Ю. С. Алексеенко, Б. С. Лукьянов, А. Н. Утенышев^а, Е. Л. Муханов, М. Е. Клецкий, В. В. Ткачев^а, Н. Н. Кравченко, В. И. Минкин, С. М. Алдошин

ФОТО- И ТЕРМОХРОМНЫЕ СПИРАНЫ

24*. НОВЫЕ ФОТОХРОМНЫЕ СПИРОПИРАНЫ НА ОСНОВЕ 2,4-ДИГИДРОКСИИЗОФТАЛЕВОГО АЛЬДЕГИДА

Получены новые фотохромные спиропираны индолинового и бензоксазинового рядов, содержащие в бензоядре хроменовой части молекулы *орто*-расположенные формильную и гидроксильную группы. Методом РСА показано, что в зависимости от строения гетеренового компонента в реакцию спирообразования вступают различные неэквивалентные формильные группы 2,4-дигидроксиизофталевого альдегида. Синтезированные соединения были использованы как своеобразный аналог салицилового альдегида. Полученные на их основе новые фотохромные биспиропираны содержат два разных асимметрических спироуглеродных атома.

Ключевые слова: 2,4-дигидроксиизофталевый альдегид, бензоксазинон, индолин, спиропиран, фотохромизм.

Фотохромные свойства спиропиранов определяются не только вкладом гетеренового фрагмента, но в большей мере заместителями в 2Н-хроменовой части молекулы [2]. Нами получены новые спиропираны 4 и 6 своеобразные аналоги салицилового альдегида. На основе соединения 4 синтезированы спиропираны 7, содержащие два разных спироциклических центра и, соответственно, два асимметрических атома углерода. Строение синтезированных соединений 4, 6, 7 подтверждено данными элементного анализа (табл. 1), ИК и ЯМР ¹Н спектроскопии (табл. 2). В ИК спектрах соединений 4, 6 имеются полосы поглощения 1584–1633 и 912-996 см⁻¹ (v_{C=C} и v_{C-O} 2H-хроменового фрагмента соответственно), а в спиропиранах 4 и 7 также и полосы поглощения валентных колебаний карбонильной группы бензоксазинонового фрагмента (1673–1686 см⁻¹). ВИК спектрах спиропиранов 4 и 6 отсутствуют полосы поглощения формильной и гидроксигрупп. Очевидно, это связано с сильной внутримолекулярной водородной связью (BMBC). В спектре ЯМР ¹Н соединения 4а (в дейтерохлороформе) сигналы протонов 3' и 4' представлены АВ-спектром с $\delta(3') = 5.97$ и $\delta(4') = 6.93$ м. д., $J_{3',4'} = 9.8$ Гц. Сигналы метильной группы при атоме азота (N-CH₃) в положении 3 оксазинонового фрагмента, формильного протона и протона орто-расположенной к нему гидроксигруппы в бензоядре 2Н-хроменового фрагмента проявляются в виде синглетных сигналов при 3.17, 10.22 и 11.69 м. д.

^{*} Сообщение 23 см. [1].

4 a $R = R^{1} = H$, b R = Ph, $R^{1} = H$, c R = Ph, $R^{1} = Cl$; **5** a $R^{2} = H$, b $R^{2} = Cl$; **6** a $R^{2} = H$, b $R^{2} = Cl$; **7** a $R = R^{1} = R^{2} = H$, b $R = R^{1} = H$, $R^{2} = Cl$, c R = Ph, $R^{1} = R^{2} = H$, d R = Ph, $R^{1} = H$, $R^{2} = Cl$

соответственно. В спиропиранах индолинового ряда **6** *гем*-диметильные группы в положении 3 представляют собой удобную диастереотопную метку, отражающую спиропирановую структуру соединений. Наличие в спектре ЯМР ¹Н двух синглетных сигналов *гем*-диметильных групп (*гем*. (CH₃)₂) с $\delta = 1.15$ и 1.25 м. д. (на примере соединения **6a**), обусловленных наличием в молекуле асимметрического атома углерода, подтверждает спироциклическую структуру соединений **6**. Сигналы протонов 3' и 4' представлены АВ-спектром с $\delta(3') = 5.68$ и $\delta(4') = 7.25$ м. д., $J_{3',4'} = 10.5$ Гц, а сигналы при $\delta = 9.63$ и $\delta = 11.78$ м. д. характеризуют наличие формиль-ной и гидроксигрупп соответственно.

