И. В. Украинец, Е. В. Колесник, Л. В. Сидоренко, О. В. Горохова, А. В. Туров^а

4-ГИДРОКСИХИНОЛОНЫ-2

95*. СИНТЕЗ, СТРОЕНИЕ И ПРОТИВОТУБЕРКУЛЕЗНЫЕ СВОЙСТВА ГЕТАРИЛАМИДОВ 4-ГИДРОКСИ-2-ОКСО-1,2,5,6,7,8-ГЕКСАГИДРОХИНОЛИН-3-КАРБОНОВОЙ КИСЛОТЫ

На основании дериватографических исследований предложены оптимальные условия получения гетариламидов 4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты. Обсуждаются спектры ЯМР ¹Н синтезированных соединений, их пространственное строение, а также результаты изучения противотуберкулезных свойств.

Ключевые слова: амиды, 4-гидрокси-2-оксохинолин-3-карбоновые кислоты, противотуберкулезная активность, РСА, термолиз.

Еще недавно туберкулез считался уже окончательно побежденной болезнью, а сегодня стал самым распространенным инфекционным заболеванием в мире. Причина создавшегося положения кроется в ослаблении комплекса противотуберкулезных мероприятий в большинстве развивающихся и экономически высокоразвитых стран. В результате туберкулез вышел из-под контроля и в начале 90-х гг. прошлого века переломный момент наступил _ вместо ежегодного снижения заболеваемости началось стремительное ухудшение эпидемиологической ситуации [2, 3]. Кроме того, серьезно осложнила проблему способность микобактерий туберкулеза к активным мутациям, что дало им возможность вырабатывать устойчивость (часто множественную) ко общеизвестным противотуберкулезным препаратам. Как многим следствие, в мире сейчас насчитывается несколько миллионов человек, которым уже не помогает классическое лечение. В связи с этим поиск новых лекарственных средств антимикобактериального действия является одним из первостепенных по своему значению вопросов современного международного здравоохранения.

Несомненный интерес в этом плане представляют анилиды [4], гетариламиды [5–7] и гидразиды [8] 1R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот, показывающие в опытах *in vitro* высокую активность в отношении не только *Mycobacterium tuberculosis*, но и возбудителей нетуберкулезных микобактериозов – комплекса *Mycobacterium avium*. С целью выявления закономерностей связи "химическое строение – противотуберкулезное действие" в изучаемом ряду соединений нами осуществлен синтез и проведен микробиологический скрининг гидрированных

^{*}Сообщение 94 см. [1].

1 а R = Ру-4, b R = Ру-3, c R = Ру-2, d R = 3-Ме-Ру-2, e R = 4-Ме-Ру-2, f R = 5-Ме-Ру-2, g R = 6-Ме-Ру-2, h R = 4-пиколил, i R = 3-пиколил, j R = 2-пиколил, k R = 3-ОН-Ру-2, l R = тиазол-2-ил, m R = 4-(адамантил-1)-тиазол-2-ил, n R = бензтиазол-2-ил, o R = 6-Ме-бензтиазол-2-ил, p R = 6-Вг-бензтиазол-2-ил, q R = 1,3,4-тиадиазол-2-ил, r R = 5-Ме-1,3,4-тиадиазол-2-ил, s 5-Et-1,3,4-тиадиазол-2-ил, t 5-Pr-1,3,4-тиадиазол-2-ил, u 5-*i*-Pr-1,3,4-тиадиазол-2-ил; 5 a Alk = Me; b Alk = Et

аналогов описанных ранее соединений, а именно гетариламидов 4-гид-рокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты **1а–и**.

Исходным для получения амидов **1а–и** послужил этиловый эфир циклогексанон-2-карбоновой кислоты (2), легко превращающийся при обработке газообразным аммиаком в енамин **3**. Последующее ацилирование этиловым эфиром (хлоркарбонил)уксусной кислоты, а затем внутримолекулярная циклизация образовавшегося диэфира **4** под влиянием алкоголятов щелочных металлов дают эфиры 4-гидрокси-2-оксо-1,2,5,6,7,8гексагидрохинолин-3-карбоновой кислоты **5а,b**.

Ранее было показано, что для амидирования сложных эфиров 1R-4гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот анилинами или гетариламинами наиболее рационален термолиз при 160–200 °C [4–7]. Очевидно такой метод оправдан и в случае их гидрированных аналогов. Поэтому для подбора оптимальных условий получения амидов **1а–и** нами изучено термическое поведение эфира **5а**. Из приведенной на рис. 1 дериватограммы следует, что метиловый эфир **5а** устойчив до 175 °C. С дальнейшим повышением температуры начинается плавная потеря массы, которая со 185 °C резко нарастает. На кривой 4 при этой температуре наблюдается излом, переходящий в пик при 220 °C. Быстрая потеря массы прекращается при 250 °C и далее происходит лишь равномерное улетучивание соединения. Общая потеря массы в интервале

Рис. 1. Дериватограмма метилового эфира **5а**: 1 – кривая термического анализа, 2 – кривая дифференциальнотермического анализа, 3 – термогравиметрическая кривая, 4 – дифференциальная термогравиметрическая кривая. Навеска 100 мг

температур от 180 до 230 °С равна 25% от исходной, что в пересчете на каждую молекулу эфира **5a** соответствует 56 а. е. м. Другими словами, в условиях сухого нагрева сложноэфирная группа соединения **5a** разрушается (о чем свидетельствует и эндотермический пик при 220 °С на кривой 2) с образованием 4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолина (**6**), строение которого было подтверждено ЯМР ¹Н и массспектрами. Интересно, что в аналогичных условиях эфиры 1R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот ведут себя иначе – они практически количественно конденсируются в 5,9-ди-R-6,7,8-триоксодихинолино[3,4-*b*;3',4'-*e*]-4H-пираны [9].

