найдено, %: С 62.84; Н 5.33; N 4.54. С₁₆Н₁₆FNO₄. Вычислено, %: С 62.95; Н 5.28; N 4.59.

Рентгеноструктурное исследование. Кристаллы эфира 4, полученные из этанола, триклинные. При 20 °C: a = 9.369(3), b = 11.651(3), c = 13.521(5) Å, $a = 99.43(3)^{\circ}, \beta = 90.29(3)^{\circ}, \gamma = 92.67(3)^{\circ}, V = 1454.3(8)$ Å³, $d_{\rm BHY} = 1.394$ г/см³, пространственная группа P1, $M_{\rm r} = 305.3, Z = 4$, μ (Мо $K\alpha$) = 0.109 мм⁻¹, F(000) = 640. Параметры элементарной ячейки и интенсивности 5164 отражений (4868 независимых, $R_{\rm int} = 0.014$) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (λ Мо $K\alpha$, графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{\rm max} = 50^{\circ}$).

Структура расшифрована прямым методом по комплексу программ SHELX97 [19]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{_{\rm H30}} = nU_{_{3\rm KB}}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильной группы и 1.2 для остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.252$ по 4868 отражениям ($R_1 = 0.067$ по 1698 отражениям с $F > 4\sigma$ (F), S = 0.905). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент № ССDC 283292). Межатомные расстояния и валентные углы представлены в табл. 4, 5.

Ди(1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij***]хинолин-2-и**л)**метан** (5). Остаток на фильтре (см. пример получения эфира 4) кристаллизуют из ДМФА. Получают 1.93 г (8%) дигетарилметана 5. Т. пл. 288–290 °С. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 12.70 (2H, с, 2OH), 7.56 (2H, д. д, J = 8.9 и J = 2.6, 2H-10), 7.42 (2H, д. д, J = 9.0 и J = 2.6, 2H-8), 5.16 (2H, м. два 5-CH), 3.87 (2H, с, CH₂), 3.13 (2H, т. д, J = 15.7 и J = 5.5, 2H_a-7), 2.92 (2H, д. д, J = 16.8 и J = 3.6, 2H₃-7), 2.07 (2H, д. т, J = 12.1 и J = 4.2, 2H₃-6), 1.91 (2H, т. т, J = 13.7 и J = 4.6, 2H_a-6), 1.22 (6H, д, J = 7.0, 2CH₃). Масс-спектр, *m*/*z* ($I_{\text{отн}}$, %): 478 [M]⁺ (66), 246 [HetCH₂]⁺ (12), 232 [Het]⁺ (42), 218 (68), 204 (69), 190 (57), 176 (100), 162 (29), 148 (43). Найдено, %: C 67.68; H 5.12; N 5.92. C₂₇H₂₄F₂N₂O₄. Вычислено, %: C 67.77; H 5.06; N 5.85.

1-Гидрокси-5-метил-9-фтор-6,7-дигидро-5Н-пиридо[3,2,1-*ij***]хинолин-3-он (6). А. Смесь 3.05 г (0.01 моль) эфира 4 и 50 мл 20% водного раствора КОН кипятят 40 ч. Охлаждают, подкисляют HCl до pH 3. Осадок отфильтровывают, промывают водой, сушат. Выход 1.93 г (83%). Т. пл. 314–316 °C (из этанола). Спектр ЯМР ¹Н, δ, м. д. (***J***, \Gammaц): 11.52 (1H, c, OH), 7.40 (1H, д. д,** *J* **= 8.8 и** *J* **= 2.7, H-10), 7.33 (1H, д. д,** *J* **= 8.8 и** *J* **= 2.8, H-8), 5.86 (1H, c, H-2), 4.99 (1H, м, 5-CH), 3.06 (1H, т. д,** *J* **= 17.0 и** *J* **= 4.9, H_a-7), 2.85 (1H, д. д,** *J* **= 17.1 и** *J* **= 4.2, H₃-7), 2.00 (1H, д. т,** *J* **= 13.8 и** *J* **= 5.1, H₃-6), 1.81 (1H, т. т,** *J* **= 13.7 и** *J* **= 4.9, H_a-6), 1.12 (3H, д,** *J* **= 6.7, CH₃). Найдено, %: C 66.85; H 5.14; N 6.09. C₁₃H₁₂FNO₂.**

Вычислено, %: С 66.94; Н 5.19; N 6.01.

Б. Выдерживают 2.77 г (0.01 моль) кислоты 7 в течение 10 мин при 220 °С. При этом наблюдается бурное выделение CO₂, по завершении которого реакционную массу охлаждают и кристал- лизуют из водного этанола. Выход 2.09 г (90%).