В спектрах ЯМР ¹Н биспиропиранов 7a-d имеются характеристические 920

сигналы всех протоносодержащих группировок, которые по значению химических сдвигов и интегральной интенсивности полностью соответствуют исследуемым структурам. Прохиральность метиленовой группы бензильного радикала в соединениях **7с**,**d**, обеспечиваемая спиропирановой системой, приводит к диастеретопному расщеплению сигналов протонов указанной группы. Если в соединении **4b** сигналы метиленовых протонов бензильной группы наблюдаются в виде AB-спектра ($\delta = 4.7$ и 5.9 м. д. и $J_{AB} = 15.9$ Гц), то введение в молекулу второго асимметрического спироуглеродного атома значительно искажает сигналы протонов диастереотопной бензильной группы и усложняет общую картину спектра вследствие расщепления других сигналов (рис. 1, на примере соединения **7d**).

Для более детального изучения структуры синтезированных спиропиранов экспериментальным подбором растворителей были выращены монокристаллы спиропиранов **4a** и **6a** и проведено их рентгеноструктурное исследование (РСИ). Только РСИ дало возможность определить строение полученных спиропиранов **4** и **6** и однозначно установить положения формильной и гидроксигрупп в бензоядре [2H]-хроменового фрагмента (рис. 2 и 3, табл. 3).

В молекулах исследованных соединений бензопирановый и бензоксазиноновый фрагменты, как и в исследованных ранее индолиновых (ИПС) и бензоксазиноновых производных спиропиранов [3–5], расположены почти ортогонально друг другу и индивидуально непланарны. Непланарность бензоксазинонового фрагмента в соединении **4a** обусловлена перегибом по линии N...O(1) на угол 33.9°, а неплапанарность бензопиранового фрагмента вызвана перегибами по линиям C(3')...O(1') и

Брутто- формула	<u>Найдено, %</u> Вычислено, %				Т. пл.,	Выход,
	С	Н	Ν	Cl	C	/0
C ₁₈ H ₁₃ NO ₅	<u>67.02</u>	$\frac{3.90}{4.05}$	$\frac{4.11}{4.33}$	-	155	48
C ₂₄ H ₁₇ NO ₅	<u>71.92</u> 72.17	$\frac{4.04}{4.29}$	<u>3.43</u> 3.51	_	140	46
C ₂₄ H ₁₆ ClNO ₅	<u>66.28</u> 66.44	$\frac{3.63}{3.72}$	$\frac{3.34}{3.23}$	$\frac{8.02}{8.17}$	138	42
C ₂₀ H ₁₃ NO ₃	<u>74.86</u> 74.75	<u>5.83</u> 5.96	$\frac{4.43}{4.36}$	_	147	57
$C_{20}H_{12}ClNO_3$	<u>67.63</u> 67.51	<u>4.95</u> 5.10	<u>4.01</u> 3.94	<u>10.04</u> 9.96	162	53
$C_{30}H_{26}N_2O_4$	<u>75.56</u> 75.30	<u>5.74</u> 5.48	<u>5.62</u> 5.85	_	210	60
$C_{30}H_{25}ClN_2O_4$	<u>70.3</u> 1 70.24	<u>4.85</u> 4.91	<u>5.53</u> 5.46	<u>6.89</u> 6.91	226	62
$C_{36}H_{30}N_2O_4$	<u>78.12</u> 77.96	<u>5.41</u> 5.45	<u>4.96</u> 5.05	-	122	59
$C_{36}H_{29}ClN_2O_4$	<u>73.24</u> 73.40	<u>4.85</u> 4.96	<u>4.91</u> 4.76	<u>6.09</u> 6.02	125	44
	Брутто- формула $C_{18}H_{13}NO_5$ $C_{24}H_{17}NO_5$ $C_{24}H_{16}CINO_5$ $C_{20}H_{13}NO_3$ $C_{20}H_{12}CINO_3$ $C_{30}H_{26}N_2O_4$ $C_{30}H_{25}CIN_2O_4$ $C_{36}H_{30}N_2O_4$ $C_{36}H_{29}CIN_2O_4$	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Брутто- формулаНайдено, % Вычислено, %Т. пл., °C $C_{18}H_{13}NO_5$ C HNCl $C_{18}H_{13}NO_5$ 67.02 $66.873.904.054.114.33-155C_{24}H_{17}NO_571.9272.174.044.293.433.51-140C_{24}H_{16}CINO_566.2866.443.633.723.233.238.178.17138C_{20}H_{13}NO_374.8674.755.965.964.364.36-147C_{20}H_{12}CINO_367.6367.514.955.104.013.9410.049.96162C_{30}H_{26}N_2O_475.5675.305.745.485.855.536.9168.99226226C_{30}H_{25}CIN_2O_478.1277.965.455.056.09-122C_{36}H_{30}N_2O_473.2473.404.854.964.914.766.096.02$