Таким образом, дериватографическое исследование показывает, что амидирование эфиров 5 гетариламинами в условиях термолиза следует проводить при температуре не выше 175 °C. Кроме того, нами было замечено, что лучшие результаты дает проведение синтеза в присутствии небольшого количества высококипящего растворителя (ДМФА или бромбензола), который обеспечивает лучшее смешивание реагентов и предотвращает местные перегревы реакционной смеси. Получаемые при этом гетариламиды 4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты **1а–и** содержат меньше примесей при сохранении высоких выходов (табл. 1).

Все протонсодежащие функциональные группы синтезированных соединений идентифицируются в спектрах ЯМР ¹Н достаточно просто (табл. 2). Трудности возникают только при отнесении сигналов метиленовых групп гидрохинолона. Во всех случаях они проявляются тремя мультиплетами интенсивностью 2, 2 и 4Н. Понятно, что последний из отмеченных сигналов обусловлен схожими по окружению группами CH₂ в положениях 6 и 7. Метиленовые группы в положениях 5 и 8 магнитно-

Со- еди-	Брутто-	<u>Найдено, %</u> Брутто- Вычислено, %			Т. пл, ^о С	Противо- туберкулезна	Выход,
не- ние	формула	С	Н	N	(разл.)	я активность*	%
1a	C ₁₅ H ₁₅ N ₃ O ₃	<u>63.22</u> 63.15	$\frac{5.41}{5.30}$	$\frac{14.60}{14.73}$	307-309	0	90
1b	$C_{15}H_{15}N_3O_3$	<u>63.25</u> 63.15	<u>5.39</u> 5.30	$\frac{14.73}{14.78}$	270–272	1	93
1c	$C_{15}H_{15}N_3O_3$	<u>63.06</u> 63.15	5.30 5.40 5.30	$\frac{14.75}{14.80}$	277–279	14	85
1d	$C_{16}H_{17}N_3O_3$	<u>64.11</u> 64.20	5.50 <u>5.62</u> 5.72	$\frac{14.00}{14.04}$	225–227	13	76
1e	$C_{16}H_{17}N_3O_3$	<u>64.15</u> 64.20	5.72 <u>5.75</u> 5.72	14.04 14.16 14.04	262–264	14	87
1f	$C_{16}H_{17}N_3O_3$	<u>64.33</u>	5.72 <u>5.84</u> 5.72	<u>14.04</u> <u>14.13</u>	293–295	0	90
1g	$C_{16}H_{17}N_3O_3$	64.20 <u>64.10</u> (4.20	5.72 <u>5.80</u> 5.72	<u>14.04</u> <u>14.02</u>	303-305	0	92
1h	$C_{16}H_{17}N_3O_3$	64.20 <u>64.14</u> (4.20	5.72 <u>5.78</u> 5.72	<u>14.04</u> <u>14.15</u>	222–224	33	88
1i	$C_{16}H_{17}N_3O_3$	64.20 64.32	5.72 <u>5.66</u> 5.72	<u>14.04</u> <u>14.17</u>	241–243	21	84
1j	$C_{16}H_{17}N_3O_3$	64.20 <u>64.30</u> (4.20	5.72 <u>5.81</u> 5.72	<u>14.04</u> <u>14.14</u>	232–234	6	83
1k	$C_{15}H_{15}N_{3}O_{4}$	64.20 <u>59.92</u>	$\frac{5.72}{5.13}$	<u>14.04</u> <u>13.88</u> 12.05	271–273	33	78
11	$C_{13}H_{13}N_3O_3S$	<u>59.80</u> <u>53.55</u>	$\frac{5.02}{4.63}$	<u>13.95</u> <u>14.51</u>	302–304	19	86
1m	$C_{23}H_{27}N_3O_3S$	<u>64.98</u>	4.50 <u>6.54</u>	<u>9.76</u>	331–333	10	89
1n	$C_{17}H_{15}N_3O_3S$	64.92 <u>59.73</u>	6.40 <u>4.34</u>	9.87 <u>12.40</u>	325-327	14	90
10	$C_{18}H_{17}N_3O_3S$	59.81 <u>60.89</u>	4.43 <u>4.95</u>	12.31 <u>11.72</u>	318-320	29	87
1p	C ₁₇ H ₁₄ BrN ₃ O ₃ S	60.83 <u>48.60</u>	4.82 <u>3.47</u>	11.82 <u>10.14</u>	310-312	36	92
1q	C ₁₂ H ₁₂ N ₄ O ₃ S	48.58 <u>49.45</u>	3.36 <u>4.26</u>	10.00 <u>19.25</u>	283–285	8	80
1r	C12H14N4O2S	49.31 50.84	4.14 4.70	19.17 18.38	297–299	24	82
	01511141 (40 50	50.97	4.61	18.29			
1s	$C_{14}H_{16}N_4O_3S$	<u>52.40</u> 52.49	<u>5.15</u> 5.03	<u>17.40</u> 17.49	288–290	4	77
1t	$C_{15}H_{18}N_4O_3S$	<u>53.97</u>	<u>5.55</u>	<u>16.64</u>	274–276	8	81
1u	$C_{15}H_{18}N_4O_3S$	53.88 <u>53.94</u> 53.88	5.43 <u>5.50</u> 5.43	16.75 <u>16.79</u> 16.75	255–257	98	80
	I	l				l	I

Характеристики N-R-амидов 4-гидрокси-2-оксо-1,2,5,6,7,8гексагидрохинолин-3-карбоновой кислоты (1a–u)

* Угнетение роста (в %) *Mycobacterium tuberculosis H37Rv* ATCC 27294 в концентрации 6.25 мкг/мл.

