И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина^а

4-ГИДРОКСИХИНОЛОНЫ-2

96*. СИНТЕЗ И СВОЙСТВА 4-МЕТИЛ-2-ОКСО-1,2-ДИГИДРОХИНОЛИН-3-КАРБОНОВОЙ КИСЛОТЫ

Щелочной гидролиз этилового эфира 4-(цианоэтоксикарбонилметил)-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты сопровождается декарбоксилированием с потерей двух молекул CO₂ и приводит к 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоте.

Ключевые слова: 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновая кислота, циануксусный эфир, 4-хлорхинолин, амидирование, гидролиз, декарбоксилирование, РСА.

В органической химии давно известен широко применяемый в препаративных целях метод образования новых углерод-углеродных связей, основанный на способности карбанионов, получаемых из метиленактивных соединений, легко вступать в реакции замещения с алкилирующими агентами, такими как алкилгалогениды и другие реакционноспособные галогенсодержащие вещества. Гидролиз синтезированных таким путем замещенных малоновых, циануксусных или ацетоуксусных эфиров дает соответствующие кислоты, отличающиеся склонностью к декарбоксилированию при нагревании. На этих реакциях и основана вся цепочка превращения галогенидов в карбоновые кислоты или кетоны, фактически представляющая собой простой и эффективный способ замещения галогена в молекуле на CH₂COOH или CH₂COR [2].

Ранее нами отмечалась легкость образования 4-алкил-(арил)аминозамещенных 2-оксо-3-этоксикарбонил-1,2-дигидрохинолинов при взаимодействии этилового эфира 2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновой кислоты (1), соответственно, с алкиламинами [3] или анилинами [4]. Данное обстоятельство позволяет предположить, что 4-хлорзамещенный эфир 1 обладает достаточной реакционной способностью и для реакции с С-нуклеофилами, например с карбанионом, генерируемым в присутствии оснований из циануксусного эфира.

Как показали проведенные нами эксперименты, эта реакция действительно осуществима и этиловый эфир 4-(цианоэтоксикарбонилметил)-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (2) в системе ДМФА/К₂CO₃ образуется без каких-либо затруднений. Теоретически последующий щелочной гидролиз должен привести к 2-(3-карбокси-2-оксо-1,2-дигидрохинолин-4-ил)малоновой кислоте (3), которая, в свою очередь, при термическом

^{*} Сообщение 95 см. [1].

Строение молекулы эфира 8 с нумерацией атомов

декарбоксилировании должна образовать 4-карбоксиметил-2-оксо-1,2-дигидрохинолин-3-карбоновую кислоту (4). Однако, по данным хроматомасс-спектрометрии, продукт гидролиза эфира 2 неожиданно оказался не замещенной малоновой кислотой 3, а индивидуальным веществом с молекулярной массой 203 а. е. м. Спектр ЯМР ¹Н показывает наличие в исследуемом образце групп СООН и NH (уширенные синглеты в слабом поле), хинолонового ядра (четыре сигнала с типичной мультиплетностью в ароматической области) и С-метильной группы (синглет интенсивно-стью 3Н при 2.55 м. д.). В исходном хинолоне 2 единственным источни-ком группы CH₃ может быть только остаток циануксусного эфира. Вероятно благодаря мощному электроноакцепторному влиянию карбоксихинолонового фрагмента, он декарбоксилируется сразу же после гидролиза, причем несколько необычным путем, теряя не одну, а две молекулы СО₂.

Таким образом, продукт щелочного гидролиза эфира 2 можно идентифицировать как 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновую кислоту (5). Для подтверждения такого вывода нами осуществлен синтез кислоты 5 другим методом, исключающим какие-либо возможные разночтения в интерпретации ее структуры. С этой целью *о*-аминоацетофенон (6) ацилировали этоксималонилхлоридом. Полученный 2-ацетиланилид 7 обработкой этилатом натрия в абсолютном спирте превращали в этиловый эфир 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (8), после гидролиза которого и выделена кислота 5, идентичная по своим свойствам и спектральным характеристикам описанному выше образцу.

В отличие от сложных эфиров 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты [5], их 4-метилзамещенный аналог **8** щелочами гидролизуется довольно легко и, в то же время, в обычных условиях совершенно инертен к амидированию алкиламинами. Причиной такого существенного различия в реакционной способности является, очевидно, невозможность эфира **8** образовывать по типу 4-гидроксипроизводных [6] с катионами щелочных металлов устойчивые к действию нуклеофилов соли в первом случае и особенности пространственного расположения сложноэфирной группировки во втором.