Характеристики соединений 4, 6, 7

Таблица 1

Рис. 1. Спектр ЯМР ¹Н спиропирана 7d в CDCl₃ при 20 °C

Рис. 2. Структура спиропирана 4а по данным РСА. Длина водородной связи 1.625 Å

C(4')...O(1') на углы 22.6 и 7.5° соответственно. Атомы O(1), C(4), N, O(2) расположены в плоскости бензольного кольца C(5)C(6)C(7)C(8)C(9). Соединение **6а** является ИПС и углы перегиба составляют в индолиновом фрагменте по линии N...C(1) 6.9°, и в бензопирановом фрагменте по линиям C(3')...O(1') и C(4')...O(1') 2.1 и 0.9° соответственно. Таким образом, геометрическое строение $C_{спиро}$ узла и бензопиранового фрагмента в соединениях **4а** и **6а** аналогично строению ранее исследованных индолиновых и бензоксазиновых спиропиранов.

Рис. 3. Структура спиропирана **6a** по данным РСА. Длина водородной связи 1.978 Å

Таблица 2

Соеди- нение	ИК спектр, v, см ⁻¹			УФ спектр, λ, нм		
	C=O	C=C	C–O	λ_{max} (lg ϵ)	λ _{тах} фотоиндуци- рованных форм	
4a	1673	1633, 1600	984, 954, 921	270 (4.32); 364 (3.48)	368, 430 пл	
4b	1686	1639, 1623	996, 919	272 (4.3); 364 (3.49)	392	
4c	1686	1633, 1593	961, 912	282 (4.31); 316 пл (4.17)	465 пл	
6a	_	1633, 1613	950	254 (4.3); 264 (4.43); 296 пл (3.89)	408, 500	
6b	-	1633, 1620	950	258 (4.54); 300 (4.2)	395, 508	
7a	1673	1633, 1600, 1584	950, 921	247 (4.57); 273 пл (4.36); 287 пл (4.30); 324 пл (3.49); 540 пл (3.31)	418 пл, 434, 520, 560	
7b	1673	1633, 1600, 1584	950, 921	256 (4.58); 290 пл (3.99); 342 (3.11)	423, 520, 545	
7c	1673	1633, 1594	996, 912	246 (4.58); 277 пл (4.1); 288 пл (4.06); 326 пл (3.27); 343 пл (3.11)	422, 434, 540, 567 пл	
7d	1673	1633, 1593	950, 927	248 (4.57); 279 пл (4.01); 348 пл (3.06)	419, 589	