Таблица 2

	Химические сдвиги, б, м. д. (Ј, Гц)						
Соеди- нение	ОН (1Н, с)	NH (1H, c)	NH хинолона (1H, c)	CH₂ хинолона*		D	
				5-СН ₂ (2Н, м)	6,7-CH ₂ (4Н, м)	К	
1a	14.86	12.90	11.74	2.33	1.66	8.56 (2H, д, <i>J</i> = 5.8, H-2,6); 8.47 (2H, д, <i>J</i> = 5.8, H-3,5)	
1b	15.12	12.74	11.78	2.33	1.67	8.75 (1H, д, <i>J</i> = 2.0, H-2); 8.33 (1H, д. д, <i>J</i> = 4.4 и <i>J</i> = 1.5, H-6); 8.06 (1H, д. т, <i>J</i> = 8.6 и <i>J</i> = 1.7, H-4); 7.39 (1H, т, <i>J</i> = 7.4, H-5)	
1c	15.11	12.90	11.64	2.36	1.70	8.35 (1H, д, <i>J</i> = 4.2, 6-H); 8.11 (1H, д, <i>J</i> = 8.2, H-3); 7.82 (1H, т. д, <i>J</i> = 7.8 и <i>J</i> = 2.1, H-4); 7.12 (1H, т, <i>J</i> = 6.0, H-5)	
1d	15.41	12.44	11.77	2.34	1.68	8.27 (1H, д. д, <i>J</i> = 5.1 и <i>J</i> = 1.4, H-6); 7.72 (1H, д, <i>J</i> = 7.9, H-4); 7.22 (1H, т, <i>J</i> = 5.9, H-5); 2.23 (3H, c, CH ₃)	
1e	15.17	12.87	11.80	См. R	1.66	8.19 (1H, д, <i>J</i> = 5.0, H-6); 7.97 (1H, с, H-3); 6.99 (1H, д, <i>J</i> = 4.7, H-5); 2.33 (5H, м, 5-CH ₂ + CH ₃)	
1f	15.23	12.85	11.79	2.33	1.66	8.17 (1H, c, H-6); 8.01 (1H, д, <i>J</i> = 8.1, H-3); 7.64 (1H, д. д, <i>J</i> = 8.2 и <i>J</i> = 2.4, H-4); 2.25 (3H, c, CH ₃)	
1g	15.21	12.78	11.77	2.32	1.66	7.92 (1H, д, <i>J</i> = 7.9, H-3); 7.70 (1H, т, <i>J</i> = 7.7, H-4); 7.01 (1H, д, <i>J</i> = 7.4, H-5); 2.40 (3H, с, CH ₃)	
1h	15.75	10.71 (т, <i>J</i> = 5.5)	11.54	2.31	1.67	8.50 (2H, д, <i>J</i> = 4.0, H-2,6); 7.28 (2H, д, <i>J</i> = 4.3, H-3,5); 4.56 (2H, д, <i>J</i> = 5.8, NCH ₂)	
1i	15.83	10.66 (т, <i>J</i> = 5.4)	11.50	2.29	1.65	8.55 (1H, c, H-2); 8.50 (1H, д, <i>J</i> = 4.3, H-6); 7.72 (1H, д. т, <i>J</i> = 8.0 и <i>J</i> = 2.0, H-4); 7.35 (1H, т, <i>J</i> = 6.0, H-5); 4.57 (2H, д, <i>J</i> = 6.4, NCH ₂)	
1j	15.95	10.81 (т, <i>J</i> = 5.4)	11.47	2.31	1.66	8.52 (1H, д, <i>J</i> = 4.9, H-6); 7.77 (1H, т. д, <i>J</i> = 7.6 и <i>J</i> = 2.0, H-4); 7.30 (2H, м, H-3,5); 4.63 (2H, д, <i>J</i> = 5.8, NCH ₂)	

Спектры ЯМР ¹Н N-R-амидов 4-гидрокси-2-оксо-1,2,5,6,7,8гексагидрохинолин-3-карбоновой кислоты (1a–u)

878

				I	I	
1k	15.32	12.60	11.65	2.33	1.67	10.19 (1H, c, OH-Py); 7.85 (1H, д. д, <i>J</i> = 4.3 и <i>J</i> = 1.7, H-6); 7.25 (1H, д, <i>J</i> = 7.6, H-4); 7.07 (1H, т, <i>J</i> = 4.1, H-5)
11	14.40	13.55	11.84	2.34	1.66	7.44 (1Н, д, <i>J</i> = 4.1, Н-4); 7.08 (1Н, д, <i>J</i> = 3.6, Н-5)
1m	14.23	13.62	11.93	2.35	См. R	6.80 (1H, c, H-5); 2.02 (3H, c, H-γ адамантана); 1.90 (6H, c, H-δ адамантана); 1.74 (10H, м, 6,7-CH ₂ + H-β адамантана)
1n	14.18	13.69	11.90	2.38	1.68	8.00 (1H, д, <i>J</i> = 8.2, H-7); 7.76 (1H, д, <i>J</i> = 8.0, H-4); 7.45 (1H, т, <i>J</i> = 7.5, H-6); 7.29 (1H, т, <i>J</i> = 7.9, H-5)
10	14.10	13.43	11.80	См. R	1.67	7.74 (1H, c, H-7); 7.65 (1H, д, <i>J</i> = 7.0, H-4); 7.25 (1H, д, <i>J</i> = 7.0, H-5); 2.40 (5H, м, 5-CH ₂ + CH ₃)
1p	14.06	13.60	11.94	2.36	1.68	8.21 (1H, с, H-7); 7.80 (1H, д, J = 8.0, H-4); 7.60 (1H, д, J = 8.0, H-5)
1q	14.00	13.45	12.12	2.35	1.67	9.18 (1H, c, H-5)
1r	14.15	13.42	12.03	2.38	1.68	2.69 (3H, c, CH ₃)
1s	14.17	13.35	12.00	2.34	1.66	3.05 (2H, к, <i>J</i> = 7.7, С <u>H</u> ₂ CH ₃); 1.41 (3H, т, <i>J</i> = 7.6, CH ₃)
1t	14.03	13.84	12.06	2.34	1.66	2.97 (1H, т, <i>J</i> = 7.3, <u>СН</u> ₂ CH ₂ CH ₃); 1.74 (2H, м, CH ₂ C <u>H</u> ₂ CH ₃); 0.94 (3H, т, <i>J</i> = 7.3,
1u	14.12	13.65	12.10	2.33	1.69	СН ₃) 3.38 (1H, м, С <u>Н</u> (СН ₃) ₂); 1.33 (6H, д, <i>J</i> = 6.3, 2CH ₃)

* Мультиплетный сигнал протонов группы 8-CH₂ хинолона в амидах **1а–и** совпадает с сигналами остаточных протонов растворителя.

