Н. С. Арутюнян, Л. А. Акопян, Г. М. Снхчян, О. А. Папоян, Г. А. Паносян^а, Г. А. Геворгян

СИНТЕЗ И НЕКОТОРЫЕ ПРЕВРАЩЕНИЯ *γ-(п-*ФТОРФЕНИЛ)-*γ-(2-*ФУРИЛ)ПРОПИЛАМИНА

Конденсацией этилового эфира β -(2-фурил)- α -цианакриловой кислоты с *n*-фторфенилмагнийбромидом получен этиловый эфир β -(*n*-фторфенил)- β -(2-фурил)- α -цианопропионовой кислоты, декарбэтоксилирование которого привело к нитрилу β -(*n*-фторфенил)- β -(2-фурил)пропионовой кислоты. Восстановлением указанного нитрила алюмогидридом лития получен γ -(*n*-фторфенил)- γ -(2-фурил)пропиламин. Изучены некоторые превращения последнего.

Ключевые слова: γ-(*n*-фторфенил)-γ-(2-фурил)пропиламин, этиловый эфир фурфурилиденцианоуксусной кислоты, этиловый эфир β-(*n*-фторфенил)-β-(2-фурил)пропионовой кислоты, восстановление, декарбэтоксилирование.

Ранее нами было сообщено о синтезе и некоторых превращениях у-фенил-у-(2-фурил)пропиламина [1]. Для выявления связи биологической активности со структурой в настоящей работе осуществлен синтез аналогичных производных, имеющих в *n*-положении бензольного кольца атом фтора. Так, при взаимодействии п-фторфенилмагнийбромида с этиловым эфиром β-(2-фурил)-а-цианоакриловой кислоты (1) [2] был получен этиловый эфир β-(*n*-фторфенил)-β-(2-фурил)-α-цианопропионовой кислоты (2), декарбэтоксилирование которого привело к соответствующему нитрилу 3. Восстановлением последнего алюмогидридом лития синтезирован амин 4. Взаимодействие амина 4 с замещенными ароматическими альдегидами или кетонами 5а-h приводит к соответствующим азометинам 6а-h, которые без выделения восстанавливаются боргидри-дом натрия до аминов 7а-h, превращаемых обработкой хлорангидридами различных кислот в амиды 8a-f. Из амина 4 реакцией с янтарным или фталевым ангидридами получены N-замещенные сукцинимид 9 и фтал-имид 10 соответственно.

Состав и строение синтезированых соединений подтверждены данными элементного анализа (табл. 1) и спектров ЯМР ¹Н (табл. 2).