Спектральные характеристики спиропиранов 4, 6, 7

Соедине	ение 4 а	Соединение 6а		
Связь	<i>l</i> , (Å	Связь	l, Å	
C(2'2)–O(1')	1.454(2)	C(2'2)–O(1')	1.468(2)	
O(1')–C(9')	1.369(2)	O(1')–C(9')	1.347(3)	
C(9')-C(10')	1.384(2)	C(9')-C(10')	1.396(3)	
C(10')–C(4')	1.451(3)	C(10')–C(4')	1.453(3)	
C(4')–C(3')	1.322(3)	C(4')–C(3')	1.314(4)	
C(3')– C(2'2)	1.493(2)	C(3')– C(2'2)	1.503(2)	
C(10')–C(5')	1.407(3)	C(10')–C(5')	1.390(3)	
C(5')–C(6')	1.368(3)	C(5')–C(6')	1.407(3)	
C(6')–C(7')	1.388(3)	C(6')–C(7')	1.398(3)	
C(7')–C(8')	1.403(3)	C(7')–C(8')	1.366(3)	
C(8')–C(9')	1.405(2)	C(8')–C(9')	1.400(3)	
C(7')–O(2')	1.351(3)	C(5')–O(2')	1.343(3)	
O(2')–H(2')	1.06(3)	O(2')–H(2')	0.84(3)	
C(8')–C(11')	1.447(3)	C(6')–C(11')	1.446(4)	
C(11')–O(3')	1.227(2)	C(11')–O(3')	1.219(4)	
O(3')– H(2')	1.62(4)	O(3')– H(2')	1.86(4)	
C(2'2)–N	1.432(3)	C(2'2)–N	1.435(3)	
N–C(4)	1.362(3)	N-C(9)	1.402(3)	
N–C(12)	1.465(2)	N–C(12)	1.410(4)	
C(4)–O(2)	1.224(3)	C(8)–C(9)	1.385(3)	
C(4)–C(10)	1.473(3)	C(1)–C(8)	1.484(3)	
C(10)–C(9)	1.388(3)	C(1)–C(2'2)	1.558(3)	
C(9)–O(1)	1.374(2)	C(1)–C(11)	1.576(4)	
O(1)–C(2'2)	1.413(2)	C(1)–C(12)	1.410(4)	

Основные длины связей соединений 4а и 6а

Включение в бензоксазиноновый фрагмент спиропирана **4a** карбонильной группы C(4)=O(2) приводит к существенному изменению электронной и геометрической картины строения N-узла. Выход атома N из плоскости координирующих атомов C(2',2) C(4) C(12) соединения **4a** составляет 0.052 Å, сумма валентных углов при N равна 356.1°. Длина амидной связи в соединении **4a** N–C(4) 1.361(3) Å, что свидетельствует о заметном сопряжении неподеленной электронной пары (НЭП) атома N с π -связью карбонильной группы. Амидное сопряжение существенно ослабляет взаимодействие НЭП атома N с σ^* -орбиталью связи C(2',2)–O(1'). Кроме того, геометрическое расположение связи C(2',2)–O(1') относительно координационной плоскости атома азота – C(2',2)C(4)C(12) становится менее благоприятным для орбитальных *n*– σ^* .

С другой стороны, наличие при атоме C(8') формильной группы увеличивает электроноакцепторное влияние на атом O(1'). Об этом свидетельствует некоторое укорочение связи O(1')–C(9') до 1.369(2) Å в сравнении с таковой аналогичных соединений (1.379(4) Å). Увеличение электроноакцепторного влияния 8'-заместителя увеличивает полярность связи C(2',2)–O(1') и дополнительно усиливает $n-\sigma^*$ -взаимодействие в сравнении со спиропиранами индолинового ряда [6]. В результате этого длины

связей C(2',2)–O(1') *l* 1.454(2) и C(2',2)–O(1) *l* 1.414(2) Å в соединении **4**а имеют неодинаковые значения.

В спиропиране **6a** НЭП атома N сопряжена непосредственно с бензольным кольцом, соответственно, электронная и геометрическая картина строения N-узла в этом соединении отличается от картины соединения **4a**. Выход атома N из плоскости координирующих атомов C(2',2)C(9)C(12) соединения **6a** составляет 0.11 Å, сумма валентных углов при N равна 354.7°. Длина связи N–C(9) 1.400(3) Å заметно больше аналогичной в соединении **4a**, но характерна для ИПС. Геометрическое расположение связи C(2',2)-O(1') в соединении **6a** относительно координационной плоскости атома азота – C(2',2)C(9)C(12) благоприятно для орбитальных *n*– σ *-взаимодействий НЭП атома N с σ *-орбиталью связи C(2',2)-O(1'). Таким образом, в соединении **6a** электронные взаимодействия при спироцентре молекулы можно назвать классическими для спиропиранов с фотохромными свойствами: сокращение связи N–C(2',2) до 1.437 Å и увеличение длины связи O(1')-C(2',2) (1.473 Å) по сравнению с обычными значениями для подобных связей [6].