В. Выдерживают 3.05 г (0.01 моль) эфира **4** в течение 20 мин при 250 °C. Охлаждают и остаток кристаллизуют из водного этанола. Выход 1.083 г (79%).

Смешанная проба образцов хинолин-3-она 6, полученных различными методами, не дает депрессии температуры плавления. Спектры ЯМР ¹Н этих соединений идентичны.

1-Гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij***]хинолин-2карбо- новая кислота (7). К 30 мл раствора HCl в уксусной кислоте, приготовленному по методике работы [10], прибавляют 3.05 г (0.01 моль) эфира 4 и выдерживают 5 ч при 60 °C. Охлаждают, выделившиеся кристаллы кислоты 7 отфильтровывают, промывают спиртом, затем водой, сушат. Выход 2.38 г (86%). Т. пл. 183–185°С (из этанола). Спектр ЯМР ¹H, \delta, м. д. (***J***, Гц): 14.10 (1H, с, OH), 7.68 (2H, д,** *J* **= 8.9,** *J* **= 8, H-10), 5.07 (1H, м, 5-CH), 3.05 (1H, т. д,** *J* **= 17.0 и** *J* **= 5.1, H_a-7), 2.90 (1H, д. д,** *J* **= 17.1 и** *J* **= 5.0, H₃-7), 2.05 (1H, д. т,** *J* **= 13.6 и** *J* **= 5.2, H₃-6), 1.87 (1H, т. т,** *J* **= 13.4 и** *J* **= 5.0, H_a-6), 1.20 (3H, д,** *J* **= 6.7, CH₃). Найдено, %: С 60.77; H 4.45; N 5.12. С₁₄H₁₂FNO₄. Вычислено, %: С 60.65; H 4.36; N 5.05.**

2-Хлорбензиламид 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо-[**3,2,1-***ij***]хинолин-2-карбоновой кислоты (8а).** К раствору 3.05 г (0.01 моль) эфира **4** в 30 мл этанола прибавляют 1.33 мл (0.011 моль) 2-хлорбензиламина и кипятят 3 ч. Охлаждают, прибавляют 100 мл холодной воды, а затем подкисляют HCl до pH 4. Осадок амида **8а** отфильтровывают, промывают водой, сушат.

Алкиламиды 8b-е получают аналогично. При выделении пиколиламидов 8f-h реакционную смесь подкисляют уксусной кислотой.

Гидрохлорид 2-диметиламиноэтиламида 1-гидрокси-5-метил-3-оксо-9-фтор-6,7дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты (9а). К раствору 3.05 г (0.01 моль) эфира 4 в 15 мл этанола прибавляют 1.1 мл (0.01 моль) 2-диметиламиноэтиламина и кипятят 3 ч. Охлаждают до комнатной температуры, прибавляют насыщенный газообразным HCl этанол до pH 3, после чего выдерживают реакционную смесь 7–8 ч при 5 °C. Выделившийся гидрохлорид 9а отфильтровывают, промывают эфиром, сушат.

Алкиламиды 9b-к получают аналогично.

Пиридин-4-иламид 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо-[3,2,1-*ij*]хинолин-2-карбоновой кислоты (10а). Смесь 3.05 г (0.01 моль) эфира 4, 0.94 г (0.01 моль) 4-аминопиридина и 0.5 мл ДМФА выдерживают 2–3 мин при 170 °С. Охлаждают, прибавляют 15 мл этанола и тщательно растирают. Осадок амида 10а отфильтровывают, промывают спиртом, сушат. Кристаллизуют из ДМФА.

Гетариламиды 10b-ј получают аналогично.

Гидразид 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты (11). К раствору 3.05 г (0.01 моль) эфира 4 в 15 мл этанола прибавляют 0.011 моль (в пересчете на фактическое содержание) гидразингидрата. Через 2 ч реакционную смесь разбавляют холодной водой. Осадок гидразида 11 отфильтровывают, промывают водой, сушат. Выход 2.90 г (количеств.). Т. пл. 169–171 °С (этанол). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 16.22 (1H, с, OH), 11.09 (1H, с, CONH), 7.59 (1H, д. д. *J* = 8.9 и *J* = 2.8, H-10), 7.47 (1H, д. д. *J* = 8.9 и *J* = 2.6, H-8), 5.11 (1H, м, 5-CH), 4.81 (2H, уш. с, NNH₂), 3.08 (1H, т. д. *J* = 17.0 и *J* = 4.7, H_a-7), 2.84 (1H, д. *J* = 12.8 и *J* = 3.5, H₃-7), 2.07 (1H, д. т, *J* = 13.7 и *J* = 5.5, H₃-6), 1.90 (1H, т. т, *J* = 13.4 и *J* = 4.9, H_a-6), 1.21 (3H, д. *J* = 6.5, CH₃). Найдено, %: С 57.60; H 4.71; N 14.56. С₁₄H₁₄FN₃O₃. Вычислено, %: С 57.73; H 4.84: N 14.43.