неэквивалентны и для точного отнесения их сигналов нами использован гомоядерный эффект Оверхаузера (ЯЭО) [10]. В эфире **5b** единственными протонами, которые могут помочь в отнесении сигналов циклогексенового фрагмента методом ЯЭО, являются протоны групп NH и OH. Их отнесение следует из сравнения со спектром N-алкилзамещенного аналога эфиров **5** [11] – в более сильном поле (при 11.20 м. д.) проявляется сигнал группы NH. Насыщение этого сигнала в эксперименте ЯЭО привело к возрастанию на 2% сигнала при 2.45 м. д. Следовательно, данный сигнал соответствует протонам при $C_{(8)}$, а оставшийся сигнал при 2.30 м. д. – метиленовым протонам при $C_{(5)}$. Малая величина ЯЭО связана, скорее всего, с наличием достаточно быстрого обмена хинолонового протона группы NH с водой, что и уменьшает величину эффекта.

Интересные особенности пространственного строения амидов 1а-и выявлены при рентгеноструктурном исследовании одного из таких соединений. Так, в симметрически независимой части элементарной ячейки кристалла 4-(адамантил-1)тиазолил-2-амида 1m обнаружено две молекулы (А и В), отличающиеся конформацией циклогексенового кольца. В молекуле можно выделить два планарных с точностью 0.02 Å фрагмента. Один из них включает пиридиновое кольцо и атомы О(1), О(2), O₍₃₎, C₍₁₀₎. Во второй входят тиазольный цикл и атомы N₍₂₎, C₍₁₄₎. Два планарных фрагмента несколько развернуты относительно друг друга на углы 11.9 (молекула А) и 15.8° (В), что, вероятно, обусловлено укороченным внутримолекулярным контактом O₍₃₎...S₍₁₎ 2.81 в A и 2.86 Å в молекуле В (сумма ван-дер-ваальсовых радиусов 3.09 Å [12]). Отталкивание между этими атомами приводит также к увеличению валентного угла C₍₁₁₎-N₍₂₎-C₍₁₀₎ до 125.0(5) А, 127.3(4)° В. Адамантановый заместитель расположен таким образом, что одна из связей С-С находится практически в плоскости тиазольного ядра (торсионный угол С(13)-С(12)- $C_{(14)}$ – $C_{(15)}$ 9(1) в **А** и 17(1)° в **В**). Циклогексеновое кольцо разупорядочено по двум равновероятным конформациям. В случае молекулы А это асимметричное полукресло. Отклонения атомов С(3) и С(4) от плоскости остальных атомов цикла составляют 0.15, -0.56 Å для одного конформера (C) и -0.44, 0.28 Å для другого (D). В молекуле В тетрагидроцикл разупорядочен по конформации полукресло (отклонения атомов С(3) и С(4) равны 0.41, -0.53 Å) и *софа* (атом C₍₄₎ отклоняется от плоскости остальных атомов цикла на 0.54 Å).

Молекулы **A** и **B** отличаются также характером внутримолекулярных водородных связей. В обеих молекулах образуются связи $N_{(2)}$ -H... $O_{(1)}$ с близкими геометрическими характеристиками (H...O 1.90 Å в **A** и **B**, N–H...O 140 в **A**, 141° в **B**). Это приводит к заметному удлинению связей $C_{(9)} = O_{(1)}$ до 1.257(8) (**A**), 1.254(5) Å (**B**) по сравнению со средним значением1.210 Å [13]. В молекуле **B** образуется также водородная связь $O_{(2)}$ -H... $O_{(3)}$ (H...O 1.80 Å, O–H...O 147°). В молекуле **A** такая связь очень слабая (H...O 1.98 Å, O–H...O 122°), что подтверждается также отсутствием удлинения связи $C_{(10)} = O_{(3)}$ 1.219(8) Å, по сравнению с молекулой **B** (1.250(6) Å).