Молекулярное строение соединений **4a** и **6a** характеризуется наличием сильных ВМВС между гидроксильным атомом водорода и формильным атомом кислорода (рис. 2 и 3 соответственно). Параметры ВМВС в соединении **4a**: O(3')...H(2') = 1.63(3), O(2')...O(3') = 2.586(3) Å, $O(2')H(2')O(3') = 145.6^{\circ}$ (и O(3')...H(2') = 1.86(4), O(2')...O(3') = 2.623(3) Å, $O(2')H(2')O(3') = 149.4^{\circ}$ для соединения **6a**).

В результате РСА было обнаружено, что несмотря на схожесть методик синтеза в соединениях **4a** и **6a** карбонильный и гидроксильный заместители занимают неэквивалентные положения (рис. 2, 3). Видимо разные гетереновые компоненты вступают по-разному в реакцию спирообразования с неэквивалентными формильными группами исходного альдегида.

Для выяснения причины такой селективности конденсации были проведены квантово-химические расчеты. В качестве модельного механизма был выбран процесс конденсации по Кневенагелю, как наиболее соответствующий типу реакции:

926

При анализе полученных данных оказалось, что с позиций термодинамики невозможно объяснить указанную выше селективность. Ключевым в понимании проблемы выбора формильной группы для атаки является стадия **B**—**C**. При рассмотрении реакция с солью бензоксазинония **2** на указанном этапе при атаке по группе –СНО в положении 3 2,4-дигидроксиизофталевого альдегида система вынуждена преодолевать энергетический барьер \approx 9 ккал/моль, а при атаке по формильной группе в положении 1 минимальный энергетический путь системы сопровождается монотонным прогрессивным снижением энергии. Аналогичная картина наблюдается при рассмотрении реакции с солью индоленилия. При реакции по формильной группе в положении 1 энергетический барьер на этапе **B**—**C** составляет \approx 13 ккал/моль, а при конденсации с формильной группой в положении 3 – \approx 20 ккал/моль, т. е. в обоих случаях реакция подчиняется кинетическому контролю.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры поглощения записаны на призменном двухлучевом спектрометре Specord IR-71. Калибровка прибора проведена по полистиролу.

Электронные спектры исследуемых соединений при комнатной температуре получены на спектрофотометре Carry (фирма Varian, CША). Спектры поглощения до и после облучения зарегистрированы на спектрофотометре Specord UV-vis, снабженном специальным криостатом для низкотемпературных измерений; в качестве возбуждающего источника использовалась ртутная лампа ДРШ-250 со светофильтрами, выделяющими свет с λ_{max} 313 и 365 нм.

Съемка спектров ЯМР ¹Н проведена на спектрометре Bruker-250 (250 МГц, Германия) и Varian Unity-300 (300 МГц, США). Отнесение сигналов проведено относительно остаточных протонов сигнала дейтерорастворителя – дейтерохлороформа (δ 7.26 м. д.)

3-Метил-7'-гидрокси-8'-формил-4-оксо-3,4-дигидро-2H-1,3-бензоксазин-2-спиро-2'-[**2H**]хромен (**4a**) получают из N-метил-2-гидроксибензамида [7] и 2,4-дигидроксиизофталевого альдегида [8] по разработанной нами ранее методике [9]. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.17 (3H, с, N–CH₃); 5.97 (1H, д, *J* = 9.8, H-3'); 6.61 (1H, д, *J* = 8.6, H-6'); 6.88 (1H, д, *J* = 8.3, H-8); 6.93 (1H, д, *J* = 9.8, H-4'); 7.37 (1H, д, *J* = 8.6, H-5'); 7.19 (1H, т, *J* = 7.6, H-6); 7.47 (1H, т, *J* = 7.4, H-7); 8.05 (1H, д, *J* = 7.8, H-5); 10.22 (1H, с, CHO); 11.69 (1H, с, OH).

3-Бензил-7'-гидрокси-8'-формил-4-оксо-3,4-дигидро-2H-1,3-бензоксазин-2-спиро-2'-[**2H**]хромен (**4b**) получают аналогично из N-бензил-2-гидроксибензамида [10] и 2,4-дигидроксизофталевого альдегида. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 4.76 и 5.09 (2H, AB-спектр, *J* = 15.9, N–CH₂); 5.83 (1H, д, *J* = 9.9, H-3'); 6.58 (1H, д, *J* = 8.6, H-6'); 6.84 (1H, д, *J* = 8.3, H-8); 6.88 (1H, д, *J* = 9.8, H-4'); 7.17–7.27 (5H, м, C₆H₅); 7.32 (1H, д, *J* = 8.6, H-5'); 7.37 (1H, д, *J* = 8.6, H-6); 7.5 (1H, т, *J* = 7.4, H-7); 8.12 (1H, д, *J* = 7.8, H-5); 9.48 (1H, с, CHO); 11.64 (1H, с, OH).