Таблица 1

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. кип., °С	Выход,
		С	Н	Ν	(мм рт. ст.)	%
2	C ₁₆ H ₁₄ FNO ₃	<u>66.83</u> 66.89	<u>4.85</u> 4.91	<u>4.91</u> 4.87	160–162 (1)	81
3	C ₁₃ H ₁₀ FNO	<u>72.60</u> 72.55	<u>4.62</u> 4.68	<u>6.45</u> 6.50	138–141 (1)	54
4	C ₁₃ H ₁₄ FNO	<u>71.27</u> 71.21	<u>6.48</u> 6.43	<u>6.32</u> 6.38	118 (2)	87
7 a	C ₂₀ H ₂₀ FNO	<u>77.68</u> 77.64	<u>6.48</u> 6.51	<u>4.50</u> 4.52	182–184 (2)	90
7b	C ₂₂ H ₂₅ FN ₂ O	<u>75.02</u> 74.97	<u>7.17</u> 7.14	<u>8.00</u> 7.94	220–221 (1)	78
7c	C ₂₃ H ₂₆ FNO ₂	<u>75.15</u> 75.17	<u>7.11</u> 7.15	<u>3.80</u> 3.81	226–229 (1)	90
7d	C ₂₁ H ₂₂ FNO ₂	<u>75.15</u> 75.19	<u>6.50</u> 6.53	<u>4.16</u> 4.12	195–198 (1)	93
7e	C ₂₂ H ₂₄ FNO ₃	<u>71.55</u> 71.52	<u>6.50</u> 6.54	<u>3.82</u> 3.79	220–224 (1)	86
7f	$C_{20}H_{19}F_2NO$	<u>73.33</u> 73.37	<u>5.88</u> 5.84	<u>4.23</u> 4.27	189–191 (2.5)	87
7g	C ₂₁ H ₂₁ ClFNO	$\frac{70.52}{70.48}$	<u>6.00</u> 5.97	<u>3.86</u> 3.91	215–217 (2)	76
7h	C ₂₁ H ₂₂ FNO	<u>77.95</u> 77.99	<u>6.81</u> 6.85	<u>4.30</u> 4.33	200–201 (2)	74
8a	C ₂₂ H ₂₂ FNO ₂	<u>75.24</u> 75.19	<u>6.33</u> 6.30	<u>4.02</u> 3.98	210–213 (1.5)	69
8b	C ₂₃ H ₂₄ FNO ₃	<u>72.40</u> 72.42	<u>6.30</u> 6.34	<u>3.63</u> 3.67	245–248 (2)	71
8c	C ₂₃ H ₂₄ FNO ₂	<u>75.63</u> 75.59	<u>6.66</u> 6.61	<u>3.80</u> 3.83	225–228 (1.5)	66
8d	C ₂₄ H ₂₆ FNO ₃	<u>72.72</u> 72.70	<u>6.62</u> 6.60	<u>3.52</u> 3.53	240–244 (1)	67
8e	C ₂₅ H ₂₈ FNO ₄	<u>70.60</u> 70.56	<u>6.60</u> 6.63	<u>3.25</u> 3.29	253–256 (2)	64
8f	$C_{23}H_{23}F_2NO_2$	<u>75.76</u> 72.04	<u>6.32</u> 6.04	<u>3.80</u> 3.65	215–219 (1)	70
9	C ₁₇ H ₁₆ FNO ₃	<u>67.80</u> 67.76	<u>5.39</u> 5.35	<u>4.60</u> 4.64	190–193 (1)	68
10	C ₂₁ H ₁₆ FNO ₃	<u>72.33</u> 72.19	<u>4.56</u> 4.61	$\frac{4.05}{4.00}$	210–214 (1)	72