Длины связей (*l*) в структуре амида 1m

Таблица З

		1	
Связь	<i>l</i> , Å	Связь	l, Å
S _(1A) –C _(11A)	1.698(6)	S _(1A) -C _(13A)	1.723(5)
O _(1A) -C _(9A)	1.257(8)	O _(2A) -C _(7A)	1.29(1)
O _(3A) -C _(10A)	1.219(8)	N(1A)-C(9A)	1.381(7)
N _(1A) -C _(1A)	1.388(8)	N(2A)-C(10A)	1.358(8)
N _(2A) -C _(11A)	1.432(6)	N _(3A) -C _(11A)	1.293(7)
N _(3A) -C _(12A)	1.391(6)	C _(1A) -C _(6A)	1.31(1)
C _(1A) -C _(2A)	1.476(9)	C _(2A) -C _(3C)	1.498(9)
C _(2A) -C _(3D)	1.524(9)	C _(3C) -C _(4C)	1.52(1)
C _(4C) -C _(5A)	1.53(1)	C _(3D) -C _(4D)	1.53(1)
C _(4D) -C _(5A)	1.513(8)	C _(5A) -C _(6A)	1.48(1)
C _(6A) –C _(7A)	1.45(1)	C _(7A) –C _(8A)	1.43(1)
C _(8A) –C _(9A)	1.39(1)	C _(8A) -C _(10A)	1.489(8)
C _(12A) –C _(13A)	1.336(7)	$C_{(12A)} - C_{(14A)}$	1.521(7)
C _(14A) –C _(19A)	1.501(9)	$C_{(14A)} - C_{(15A)}$	1.504(8)
C _(14A) -C _(20A)	1.54(1)	$C_{(15A)} - C_{(16A)}$	1.59(1)
C _(16A) C _(17A)	1.46(1)	$C_{(16A)} - C_{(22A)}$	1.53(2)
C _(17A) –C _(18A)	1.49(1)	$C_{(18A)} - C_{(23A)}$	1.49(1)
C _(18A) –C _(19A)	1.594(8)	C _(20A) –C _(21A)	1.60(1)
C _(21A) –C _(22A)	1.51(2)	$C_{(21A)} - C_{(23A)}$	1.51(1)
$S_{(1B)} - C_{(13B)}$	1.721(5)	$S_{(1B)} - C_{(11B)}$	1.726(5)
O _(1B) –C _(9B)	1.254(5)	O _(2B) –C _(7B)	1.351(6)
O _(3B) –C _(10B)	1.250(6)	N _(1B) -C _(9B)	1.357(6)
$N_{(1B)} - C_{(1B)}$	1.378(6)	$N_{(2B)} - C_{(10B)}$	1.363(6)
N _(2B) -C _(11B)	1.395(6)	N _(3B) -C _(11B)	1.300(6)
N _(3B) -C _(12B)	1.387(7)	$C_{(1B)} - C_{(6B)}$	1.361(7)
$C_{(1B)} - C_{(2B)}$	1.502(8)	C _(2B) -C _(3E)	1.54(1)
C _(2B) -C _(3F)	1.544(9)	$C_{(3E)} - C_{(4E)}$	1.54(1)
C _(4E) -C _(5B)	1.538(9)	$C_{(3F)} - C_{(4F)}$	1.54(1)
$C_{(4F)} - C_{(5B)}$	1.56(1)	$C_{(5B)} - C_{(6B)}$	1.546(8)
C _(6B) –C _(7B)	1.417(8)	$C_{(7B)} - C_{(8B)}$	1.396(7)
C _(8B) -C _(9B)	1.428(7)	$C_{(8B)} - C_{(10B)}$	1.479(7)
C _(12B) -C _(13B)	1.356(7)	$C_{(12B)} - C_{(14B)}$	1.509(6)
C _(14B) -C _(20B)	1.477(9)	$C_{(14B)} - C_{(19B)}$	1.480(9)
C _(14B) –C _(15B)	1.59(1)	C _(15B) –C _(16B)	1.61(1)
C _(16B) –C _(17B)	1.46(2)	$C_{(16B)} - C_{(23B)}$	1.50(1)
C _(17B) –C _(18B)	1.47(2)	C _(18B) –C _(22B)	1.58(2)
C _(18B) –C _(19B)	1.62(1)	$C_{(20B)} - C_{(21B)}$	1.582(9)
$C_{(21B)} - C_{(23B)}$	1.45(1)	$C_{(21B)} - C_{(22B)}$	1.49(1)

Валентные углы	ω, град.	Валентные углы	ω, град.
1	2	3	4
C _(11A) -S _(1A) -C _(13A)	87.3(3)	C _(9A) -N _(1A) -C _(1A)	125.1(7)
C _(10A) -N _(2A) -C _(11A)	125.0(5)	C _(11A) -N _(3A) -C _(12A)	109.2(4)
$C_{(6A)}$ - $C_{(1A)}$ - $N_{(1A)}$	121.4(6)	$C_{(6A)}$ - $C_{(1A)}$ - $C_{(2A)}$	122.6(6)
N _(1A) -C _(1A) -C _(2A)	115.8(7)	$C_{(1A)} - C_{(2A)} - C_{(3C)}$	120(1)
$C_{(2A)}$ - $C_{(3C)}$ - $C_{(4C)}$	101(2)	$C_{(3C)}$ - $C_{(4C)}$ - $C_{(5A)}$	117(2)
C _(2A) -C _(3D) -C _(4D)	118(2)	C _(5A) -C _(4D) -C _(3D)	102(1)
C _(6A) -C _(5A) -C _(4D)	120(1)	$C_{(6A)} - C_{(5A)} - C_{(4C)}$	105(1)
$C_{(1A)}$ - $C_{(6A)}$ - $C_{(5A)}$	123.2(6)	$C_{(7A)} - C_{(6A)} - C_{(5A)}$	119.3(8)
O _(2A) -C _(7A) -C _(8A)	122.1(6)	$O_{(2A)} - C_{(7A)} - C_{(6A)}$	117.9(7)
C _(8A) -C _(7A) -C _(6A)	119.9(8)	$C_{(9A)} - C_{(8A)} - C_{(7A)}$	120.7(6)
C _(9A) -C _(8A) -C _(10A)	122.9(6)	C _(7A) -C _(8A) -C _(10A)	116.3(7)
O _(1A) -C _(9A) -N _(1A)	119.4(6)	O _(1A) -C _(9A) -C _(8A)	125.5(5)
N _(1A) -C _(9A) -C _(8A)	115.1(6)	O _(3A) -C _(10A) -N _(2A)	121.8(5)
O _(3A) -C _(10A) -C _(8A)	122.7(7)	N _(2A) -C _(10A) -C _(8A)	115.5(7)
N _(3A) -C _(11A) -N _(2A)	118.4(5)	N _(3A) -C _(11A) -S _(1A)	117.6(4)
N _(2A) -C _(11A) -S _(1A)	124.0(4)	C _(13A) -C _(12A) -N _(3A)	114.0(5)
C _(13A) -C _(12A) -C _(14A)	127.3(5)	N _(3A) -C _(12A) -C _(14A)	118.6(5)
C _(12A) -C _(13A) -S _(1A)	111.9(4)	$C_{(19A)}$ - $C_{(14A)}$ - $C_{(15A)}$	113.1(7)
C _(19A) -C _(14A) -C _(12A)	111.8(4)	$C_{(15A)}$ - $C_{(14A)}$ - $C_{(12A)}$	112.6(5)
C _(19A) -C _(14A) -C _(20A)	104.4(6)	C _(15A) -C _(14A) -C _(20A)	105.4(7)
C _(12A) -C _(14A) -C _(20A)	109.0(6)	$C_{(14A)}$ - $C_{(15A)}$ - $C_{(16A)}$	112.0(5)
$C_{(17A)}$ - $C_{(16A)}$ - $C_{(22A)}$	113.3(8)	$C_{(17A)}$ - $C_{(16A)}$ - $C_{(15A)}$	110.2(6)
C _(22A) -C _(16A) -C _(15A)	100(1)	$C_{(16A)}$ - $C_{(17A)}$ - $C_{(18A)}$	112.8(8)
C _(23A) -C _(18A) -C _(17A)	114.6(6)	C _(23A) -C _(18A) -C _(19A)	105.5(6)
C _(17A) -C _(18A) -C _(19A)	104.9(5)	$C_{(14A)}$ - $C_{(19A)}$ - $C_{(18A)}$	111.8(4)
C _(14A) -C _(20A) -C _(21A)	112.7(8)	$C_{(22A)}$ - $C_{(21A)}$ - $C_{(23A)}$	111(1)
C _(22A) -C _(21A) -C _(20A)	106.5(8)	$C_{(23A)}$ - $C_{(21A)}$ - $C_{(20A)}$	102.1(6)
$C_{(21A)}$ - $C_{(22A)}$ - $C_{(16A)}$	113.6(6)	$C_{(18A)}$ - $C_{(23A)}$ - $C_{(21A)}$	113.2(6)
C _(13B) -S _(1B) -C _(11B)	87.8(2)	C _(9B) -N _(1B) -C _(1B)	125.1(4)
$C_{(10B)}$ - $N_{(2B)}$ - $C_{(11B)}$	127.3(4)	C _(11B) -N _(3B) -C _(12B)	110.7(4)
$C_{(6B)}$ - $C_{(1B)}$ - $N_{(1B)}$	120.9(5)	$C_{(6B)}$ - $C_{(1B)}$ - $C_{(2B)}$	123.3(5)
$N_{(1B)}$ - $C_{(1B)}$ - $C_{(2B)}$	115.7(5)	$C_{(1B)} - C_{(2B)} - C_{(3E)}$	107(1)
C _(4E) -C _(3E) -C _(2B)	111(1)	$C_{(3E)}$ - $C_{(4E)}$ - $C_{(5B)}$	103(1)
$C_{(4F)} - C_{(3F)} - C_{(2B)}$	113(1)	$C_{(3F)}$ - $C_{(4F)}$ - $C_{(5B)}$	117(1)
$C_{(6B)}$ - $C_{(5B)}$ - $C_{(4F)}$	110(1)	$C_{(1B)}$ - $C_{(6B)}$ - $C_{(7B)}$	116.5(5)
$C_{(1B)}$ - $C_{(6B)}$ - $C_{(5B)}$	123.2(5)	C _(7B) -C _(6B) -C _(5B)	120.3(5)
$O_{(2B)}$ - $C_{(7B)}$ - $C_{(8B)}$	121.7(4)	$O_{(2B)}$ - $C_{(7B)}$ - $C_{(6B)}$	116.0(4)
C _(8B) -C _(7B) -C _(6B)	122.3(4)	C _(7B) -C _(8B) -C _(9B)	119.6(4)
$C_{(7B)}$ - $C_{(8B)}$ - $C_{(10B)}$	118.6(4)	$C_{(9B)}$ - $C_{(8B)}$ - $C_{(10B)}$	121.7(4)