N-Бензил-2-гидрокси-6-хлорбензамид (8). Кипятят 17.25 г (100 ммоль) 5-хлорсалициловой кислоты и 11.9 г (110 ммоль, ~ 8.4 мл) SOCl₂ в 100 мл бензола с обратным холодильником в течение 3–4 ч до прекращения выделения HCl. К реакционной смеси прибавляют 20.14 г (200 ммоль, ~21.8 мл) бензиламина и оставляют на ночь. Полученный осадок отфильтровывают, промывают несколько раз водой и высушивают. Т. пл. 147 °С (водный метанол), выход 5.5 г (21%). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 4.61 (2H, д, *J* = 5.6, CH₂); 6.48 (1H, уш. с, NH); 6.73 (1H, д, *J* = 8.6, H-4); 7.24 (1H, с, H-6); 7.26–7.35 (5H, м, C₆H₅); 7.39 (1H, д, *J* = 8.6, H-3); 12.21 (1H, с, OH). Найдено, %: C 64.88; H 4.75; Cl 13.39; N 5.21. C₁₄H₁₈ClNO₂. Вычислено, %: C 64.75; H 4.62; Cl 13.55; N 5.35.

3-Бензил-6-хлор-7'-гидрокси-8'-формил-4-оксо-3,4-дигидро-2H-1,3-бензоксазин-2спиро-2'-[2H]хромен (4c) получают аналогично из соединения **8** и 2,4-дигидроксиизофталевого альдегида. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 4.76 и 5.04 (2H, AB-спектр, *J* = 15.9, N–CH₂); 5.82 (1H, д, *J* = 9.9, H-3'); 6.58 (1H, д, *J* = 8.4, H-6'); 6.84 (1H, д, *J* = 8.6, H-8); 6.88 927 (1H, д, *J* = 10,7, H-4'); 7.15–7.24 (5H, м, C₆H₅); 7.32 (1H, д, *J* = 8.6, H-5'); 7.45 (1H, т, *J* = 8.8, H-7); 8.08 (1H, д, *J* = 2.6, H-5); 9.7 (1H, с, CHO); 11.64 (1H, с, OH).

1,3,3-Триметил-7'-гидрокси-8'-формилспироиндолин-2,2'-[2H]хромен (ба). К раствору 166 мг (1 ммоль) альдегида **1** и 274 мг (1 ммоль) перхлората 1,2,3,3-тетраметилиндоленилия **5** в 5 мл 2-пропанола добавляют по каплям при нагревании 0.1 мл (1.1 ммоль) пиперидина. Реакционную смесь кипятят 10 мин и охлаждают. Осадок отфильтровывают и перекристаллизовывают. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.15, 1.25 (6H, 2c, *гем.* (С<u>H</u>₃)₂); 2.72 (3H, с, N–C<u>H</u>₃); 5.68 (1H, д, *J* = 10.5, H-3'); 6.34 (1H, д, *J* = 8.7, H-6'); 6.53 (1H, д, *J* = 7.8, H-5'); 6.85 (1H, т, *J* = 7.4, H-5); 7.08 (1H, д, *J* = 7.3, H-4); 7.19 (1H, т, *J* = 7.6, H-6); 7.25 (1H, д, *J* = 10.5, H-4'); 7.27 (1H, д, *J* = 8.4, H-7); 9.63 (1H, с, CHO); 11.78 (1H, с, OH).

1,3,3-Триметил-5-хлор-7'-гидрокси-8'-формилспироиндолин-2,2'-[2H]хромен (6b) синтезируют аналогично соединению **6a** из перхлората 1,2,3,3-тетраметил-5-хлориндоленилия и 2,4-дигидроксиизофталевого альдегида. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.16, 1.26 (6H, 2c, *гем.* (CH₃)₂); 2.68 (3H, c, N–CH₃); 5.66 (1H, д, *J* = 10.5, H-3'); 6.53 (1H, д, *J* = 7.8, H-7'); 6.85 (2H, м, H-4,6); 7.08–7.25 (3H, м, H-8',4',7); 9.64 (1H, c, CHO); 11.64 (1H, c, O<u>H</u>).