Таблица 1

Связь	l, Å	Связь	l, Å	Связь	l, Å
N ₍₁₎ -C ₍₉₎	1.343(5)	C ₍₆₎ –C ₍₇₎	1.429(6)	C ₍₁₎ -C ₍₂₎	1.386(6)
O ₍₁₎ –C ₍₉₎	1.261(6)	C ₍₇₎ -C ₍₁₃₎	1.477(7)	C ₍₃₎ -C ₍₄₎	1.365(7)
O ₍₃₎ -C ₍₁₀₎	1.328(5)	C ₍₈₎ -C ₍₁₀₎	1.488(6)	C(5)-C(6)	1.435(7)
C ₍₁₎ C ₍₆₎	1.379(6)	N ₍₁₎ -C ₍₁₎	1.402(6)	C ₍₇₎ -C ₍₈₎	1.382(6)
C ₍₂₎ -C ₍₃₎	1.384(7)	O ₍₂₎ -C ₍₁₀₎	1.189(5)	C ₍₈₎ -C ₍₉₎	1.421(6)
C ₍₄₎ -C ₍₅₎	1.380(6)	O ₍₃₎ –C ₍₁₁₎	1.449(6)	C ₍₁₁₎ C ₍₁₂₎	1.461(7)

Длины связей (*l*) в структуре эфира 8

Так, в изученных ранее этиловых эфирах 1R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот [7–9] этоксикарбонильная группа была всегда копланарна плоскости хинолина вследствие образования внутримолекулярной водородной связи с гидроксильной группой. Замена гидроксильной группы на метильную приводит к тому, что в молекуле эфира **8** (см. рис. и табл. 1, 2) сложноэфирный заместитель развернут практически перпендикулярно плоскости хинолина (торсионный угол $O_{(2)}-C_{(10)}-C_{(8)}-C_{(7)}$ 101.4(6)°), что и объясняет его инертность к действию алкиламинов. Атом $C_{(11)}$ сложноэфирной группы находится в *ар*-положении

Таблица 2

Угол	ω, град.	Угол	ω, град.
C ₍₉₎ -N ₍₁₎ -C ₍₁₎	122.5(4)	$C_{(10)} - O_{(3)} - C_{(11)}$	117.0(4)
$C_{(6)} - C_{(1)} - C_{(2)}$	123.5(4)	$C_{(6)} - C_{(1)} - N_{(1)}$	118.7(4)
$C_{(2)} - C_{(1)} - N_{(1)}$	117.8(4)	$C_{(3)} - C_{(2)} - C_{(1)}$	118.4(5)
$C_{(4)} - C_{(3)} - C_{(2)}$	120.2(5)	$C_{(3)} - C_{(4)} - C_{(5)}$	121.8(5)
$C_{(4)} - C_{(5)} - C_{(6)}$	119.5(5)	$C_{(1)} - C_{(6)} - C_{(7)}$	120.8(4)
C ₍₁₎ -C ₍₆₎ -C ₍₅₎	116.6(4)	$C_{(7)} - C_{(6)} - C_{(5)}$	122.5(5)
$C_{(8)} - C_{(7)} - C_{(6)}$	117.8(5)	$C_{(8)} - C_{(7)} - C_{(13)}$	121.8(4)
$C_{(6)} - C_{(7)} - C_{(13)}$	120.3(4)	$C_{(7)} - C_{(8)} - C_{(9)}$	121.3(4)
$C_{(7)} - C_{(8)} - C_{(10)}$	121.3(4)	$C_{(9)} - C_{(8)} - C_{(10)}$	117.2(4)
$O_{(1)} - C_{(9)} - N_{(1)}$	119.5(4)	$O_{(1)} - C_{(9)} - C_{(8)}$	121.8(4)
$N_{(1)} - C_{(9)} - C_{(8)}$	118.7(4)	$O_{(2)} - C_{(10)} - O_{(3)}$	123.4(5)
$O_{(2)} - C_{(10)} - C_{(8)}$	123.9(4)	$O_{(3)} - C_{(10)} - C_{(8)}$	112.6(4)
$O_{(3)}-C_{(11)}-C_{(12)}$	109.7(5)		