Характеристики синтезированных соединений

Спектры ЯМР ¹Н соединений 2-4, 7-10

соеди- нение*	Химические сдвиги, δ, м. д. (КССВ, <i>J</i> , Гц) **
1	2
2	1.18 (1.5H, T, $J = 7.1$) и 1.20 (1.5H, T, $J = 7.1$, CH ₃); 4.15 (1H, κ , $J = 7.1$ 4.15 (1H, κ , $J = 7.1$, CH ₂); 4.61 (0.5H, μ , $J = 7.4$) и 4.71 (0.5H, μ , $J = 7.4$) CHCN); 4.77 (0.5H, μ , $J = 7.4$) и 4.82 (0.5H, μ , $J = 7.4$, CHAr); 6.27 (0.5H $J = 3.4$, H _{Het} -3); 6.34–6.42 (1.5H, μ , H _{Het} -3,4); 7.06 (1H, T, $J = 8.5$) и 7.09 (1 T, $J = 8.5$, H _{Ar} -3,5); 7.36–7.46 (3H, μ , H _{Ar} -2,6, H _{Het} -5)
3	3.05 (1H, д. д, J_1 = 16.9, J_2 = 7.4) и 3.11 (1H, д. д, J_1 = 16.9, J_2 = 7. CH <u>CH</u> ₂); 4.45 (1H, т, J = 7.4, CH); 6.24 (1H, д, J = 3.2, H _{Het} -3); 6.34 (1H, д. J_1 = 3.2, J_2 = 2.0, H _{Het} -4); 7.05 (2H, т, J = 8.7, H _{Ar} -3,5); 7.31 (2H, д. J_1 = 8.7, J_2 = 5.4, H _{Ar} -2,6); 7.42 (1H, д, J = 2.0, H _{Het} -5)
4	1.92 (1H, м) и 2.13 (1H, д. к, $J_1 = 13.5$, $J_2 = 7.0$, CH <u>CH</u> ₂); 1.97 (2H, ш, NH 2.53 (2H, м, NCH ₂); 4.14 (1H, т, $J = 7.7$, CH); 6.06 (1H, д, $J = 3.2$, H _{Het} -6.26 (1H, д. д, $J_1 = 3.2$, $J_2 = 1.8$, H _{Het} -4); 6.98 (2H, т, $J = 8.7$, H _{Ar} -3,5); 7 (2H, д. д, $J_1 = 8.7$, $J_2 = 5.4$, H _{Ar} -2,6); 7.32 (1H, д, $J = 1.8$, H _{Het} -5)
7a	1.75 (1H, ш, NH); 1.89 (1H, д. т. д, $J = 13.7$, $J = 8.2$ и $J = 6.5$) и 2.22 (1H к, $J_1 = 13.7$, $J_2 = 7.1$, CH <u>CH</u> ₂); 2.47 (1H, д. т, $J_1 = 11.5$, $J_2 = 6.8$) и 2.51 (2 д. т, $J_1 = 11.5$, $J_2 = 6.8$, NCH ₂); 3.66 (1H, д, $J = 13.4$) и 3.69 (1H, д, $J = 12.5$) CH ₂ C ₆ H ₅); 4.17 (1H, д. д, $J_1 = 8.2$, $J_2 = 7.1$, CH); 6.04 (1H, д, $J = 3.3$, H _{Het} 6.25 (1H, д, $J_1 = 3.3$, $J_2 = 1.8$, H _{Het} 4); 6.96 (2H, т, $J = 8.7$, H _{Ar} -3,5); 7.14–7.27 (2 M, H _{Ar} -2,6 и C ₆ H ₅); 7.31 (1H, д, $J = 1.8$, H _{Het} -5)
7ь	1.90 (1H, m, NH); 1.99 (1H, \exists . r. \exists , $J_1 = 13.5$, $J_2 = 8.3$, $J_3 = 6.6$) \bowtie 2.24 (1H \aleph , $J_1 = 13.5$, $J_2 = 7.0$, CH <u>CH</u> ₂); 2.49 (1H, \exists . r. $J_1 = 11.6$, $J_2 = 6.6$) \bowtie 2.53 (1 \exists , \exists , $J_1 = 11.6$, $J_2 = 6.6$, NCH ₂); 2.93 (6H, \aleph , N(CH ₃) ₂); 3.57 (1H, \exists , $J = 12.8$) 3.61 (1H, \exists , $J = 12.8$, CH ₂ Ar ¹); 4.18 (1H, \exists . d , $J_1 = 8.3$, $J_2 = 7.0$, CH); 6 (1H, \exists , $J = 3.2$, H_{Het} -3); 6.28 (1H, \exists . d , $J_1 = 3.2$, $J_2 = 1.9$, H_{Het} -4); 6.64 (2H $J = 8.7$, H_{Ar1} -3,5); 6.98 (2H, \intercal , $J = 8.7$, H_{Ar} -3,5); 7.11 (2H, \exists , $J = 8.7$, H_{Ar1} -2, 7.22 (2H, \exists , $J_1 = 8.7$, $J_2 = 5.4$, H_{Ar} -2,6); 7.34 (1H, \exists , $J = 1.9$, H_{Het} -5)
7c	1.33 (6 H, μ , $J = 6.0$, (CH ₃) ₂); 1.91 (1H, μ , NH); 1.98 (1H, μ . T. μ , $J_1 = 12$; $J_2 = 8.2$, $J_3 = 6.4$) μ 2.23 (1H, μ . κ , $J_1 = 13.5$, $J_2 = 7.0$, CH <u>CH₂</u>); 2.47 (1H, μ , $J_1 = 11.6$, $J_2 = 6.7$) μ 2.51 (1H, μ . τ , $J_1 = 11.6$, $J_2 = 6.7$, NCH ₂); 3.59 (1H) $J = 13.0$) μ 3.62 (1H, μ , $J = 13.0$, CH ₂ Ar ¹); 4.17 (1H, μ . μ , $J_1 = 8.2$, $J_2 = 7.2$ CH); 4.52 (1H, c. π , $J = 6.0$, OCH); 6.05 (1H, μ , $J = 3.2$, H_{Het} -3); 6.27 (1H, μ , $J_1 = 3.2$, $J_2 = 1.8$, H_{Het} -4); 6.76 (2H, μ , $J = 8.6$, H_{ArI} 3,5); 6.97 (2H, τ , $J = 8.6$, H_{ArI} -3, 7.15 (2H, μ , $J = 8.6$, H_{ArI} 2,6); 7.21 (2H, μ . μ , $J_1 = 8.6$, $J_2 = 5.5$, H_{ArI} -2,6); 7.32 (2H, μ , $J = 1.8$, H_{Het} -5)
7d	1.47 (1H, m, NH); 1.97 (1H, \exists . T. \exists , $J_1 = 13.6$, $J_2 = 8.4$, $J_3 = 6.8$) μ 2.21 (1H κ , $J_1 = 13.6$, $J_2 = 6.8$, CH <u>CH_2</u>); 2.40–2.54 (2H, μ , NCH ₂); 3.58 (1H, $J = 13.1$) μ 3.62 (1H, \exists , $J = 13.1$, CH ₂ Ar ¹); 3.76 (3H, c , OCH ₃); 4.16 (1H, \exists , $J_1 = 8.4$, $J_2 = 6.8$, CH); 6.04 (1H, \exists , $J = 3.2$, H _{Het} -3); 6.26 (1H, \exists . \exists , $J_1 = 3.2$, $J_2 = 1.8$, H _{Het} -4); 6.78 (2H, \exists , $J = 8.7$, H _{Ar1} -3,5); 6.96 (2H, τ , $J = 8.7$, H _{Ar} -3, 7.16 (2H, \exists , $J = 8.7$, H _{Ar1} -2,6); 7.20 (2H, \exists . $J_1 = 8.7$, $J_2 = 5.6$, H _{Ar} -2,6); 7 (1H, \exists . $J = 1.8$, H _{Het} -5)
7e	1.54 (1H, m, NH); 1.97 (1H, μ . r. μ , $J_1 = 13.5$, $J_2 = 8.2$, $J_3 = 6.4$) μ 2.22 (1H μ , $J_1 = 13.5$, $J_2 = 7.0$, CH <u>CH</u> ₂); 2.45 (1H, μ . r, $J_1 = 11.8$, $J_2 = 6.7$) μ 2.49 (1 μ , μ , $J_1 = 11.8$, $J_2 = 6.7$, NCH ₂); 3.58 (1H, μ , $J = 13.2$) μ 3.60 (1H, μ , $J = 13.2$) μ 3.60 (1H, μ , $J = 13.2$) μ 3.60 (1H, μ , $J = 13.2$) μ 3.60 (1H, μ , $J = 13.2$) μ 3.60 (1H, μ , $J = 13.2$) μ 3.60 (1H, μ , $J = 13.2$) μ 3.60 (1H, μ , $J = 13.2$) μ 3.60 (1H, μ , $J = 13.2$) μ 3.60 (2H, μ , μ , $J_1 = 8$, $J_2 = 7.0$, CH); 6.05 (1H, μ , $J = 3.2$, H_{Het} -3); 6.26 (1H, μ , μ , $J_1 = 3.2$, $J_2 = 10$ μ Het ⁻⁴); 6.73 (2H, μ , μ , $J_1 = 8.7$, H_{Ar} -3.5); 7.20 (2H, μ , μ , $J_1 = 8.7$, $J_2 = 5.5$, H_{Ar} -3.6); 7.31 (1H, $J_1 = 1.0$ μ = 5)