3-Метил-4-оксо-3,4-дигидро-2H-1,3-бензоксазин-2-спиро-2'-2H,8H-пирано[2,3*f*]-хромен-8'-спиро-2''-1'',3'',3''-триметилиндолин (7а). К раствору 0.323 г (1 ммоль) спиро-пирана 4а и 0.274 г (1 ммоль) перхлората 1,2,3,3-тетраметилиндоленилия в 5 мл 2-пропа-нола добавляют по каплям при нагревании 0.1 мл (1.1 ммоль) пиперидина. Реакционную смесь кипятят 10 мин и охлаждают. Осадок отфильтровывают и перекристаллизовывают. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.08 (3H, с, 3''-CH₃); 1.21 (3H, с, 3''-CH₃); 2.64 (3H, с, 1''-CH₃); 3.18 (3H, с, 3-CH₃); 5.50 (1H, д, *J* = 8.7, H-9'); 5.87 (1H, д, *J* = 9.7, H-3'); 6.30–7.60 (11H, м, H-4',10', аром.); 8.08 (1H, д, *J* = 7.8, H-8).

3-Метил-4-оксо-3,4-дигидро-2H-1,3-бензоксазин-2-спиро-2'-2H,8H-пирано[2,3-f]хромен-8'-спиро-2''-1'',3'',3''-триметил-5''-хлориндолин (7b) синтезируют аналогично соединению 7а. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.08 (3H, с, 3''-CH₃); 1.22 (3H, с, 3''-CH₃); 2.62 (3H, с, 1''-CH₃); 3.18 (3H, с, 3-CH₃); 5.45 (1H, д, *J* = 8.8, H-9'); 5.87 (1H, д, *J* = 9.7, H-3'); 6.30–7.60 (10H, м, H-4',10', аром.); 8.08 (1H, д, *J* = 7.8, H-8).

3-Бензил-4-оксо-3,4-дигидро-2H-1,3-бензоксазин-2-спиро-2'-2H,8H-пирано[2,3-f]хромен-8'-спиро-2''-1'',3'',3''-триметилиндолин (7с) синтезируют аналогично соединению 7а. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.08 (3H, с, 3"-CH₃); 1.22 (3H, с, 3"-CH₃); 2.65 (3H, с, 1"-CH₃); 4.58 и 5.24 (2H, AB-спектр, *J* = 16.0, N–CH₂); 5.48 (1H, д, *J* = 7.9, H-9'); 5.72 (1H, д, *J* = 9.7, H-3'); 6.30–7.60 (16H, м, H-4',10', аром.); 8.08 (1H, д, *J* = 7.8, H-8).

3-Бензил-4-оксо-3,4-дигидро-2H-1,3-бензоксазин-2-спиро-2'-2H,8H-пирано[2,3-f]хромен-8'-спиро-2''-1'',3'',3''-триметил-5''-хлориндолин (7d) синтезируют аналогично соединению **7a.** Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.08 (3H, с, 3''-CH₃); 1.22 (3H, с, 3''-CH₃); 2.65 (3H, с, 1''-CH₃); 4.56 и 5.25 (2H, AB-спектр, *J* = 15.9, N–CH₂); 5.48 (1H, д, *J* = 7.9, H-9'); 5.72 (1H, д, *J* = 9.7, H-3'); 6.30–7.60 (15H, м, H-4',10', аром.); 8.08 (1H, д, *J* = 7.8, H-8).

Рентгеноструктурное исследование соединений 4а и 6а. Кристаллы для РСА соединений 4а и 6а получают кристаллизацией из изопропилового спирта. Рентгенодифракционный эксперимент проводят на автоматическом четырехкружном дифрактометре КҮМА (на Си $K\alpha$ излучении) при T = 293 К в интервале углов θ от 4.14 до 79.76° для соединения 4а и в интервале углов θ от 4.26 до 80.00° для соединения 6а.