Валентные углы (ω) в структуре эфира 8

относительно связи $C_{(10)}$ – $C_{(8)}$, а атом $C_{(12)}$ – в положении, очень близком к *ар* 890

относительно связи $C_{(10)}$ – $O_{(3)}$ (торсионные углы $C_{(11)}$ – $O_{(3)}$ – $C_{(10)}$ – $C_{(8)}$ 176.8(4)°, $C_{(10)}$ – $O_{(3)}$ – $C_{(11)}$ – $C_{(12)}$ 170.2(5)°). Отталкивание между метильной группой при атоме $C_{(7)}$, атомом $C_{(10)}$ и атомами ароматического кольца, на которое указывают укороченные внутримолекулярные контакты $H_{(13c)}$... $C_{(10)}$ 2.44 (сумма ван-дер-ваальсовых радиусов 2.87 [10]), $H_{(5a)}$... $C_{(13)}$ 2.63 (2.87) и $H_{(13a)}$... $C_{(5)}$ 2.83 Å (2.87 Å), приводит к некоторой скрученности двойной связи $C_{(7)}$ – $C_{(8)}$ (торсионный угол $C_{(13)}$ – $C_{(7)}$ – $C_{(10)}$ 4.2(6)°).

Бициклический фрагмент эфира **8** плоский с точностью 0.02 Å. Заметное удлинение связей $C_{(7)}$ — $C_{(8)}$ 1.382(6) и $O_{(1)}$ — $C_{(9)}$ 1.261(6) Å по сравнению с их средними значениями 1.326 и 1.210 Å, соответственно, [11] и укорочение связей $C_{(8)}$ — $C_{(9)}$ 1.421(6) (среднее значение 1.455) и $N_{(1)}$ — $C_{(9)}$ 1.343(5) Å (1.385 Å) позволяет предположить, что структура этилового эфира 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты описывается как гибрид двух резонансных структур **8** и **8a** с преимущественным вкладом структуры **8**. В кристалле молекулы этого соединения образуют димеры за счет межмолекулярной водородной связи $N_{(1)}$ — $H_{(1a)}$... $O_{(1)}$ (1–x, –y, –z) H…O 1.93 Å, N–H…O 168°.

Как известно [12], обработка хлористым тионилом 1H-2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновой кислоты дает смесь хлорангидридов 2-оксо-4-хлор- и 2,4-дихлорхинолин-3-карбоновых кислот. В случае кислоты 5 такой эффект не наблюдается и, как показано на примере бензиламина, через хлорангидрид 9 соответствующие амиды 10 могут быть получены с высокими выходами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Varian Mercury-VX-200 (200 МГц), растворитель ДМСО- d_6 , внутренний стандарт ТМС. Хромато-массспектры зарегистрированы на квадрупольном спектрометре Finnigan MAT Incos 50 в режиме полного сканирования в диапазоне 33–700 *m/z*, ионизация электронным ударом 70 эВ при прямом вводе образца, скорость нагрева ~5 °С/с. Этиловый эфир кислоты 1 получен по известной методике [13]. В синтезе этилового эфира кислоты 8 использован коммерческий *о*-аминоацетофенон фирмы Aldrich.

Этиловый эфир 4-(цианоэтоксикарбонилметил)-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (2). Смесь 2.51 г (0.01 моль) этилового эфира 2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновой кислоты (1), 1.17 мл (0.011 моль) циануксусного эфира и 2 г К₂CO₃ в 15 мл ДМФА перемешивают 10 ч при 90 °C. Охлаждают, разбавляют реакционную смесь водой и подкисляют HCl до pH 5. Выделившийся осадок эфира 2 отфильтровывают, промывают водой, сушат. Выход 2.92 г (89%). Т. пл. 183–185 °C (этанол). Масс-спектр, m/z (I_{ortH} , %): 328 [M]⁺ (26), 283 [M – OEt]⁺ (15), 255 [M – OEt – CO]⁺ (37), 254 [M – OEt – HCO]⁺ (100), 227 [M – OEt – HCO – HCN]⁺ (18), 210 [M – OEt – CO – OEt]⁺ (85), 184 (40), 127 (44). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 12.46 (1H, с, NH); 7.79 (1H, д, J = 8.2, H-5); 7.65 (1H, т. д, J = 7.6 и J = 1.0, H-7); 7.41 (1H, д, J = 8.1, H-8); 7.32 (1H, т. д, J = 7.9 и J = 1.0, H-6); 6.20 (1H, с, CH–CN); 4.31 (2H, к, J = 7.2, OCH₂); 4.19 (2H, к, J = 7.2, CHCOOCH₂); 1.27 (3H, т, J = 7.2, CH₃); 1.13 (3H, т, J = 7.2, CHCOOCH₂CH₃). Найдено, %: C 62.30; H 4.97; N 8.40. C₁₇H₁₆N₂O₅. Вычислено, %: C 62.19; H 4.91; N 8.53.