Валентные углы (ω) в структуре амида 1m

Таблица 4

882

Окончание таблицы 4

1	2	3	4
$O_{(1B)}$ - $C_{(9B)}$ - $N_{(1B)}$	119.3(4)	O _(1B) -C _(9B) -C _(8B)	125.0(5)
$N_{(1B)}$ - $C_{(9B)}$ - $C_{(8B)}$	115.6(4)	O _(3B) -C _(10B) -N _(2B)	120.9(5)
O _(3B) -C _(10B) -C _(8B)	122.2(4)	$N_{(2B)}$ - $C_{(10B)}$ - $C_{(8B)}$	116.9(4)
$N_{(3B)}$ - $C_{(11B)}$ - $N_{(2B)}$	120.0(4)	$N_{(3B)}$ - $C_{(11B)}$ - $S_{(1B)}$	115.9(4)
$N_{(2B)}$ - $C_{(11B)}$ - $S_{(1B)}$	124.1(3)	C _(13B) -C _(12B) -N _(3B)	113.6(4)
$C_{(13B)}$ - $C_{(12B)}$ - $C_{(14B)}$	128.2(5)	$N_{(3B)}$ - $C_{(12B)}$ - $C_{(14B)}$	118.1(4)
$C_{(12B)}$ - $C_{(13B)}$ - $S_{(1B)}$	111.9(4)	$C_{(20B)}$ - $C_{(14B)}$ - $C_{(19B)}$	118.6(7)
$C_{(20B)}$ - $C_{(14B)}$ - $C_{(12B)}$	111.7(4)	$C_{(19B)}$ - $C_{(14B)}$ - $C_{(12B)}$	111.3(4)
$C_{(20B)}$ - $C_{(14B)}$ - $C_{(15B)}$	103.6(6)	$C_{(19B)}$ - $C_{(14B)}$ - $C_{(15B)}$	103.9(7)
$C_{(12B)}$ - $C_{(14B)}$ - $C_{(15B)}$	106.3(6)	$C_{(14B)}$ - $C_{(15B)}$ - $C_{(16B)}$	107(1)
$C_{(17B)}$ - $C_{(16B)}$ - $C_{(23B)}$	110(1)	$C_{(17B)}$ - $C_{(16B)}$ - $C_{(15B)}$	110(1)
$C_{(23B)}$ - $C_{(16B)}$ - $C_{(15B)}$	103.9(7)	$C_{(16B)}$ - $C_{(17B)}$ - $C_{(18B)}$	114(1)
$C_{(17B)}$ - $C_{(18B)}$ - $C_{(22B)}$	114(1)	$C_{(17B)}$ - $C_{(18B)}$ - $C_{(19B)}$	101(1)
$C_{(22B)}$ - $C_{(18B)}$ - $C_{(19B)}$	108.4(8)	$C_{(14B)}$ - $C_{(19B)}$ - $C_{(18B)}$	110.1(5)
$C_{(14B)}$ - $C_{(20B)}$ - $C_{(21B)}$	112.9(6)	$C_{(23B)}$ - $C_{(21B)}$ - $C_{(22B)}$	115(1)
$C_{(23B)}$ - $C_{(21B)}$ - $C_{(20B)}$	104.2(8)	$C_{(22B)} - C_{(21B)} - C_{(20B)}$	104.9(6)
$C_{(21B)}$ - $C_{(22B)}$ - $C_{(18B)}$	109(1)	$C_{(21B)} - C_{(23B)} - C_{(16B)}$	116(1)