Пиридин-4-илметилиденгидразид 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты (12а). К раствору 2.91 г (0.01 моль) гидразида 11 в 20 мл горячего этанола прибавляют 1.04 мл (0.011 моль) изоникотинового альдегида и кипятят 1 ч. Охлаждают, выделившиеся кристаллы пиридин-4-илметилиденгидразида 12а отфильтровывают, промывают спиртом, сушат. Выход 3.65 г (96%). Т. пл. 292–294 °С (из смеси ДМФА-этанол). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 16.31 (1H, с, OH), 13.52 (1H, с, CONH), 8.66 (2H, д, J = 5.4, H-2',6'), 8.53 (1H, с, CH=N), 7.70–7.60 (3H, м, H-10 + H-3',5'), 7.52 (1H, д. д, J = 8.7 и J = 2.4, H-8), 5.16 (1H, м, 5-CH), 3.11 (1H, т. д, J = 17.1 и J = 5.4, H_a-7), 2.84 (1H, д. д, J = 12.9 и J = 3.8, H₃-7), 2.11 (1H, д. т, J = 13.9и J = 5.4, H₃-6), 1.94 (1H, т. т, J = 13.6 и J = 5.0, H_a-6), 1.27 (3H, д, J = 6.8, CH₃). Найдено, %: С 63.23; Н 4.61; N 14.80. С₂₀H₁₇FN₄O₃. Вычислено, %: С 63.15; Н 4.50; N 14.73. По аналогичной методике получают соединения **12b,с**.

Пиридин-3-илметилиденгидразид 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij***]хинолин-2-карбоновой кислоты (12b). Выход 95%. Т. пл. 210–212 °C (из смеси ДМФА–этанол). Спектр ЯМР ¹H, \delta, м. д. (***J***, Гц): 16.47 (1H, с, OH), 13.46 (1H, с, CONH), 8.89 (1H, д.** *J* **= 1.9, H-2'), 8.62 (1H, д. д.** *J* **= 4.9 и** *J* **= 1.6, H-6'), 8.57 (1H, с, CH=N), 8.14 (1H, д. т.** *J* **= 8.0 и** *J* **= 2.1, H-4'), 7.64 (1H, д. д.** *J* **= 8.7 и** *J* **= 2.8, H-10), 7.56–7.43 (2H, м, H-8 + H-5'), 5.16 (1H, м, 5-CH), 3.14 (1H, т. д.** *J* **= 17.3 и** *J* **= 5.4, H_a-7), 2.93 (1H, д. д.** *J* **= 17.5 и** *J* **= 4.2, H₃-7), 2.11 (1H, д. т.** *J* **= 13.5 и** *J* **= 5.3, H₃-6), 1.95 (1H, т. т.** *J* **= 13.7 и** *J* **= 4.9, H_a-6), 1.27 (3H, д.** *J* **= 6.5, CH₃). Найдено, %: C 63.26; H 4.58; N 14.85. C₂₀H₁₇FN₄O₃. Вычислено, %: C 63.15; H 4.50; N 14.73.**

Пиридин-2-илметилиденгидразид 1-гидрокси-5-метил-3-оксо-9-фтор-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты (12с). Выход 90%. Т. пл. 266–268 °C (из смеси ДМФ–этанол). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 16.40 (1H, с, OH), 13.44 (1H, с, CONH), 8.64 (1H, д, *J* = 4.6, H-6'), 8.42 (1H, с, CH=N), 7.98 (1H, д, *J* = 7.8, H-3'), 7.88 (1H, т. д, *J* = 7.4 и *J* = 1.5, H-4'), 7.63 (1H, д. д, *J* = 8.8 и *J* = 2.9, H-10), 7.51 (1H, д. д, *J* = 8.8 и *J* = 2.6, H-8), 7.43 (1H, т. д, *J* = 5.9 и *J* = 1.4, H-5'), 5.17 (1H, м, 5-CH), 3.14 (1H, т. д, *J* = 17.4 и *J* = 5.4, H_a-7), 2.92 (1H, д. д, *J* = 17.2 и *J* = 4.0, H₃-7), 2.10 (1H, д. т, *J* = 13.8 и *J* = 5.4, H₃-6), 1.94 (1H, т. т, *J* = 13.5 и *J* = 4.7, H_a-6), 1.26 (3H, д, *J* = 6.5, CH₃). Найдено, %: C 63.11; H 4.67; N 14.64. C₂₀H₁₇FN₄O₃. Вычислено, %: C 63.15; H 4.50; N 14.73.