4-Метил-2-оксо-1,2-дигидрохинолин-3-карбоновая кислота (5). Смесь 3.28 г (0.01 моль) соединения **2** и 30 мл 20% водного расвора NaOH кипятят до прекращения выделения аммиака (~10 ч). Охлаждают, подкисляют HCl до pH 3. Выделившийся осадок кислоты **5** отфильтровывают, промывают водой, сушат. Выход 1.84 г (91%). Т. пл. 274–276 °С (этанол). Масс-спектр, m/z ($I_{отн}$, %): 203 [M]⁺ (76), 185 [M – H₂O]⁺ (100), 159 [M – CO₂]⁺ (98), 141 [M – H₂O – CO₂]⁺ (36), 130 (35), 77 (39), 44 (58). Спектр ЯМР ¹H, δ , м. д. (J, Ги): 13.84 (1H, с, COOH); 12.20 (1H, с, NH); 7.87 (1H, д, J = 8.2, H-5); 7.59 (1H, т, J = 7.4, H-7); 7.36 (1H, д, J = 7.8, H-8); 7.27 (1H, т, J = 7.5, H-6). 2.55 (3H, с, CH₃). Найдено, %: С 65.18; H 4.57; N 6.77. С₁₁H₉NO₃. Вычислено, %: С 65.02; H 4.46; N 6.89.

Смешанная проба с образцом кислоты 5, полученным щелочным гидролизом этилового эфира кислоты 8 по аналогичной методике, не дает депрессии температуры плавления. ЯМР ¹Н и хромато-масс-спектры этих соединений идентичны.

Этиловый эфир 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (8). К раствору 13.5 г (0.1 моль) 2'-аминоацетофенона 6 в 100 мл CH₂Cl₂ прибавляют 15.4 мл (0.11 моль) триэтиламина, а затем при охлаждении и перемешивании по каплям 16.56 г (0.11 моль) этоксималонилхлорида и оставляют при комнатной температуре на 4-5 ч. Затем реакционную смесь разбавляют водой, органический слой отделяют, сушат безводным CaCl₂. Растворитель отгоняют (в конце при пониженном давлении). К остатку (2-ацетиланилид 7) прибавляют раствор этилата натрия (из 3.45 г (0.15 моль) металлического натрия и 150 мл абсолютного этилового спирта), кипятят 1 ч на водяной бане, после чего нагревание прекращают и оставляют на 7–8 ч при комнатной температуре. Разбавляют реакционную смесь водой и подкисляют разбавленной, 1:1, HCl до pH 4.5-5. Осадок эфира 8 отфильтровывают, промывают холодной водой, сушат. Выход 22.0 г (95%). Т. пл. 251–253 °С (этанол). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 11.85 (1Н, с, NH); 7.79 (1Н, д. д. J = 8.2 и J = 0.8, Н-5); 7.55 (1Н, т. д. J = 7.6 и J = 1.0, Н-7); 7.33 (1Н, д. д. J = 8.0 и J = 0.6, H-8; 7.23 (1H, T. J. J = 7.5 H J = 0.8, H-6); 4.30 (2H, K. $J = 7.1, OCH_2$); 2.38 (3H, c. CH₃); 1.29 (3H, т. J = 7.1, OCH₂CH₃). Найдено, %: С 67.65; Н 5.77; N 6.14, C₁₃H₁₃NO₃. Вычислено, %: С 67.52; Н 5.67; N 6.06.