Основные кристаллографические данные структуры соединения **4a** ($C_{18}H_{13}NO_5$), a = 7.302(2), b = 19.115(2), c = 10.867(3) Å, $\beta = 101.08(5)^\circ$, V = 1154.3(9) Å³, $P2_1/c$, Z = 4(моноклинная), d = 1.443 г/см³, F(000) = 672, M = 323.29. Структура соединения **4a** решена прямыми методами и уточнена ПМНК по F^2 до R = 0.043 ($R_W = 0.062$ по 2518 отр. GOF = 1.080, 269 уточняемых параметров) по 2938 отражениям с $I > 2\sigma I$) в анизатропном приближении комплексом программ SHELXL-97 [11]. Атомы водорода выявлены в разностном синтезе Фурье и для них уточнялись только позиционные параметры.

Основные кристаллографические данные структуры соединения **6a** ($C_{20}H_{19}NO_3$), a = 10.866(4), b = 9.672(2), c = 8.522(2) Å, $\alpha = 76.67(3)$, $\beta = 78.01(3)$, $\gamma = 74.87(3)^\circ$, V = 1407(1) Å³, P-1, Z = 2, d = 1.285 г/см³, F(000) = 340, M = 321.36. Структура соединения **6a** была найдена прямыми методами и уточнена полноматричным МНК по F^2 до R = 0.071($R_W = 0.085$ по 3225 отр. GOF = 1.16, 281 уточняемых параметров) по 2615 отражениям с $I>2\sigma(I)$ в анизотропном приближении комплексом программ SHELXL-97 [11]. Для атомов водорода, выявленных в разностном синтезе Фурье, уточнены лишь позиционные параметры.

Работа выполнена при финансовой поддержке Российского фонда 928 фундаментальных исследований (гранты 04–03–32485, 02-03-22002), CRDF-Минобразования РФ (грант REC-004), при поддержке гранта НШ-945.2003.3 и программы Фундаментальных исследований Отделения химии и наук о материалах РАН "Теоретическое и экспериментальное изучение природы химической связи и механизмов важнейших химических реакций и процессов".

Авторы выражают благодарность Б. Б. Сафоклову за помощь при проведении рентгеноструктурных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Б. С. Лукьянов, Н. И. Борисенко, М. Б. Лукьянова, Р. Н. Борисенко, *Научная мысль Кавказа*, прил. 3, 125 (2003).
- 2. *Photochromism. Molecules and Systems*, H. Duerr, H. Bouas-Laurent (Ed.), Elsevier, Amsterdam, 1990.
- С. М. Алдошин, И. И. Чуев, О. С. Филипенко, А. Н. Утенышев, Г. Арие, В. Локшин, А. Сама, Р. Гуглиметти, Ж. Пеп, Изв. АН, Сер. хим., 1129 (1998).
- 4. Б. Б. Сафоклов, Б. С. Лукьянов, А. О. Буланов, А. В. Метелица, В. И. Минкин, В. В. Ткачев, С. М. Алдошин, Изв. АН, Сер. хим., 431 (2002).
- 5. С. М. Алдошин, А. О. Буланов, В. А. Коган, Б. С. Лукьянов, В. И. Минкин, Б. Б. Сафоклов В. В. Ткачев, *ДАН*, **390**, № 1, 50 (2003).
- 6. S. M. Aldoshin, in *Organic Photochromic and Thermochromic Compounds*, Kluwer Plenum, New York, 1999, vol. 2, p. 297.
- 7. Ю. И. Рябухин, Дис. канд. хим. наук, Ростов-на-Дону, 1975.
- 8. R. Kuhn, Chem. Ber., 87, 2876 (1954).
- Б. С. Лукьянов, Ю. И. Рябухин, Г. Н. Дорофеенко, Л. Е. Ниворожкин, В. И. Минкин, *ХГС*, 161 (1978).
- 10. L. Guidsinski, Z. Lod, Acta Chim., 8, 105 (1962).
- 11. G. M. Sheldrick, *SHELXL-93*, Program for Refinement of Crystal Structures, Univ. of Gottingen, Gottingen, Germany, 1993.

Научно-исследовательский институт физической и органической химии Ростовского государственного университета, Ростов-на-Дону 344090, Россия e-mail: bluk@ipoc.rsu.ru

^аИнститут проблем химической физики РАН, Черноголовка 142432, Московская обл. Поступило в редакцию 22.03.2004 После доработки 07.03.2006