Авторы выражают благодарность Национальному институту аллергии и инфекционных заболеваний США за проведенное в соответствии с программой TAACF (Tuberculosis Antimicrobial Acquisition & Coordinating Facility) изучение противотуберкулезных свойств синтезированных нами соединений (контракт № 01-AI-45246).

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, О. В. Горохова, Л. В. Сидоренко, Н. Л. Березнякова, ХГС, 1191 (2006).
- 2. A. Kleemann, J. Engel, *Pharmaceutical Substances: Syntheses, Patents, Applications,* Thieme Medical Publishers, Stuttgart, 2001.
- 3. Г. А. Мокрушина, В. Н. Чарушин, О. Н. Чупахин, Хим.-фарм. журн., 29, № 9, 5 (1995).
- J. S. Chapman, A. Bertasso, L. M. Cummings, N. H. Georgopapadakou, Antimicrob. Agents Chemother., 39, 564 (1995).
- M. P. Wentland, R. B. Perni, P. H. Dorff, R. P. Brundage, M. J. Castaldi, J. A. Carlson, T. R. Bailey, S. C. Aldous, P. M. Carabateas, E. R. Bacon, R. K. Kullnig, D. C. Young, M. G. Woods, S. D. Kingsley, K. A. Ryan, D. Rosi, M. L. Drozd, F. J. Dutko, *Drug. Des. Discov.*, 15, 25 (1997).
- S. C. Beasley, N. Cooper, L. Gowers, J. P. Gregory, A. F. Haughan, P. G. Hellewell, D. Macari, J. Miotla, J. G. Montana, T. Morgan, R. Naylor, K. A. Runcie, B. Tuladhar, J. B. Warneck, *Bioorg. Med. Chem. Lett.*, 8, 2629 (1998).
- 7. L. L. Klein, D. T. Chu, L. L. Shen, J. J. Plattner, EP 0424802 (1991). http://ep.espacenet.com.
- И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, О. В. Шишкин, XГС, 718 (2006). [Chem. Heterocycl. Comp., 42, 631 (2006)].
- 9. H.-B. Burgi, J. D. Dunitz, Struct. Correl., VCH, Weinheim, 1994, vol. 2, 741.
- S. Jönsson, G. Andersson, T. Fex, T. Fristedt, G. Hedlund, K. Jansson, L. Abramo, I. Fritzson, O. Pekarski, A. Runström, H. Sandin, I. Thuvesson, A. Björk, *J. Med. Chem.*, 47, 2075 (2004).
- 11. И. В. Украинец, О. В. Горохова, Л. В. Сидоренко, В. Б. Рыбаков, В. В. Чернышев, Журн. орг. фарм. хим., **1**, вып. 3–4, 45 (2003).

- 12. A. Kutyrev, T. Kappe, J. Heterocycl. Chem., 34, 969 (1997).
- 13. A. Kutyrev, T. Kappe, J. Heterocycl. Chem., 36, 237 (1999).
- 14. И. В. Украинец, Е. А. Таран, О. В. Шишкин, О. В. Горохова, С. Г. Таран, Н. А. Джарадат, А. В. Туров, *XIC*, 516 (2000). [*Chem. Heterocycl. Comp.*, **36**, 443 (2000)].
- 15. S. H. Siddiqui, in *Clinical Microbiology Procedures Handbook*, H. D. Isenberg (Ed.), American Sosiety for Microbiology, Washington D. C., 1992, vol. 1, p. 5.14.2.
- 16. Н. В. Лиханова, Дис. канд. фармац. наук, Харьков, 2000.
- 17. М. Амер, Дис. канд. фармац. наук, Харьков, 2002.
- 18. А. Дакках, Дис. канд. фармац. наук, Харьков, 2002.
- 19. G. M. Sheldrick, SHELX97. PC Version. A System of Computer Programs for the Crystal Structure Solution and Refinement. Rev. 2 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 27.06.2005

^аИнститут сцинтилляционных материалов НАН Украины, Харьков 61001 e-mail: shishkin@xray.isc.kharkov.com

⁶Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: nmrlab@univ.kiev.ua