Бензиламид 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (10). К раствору 2.03 г (0.01 моль) кислоты 5 в 20 мл сухого CCl₄ прибавляют 1.44 мл (0.02 моль) SOCl₂ и кипятят с защитой от влаги воздуха до прекращения выделения HCl и SO₂ (~2 ч). Затем отгоняют растворитель и избыток SOCl₂ (в конце при пониженном давлении). Остаток (хлорангидрид 9) растворяют в 20 мл сухого ацетона и полученный раствор прибавляют каплями при перемешивании и охлаждении в смесь 1.09 мл (0.01 моль) бензиламина и 1.4 мл (0.01 моль) триэтиламина в 30 мл сухого ацетона. Через 3–4 ч реакционную смесь разбавляют водой и подкисляют разбавленной, 1:1, HCl до pH 4. Осадок амида 10 отфильтровывают, промывают холодной водой, сушат. Выход 2.63 г (90%). Т. пл. 239–241 °C (этанол). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 11.82 (1H, с, NH); 8.81 (1H, т, N<u>H</u>CH₂); 7.77 (1H, д, *J* = 8.1, H-5); 7.52 (1H, т, *J* = 7.6, H-7); 7.44–7.16 (7H, м, H-6, 8 + + C₆H₅); 4.44 (2H, д, *J* = 6.2, NCH₂); 2.34 (3H, с, CH₃). Найдено, %: С 73.84; H 5.50; N 9.44. C₁₈H₁₆N₂O₂. Вычислено, %: С 73.96; H 5.52; N 9.58.

Рентгеноструктурное исследование. Кристаллы эфира 8 моноклинные, при –109 °С a = 11.034(4), b = 15.073(4), c = 6.646(3) Å, $\beta = 95.55(3)^\circ$, V = 1100.2(7) Å³, $M_r = 231.24$, Z = 4, пространственная группа $P2_1/c$, $d_{\rm выч} = 1.396$ г/см³, μ (МоК α) = 0.100 мм⁻¹, F(000) = 488. Параметры элементарной ячейки и интенсивности 2001 отражения (1915 независимых, $R_{\rm int} = 0.023$) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (МоК α , графитовый монохроматор, 20/0-сканирование, $2\theta_{\rm max} = 50^\circ$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [14]. Положения атомов водорода рассчитаны геометрически и уточнены по модели "наездника" с $U_{\rm H30} = nU_{\rm 3KB}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильной группы и n = 1.2 для остальных атомов водорода). Структура уточнена по F² полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.168$ по 1744 отражениям ($R_1 = 0.066$ по 751 отражению с $F > 4\sigma(F)$, S = 0.985). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент № ССDC 257525). Межатомные расстояния и валентные углы представлены в табл. 1 и 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Е. В. Колесник, Л. В. Сидоренко, О. В. Горохова, А. В. Туров, *XTC*, 874 (2006).
- 2. Р. Маки, Д. Смит, Путеводитель по органическому синтезу, Мир, Москва, 1985.
- 3. П. А. Безуглый, И. В. Украинец, Н. Скаиф, О. В. Горохова, Л. В. Сидоренко, *Фармаком*, № 3, 23 (2003).
- 4. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, Н. А. Джарадат, ХГС, 386 (2006).
- 5. И. В. Украинец, О. В. Горохова, С. Г. Таран, П. А. Безуглый, А. В. Туров, Н. А. Марусенко, О. А. Евтифеева, *XГС*, 958 (1994).
- 6. И. В. Украинец, С. Г. Таран, О. А. Евтифеева, А. В. Туров, *XГС*, 1101 (1993).
- 7. И. В. Украинец, О. С. Прокопенко, Л. В. Сидоренко, О. В. Горохова, *Фарм. журн.*, № 3, 70 (2004).
- 8. И. В. Украинец, Н. А. Джарадат, И. В. Горлачева, О. В. Горохова, Л. В. Сидоренко, А. В. Туров, *XГС*, 207 (2000).
- 9. И. В. Украинец, О. В. Горохова, Л. В. Сидоренко, В. Б. Рыбаков, В. В. Чернышев, *Журн. орг. фарм. хим.*, **1**, вып. 3–4, 45 (2003).
- 10. Ю. В. Зефиров, П. М. Зоркий, *Успехи химии*, **58**, 713 (1989).
- 11. H.-B. Burgi, J. D. Dunitz, Structure Correlation, VCH, Weinheim, 1994, vol. 2, p. 741.
- 12. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, Н. А. Джарадат, ХГС, 542 (2006).
- И. В. Украинец, С. Г. Таран, О. В. Горохова, Н. А. Марусенко, С. Н. Коваленко, А. В. Туров, Н. И. Филимонова, С. М. Ивков, XTC, 195 (1995).
- G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1. (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило в редакцию 08.11.2004

^аИнститут сцинтилляционных материалов НАН Украины, Харьков 61001 e-mail: sveta@xray.isc.kharkov.com