В кристалле молекулы амида **1m** образуют центросимметричные димеры за счет водородных связей $N_{(1)}$ -H...O_{(1)'} (-*x*, -*y*-*z*): H...O 1.90 (**A**), 1.94 Å (**B**), N-H...O 177 (**A**), 169° (**B**).

Противотуберкулезные свойства гетариламидов 4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты **1а–и** изучены радиометрическим методом [14]. Из данных первичного микробиологического скрининга (табл. 1) следует, что гидрирование бензольной части хинолона сопровождается значительным спадом активности – из всей группы исследованных веществ внимания заслуживает только 5-изопропил-1,3,4-тиадиазолил-2-амид **1u**, который в концентрации 6.25 мкг/мл

Рис. 2. Строение молекулы амида 1m с нумерацией атомов

способен угнетать рост *Mycobacterium tuberculosis H37Rv* ATCC 27294 на 883

98%. Все остальные гетариламиды 4-гидрокси-2-оксо-1,2,5,6,7,8гексагидрохинолин-3-карбоновой кислоты **1а–t** по антимикобактериальным свойствам существенно уступают своим негидрированным аналогам [5–7] и поэтому такую модификацию структуры следует признать нецелесообразной.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Дериватографическое исследование эфира **5**а проведено на комплексном термохимическом приборе Derivatograf Q-1500 D в платиновом тигле с крышкой, скорость нагрева 5 °С/мин. Спектр ЯМР ¹Н эфира **5b** и эксперимент по ЯЭО выполнен на спектрометре Varian Mercury 400 (400 МГц) по стандартной методике 1D-NOE, входящей в математическое обеспечение этого прибора. Спектры ЯМР ¹Н остальных соединений записаны на приборе Varian Mercury VX-200 (200 МГц). Во всех случаях растворитель ДМСО-d₆, внутренний стандарт ТМС. Масс-спектр 3Н-хинолона **6** зарегистрирован на спектрометре Varian 1200L в режиме полного сканирования в диапазоне 45–550 *m/z*, ионизация электронным ударом 70 эВ при прямом вводе образца. В работе использован коммерческий этиловый эфир циклогексанон-2-карбоновой кислоты фирмы Fluka.

Этиловый эфир 2-аминоциклогекс-1-ен-карбоновой кислоты (3). В 68.9 мл (0.5 моль) этилового эфира циклогексанон-2-карбоновой кислоты (2), нагретые до 50 °С, пропускают газообразный аммиак в течение 3.5-4 ч, после чего оставляют при комнатной температуре на 8–10 ч. Разбавляют реакционную смесь холодной водой. Кристаллический осадок аминоэфира 3 отфильтровывают, промывают водой, сушат. Выход 79.4 г (94%). Т. пл. 73–75 °С (диэтиловый эфир). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 7.04 (2H, уш. с, NH₂); 4.04 (2H, к, J = 7.0, OCH₂); 2.15 (4H, м, 3,6-CH₂); 1.51 (4H, м, 4,5-CH₂); 1.16 (3H, т, J = 7.0, OCH₂CH₃). Найдено, %: С 63.72; Н 8.80; N 8.41. С₉H₁₅NO₂. Вычислено, %: С 63.88; Н 8.93; N 8.28.

Метиловый эфир 4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты (5а). К раствору 16.9 г (0.1 моль) аминоэфира 3 в 100 мл CH₂Cl₂, прибавляют 15.4 мл (0.11 моль) триэтиламина, а затем при охлаждении и перемешивании добавляют по каплям 16.56 г (0.11 моль) этилового эфира (хлоркарбонил)уксусной кислоты и оставляют при комнатной температуре на 4–5 ч. Затем реакционную смесь разбавляют водой, органический слой отделяют, сушат безводным CaCl₂. Растворитель отгоняют (в конце при пониженном давлении). К остатку (диэфир 4) прибавляют раствор метилата натрия [из 3.45 г (0.15 моль) металлического натрия и 150 мл абсолютного метилового спирта], кипятят 30 мин на водяной бане, после чего нагревание прекращают и оставляют на 7–8 ч при комнатной температуре. Разбавляют реакционную смесь водой и подкисляют разбавленной HCl (1:1) до pH 4.5–5. Осадок эфира **5а** отфильтровывают, промывают водой, сушат. Выход 18.52 г (83%). После перекристал- лизации из этанола т. пл. (в капилляре) 214–216 °C (разл.). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 13.30 (1H, с, OH); 11.16 (1H, с, NH); 3.78 (3H, с, OCH₃); 2.46 (2H, м, 8-CH₂); 2.31 (2H, м, 5-CH₂); 1.64 (4H, м, 6,7-CH₂). Найдено, %: C 59.31; H 5.96; N 6.20. C₁₁H₁₃NO₄. Вычислено, %: C 59.19; H 5.87; N 6.27.

Этиловый эфир 4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты (5b) получают аналогично. При циклизации диэфира 4 в качестве основного катализатора используют этилат натрия в абсолютном этаноле. Выход 80%. После перекристаллизации из этанола т. пл. (в капилляре) 222–224 °C (разл.). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 13.50 (1H, с, OH); 11.20 (1H, с, NH); 4.29 (2H, к, *J* = 8.0, OCH₂); 2.45 (2H, м, 8-CH₂); 2.30 (2H, м, 5-CH₂); 1.65 (4H, м, 6,7-CH₂); 1.28 (3H, т, *J* = 8.0, CH₃). Найдено, %: C 60.80; H 6.48; N 5.81. C₁₂H₁₅NO₄. Вычислено, %: C 60.75; H 6.37; N 5.90.

4-Гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин (6). Выдерживают 2.23 г (0.01 моль) соединения **5a** 10 мин при 230 °С. Охлаждают. Получают 1.97 г (96%) 3H-производного **6**. Т. пл. 355–357 °С (ДМФА). Масс-спектр, *m/z* (*I*_{отн}, %): 165 [M]⁺ (100), 137 [M–CO]⁺ (16), 109 [M–CO–CO]⁺ (42), 95 (44), 81 (94), 67 (76), 54 (52). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц):

10.70 (1Н, с, ОН); 10.46 (1Н, с, NН); 5.40 (1Н, с, Н-3); 2.36 (2Н, м, 8-СН₂); 2.21 (2Н, м, 5-

CH₂); 1.60 (4H, м, 6,7-CH₂). Найдено, %: С 65.35; Н 6.60; N 8.53. С₉H₁₁NO₂. Вычислено, %: С 65.44; Н 6.71; N 8.48.

Гетариламиды 4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидрохинолин-3-карбоновой кислоты (1а–u) (общая методика). Смесь 2.23 г (0.01 моль) соединения 5а, 0.01 моль соответству-ющего гетариламина и 1–2 мл ДМФА перемешивают и выдерживают 3 мин при 160–170 °С. Реагенты при этом растворяются и практически сразу начинает выкристаллизовываться из реакционной смеси амид 1. Охлаждают, прибавляют 30 мл спирта, тщательно перемешивают и фильтруют. Полученный амид 1 промывают спиртом, сушат. Кристаллизуют из ДМФА.

Рентгеноструктурное исследование. Кристаллы амида 1m триклинные, при 20 °С a = 6.498(1), b = 15.476(4), c = 22.411(6) Å, $\alpha = 71.92(2)^\circ$, $\beta = 89.58(2)^\circ$, $\gamma = 88.24(2)^\circ$, V = 2141.4(9) Å³, $M_r = 430.58$, Z = 4, пространственная группа P 1, $d_{\text{выч}} = 1.336$ г/см³, μ (Мо $K\alpha$) = 0.182 мм⁻¹, F(000) = 924. Параметры элементарной ячейки и интенсивности 6821 отражений (6195 независимых, $R_{\text{int}} = 0.04$) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (λ Мо $K\alpha$, графитовый монохроматор, 20/ θ -сканирование, $2\theta_{\text{max}} = 50^\circ$).

Структура расшифрована прямым методом по комплексу программ SHELX97 [15]. Положения атомов водорода рассчитаны геометрически и уточнены по модели "наездника" с $U_{_{H30}} = 1.2 \times U_{_{3KB}}$ неводородного атома, связанного с данным водородным. Разупорядоченные фрагменты уточнялись с наложением ограничений на длины связей С–С 1.54(1) Å. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.282$ по 6195 отражениям ($R_1 = 0.086$ по 3122 отражениям с $F > 4\sigma$ (F), S = 0.998). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент № ССDC 257524). Межатомные расстояния и валентные углы представлены в табл. 3 и 4.

Авторы выражают благодарность Национальному институту аллергии и инфекционных заболеваний США за проведенное в соответствии с программой TAACF (Tuberculosis Antimicrobial Acquisition & Coordinating Facility) изучение противотуберкулезных свойств синтезированных нами соединений (контракт № 01-AI-45246).

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, О. В. Шишкин, ХГС, 718 (2006).
- 2. А. Г. Хоменко, Пробл. туберкулеза, № 2, 2 (1994).
- 3. А. Г. Хоменко, Пробл. туберкулеза, № 1, 4 (1995).
- И. В. Украинец, Абдель Насер Х. Н. Дакках, П. А. Безуглый, О. В. Горохова, Л. В. Сидоренко, Т. В. Алексеева, Вестник фармации, № 1(25), 9 (2001).
- 5. И. В. Украинец, М. Амер, П. А. Безуглый, О. В. Горохова, Л. В. Сидоренко, А. В. Туров, *XIC*, 654 (2002).
- 6. И. В. Украинец, Амжад Абу Шарех, П. А. Безуглый, Л. В. Сидоренко, О. В. Горохова, *Фарм. журн.*, № 5, 52 (2002).
- И. В. Украинец, С. А. Эль Каяль, О. В. Горохова, Л. В. Сидоренко, Т. В. Алексеева, Вестник фармации, № 1(37), 12 (2004).
- 8. И. В. Украинец, О. С. Прокопенко, Л. В. Сидоренко, О. В. Горохова, *Вестник* фармации, № 3(39), 3 (2004).
- И. В. Украинец, Е. А. Таран, О. В. Шишкин, О. В. Горохова, С. Г. Таран, Джарадат Нидаль Амин, А. В. Туров, XTC, 516 (2000).
- 10. H. Gunther, *NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry,* John Wiley & Sons, Chichester, 1995.

11. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, В. Б. Рыбаков, В. В. Чернишев, 885

- Е. В. Колесник, Вестник фармации, № 2(38), 7 (2004)].
- 12. Ю. В. Зефиров, П. М. Зоркий, Успехи химии, 58, 713 (1989).
- 13. H.-B. Burgi, J. D. Dunitz, Structure Correlation, VCH, Weinheim, 1994, Vol. 2, p. 741.
- 14. S. H. Siddiqui in *Clinical Microbiology Procedures Handbook*, H. D. Isenberg (Ed.), American Sosiety for Microbiology, Washington D. C., 1992, **1**, p. 5.14.2.
- 15. G. M. Sheldrick, SHELX97. PC Version. A System of Computer Programs for the Crystal Structure Solution and Refinement, Rev. 2 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило в редакцию 08.11.2004

^aКиевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: nmrlab@univ.kiev.ua