Продолжение таблицы 2

1	2
7f	1.78 (1H, ш, NH); 2.02 (1H, д. т. д, $J_1 = 13.6$, $J_2 = 8.2$, $J_3 = 6.4$) и 2.26 (1H, к, $J_1 = 13.6$, $J_2 = 6.9$, CH <u>CH</u> ₂); 2.51 (1H, д. т, $J_1 = 11.5$, $J_2 = 6.7$) и 2.55 (1H, д. т, $J_1 = 11.5$, $J_2 = 6.7$) и 2.55 (1H, д. т, $J_1 = 11.5$, $J_2 = 6.7$) и 2.55 (1H, д. т, $J_1 = 11.5$, $J_2 = 6.7$) и 2.55 (1H, д. т, $J_1 = 11.5$, $J_2 = 6.7$) и 2.55 (1H, д. т, $J_1 = 11.5$, $J_2 = 6.7$) и 2.55 (1H, д. т, $J_1 = 11.5$, $J_2 = 6.7$) и 2.55 (1H, д. т, $J_1 = 13.3$, $J_2 = 1$ (1H, д. д. $J_1 = 3.3$, $J_2 = 1$ (1H, $J_1 = 3.3$, $J_2 = 1$) (1H, $J_1 = 3.3$, $J_2 = 1$ (1H, $J_1 = 3.3$, $J_2 = 1$) (1H, $J_1 = 3.3$, $J_2 = 1.7$) (1H, $J_1 = 3.3$) (1H, $J_1 = 7.5$); 7 (1H, $J_2 = 5.5$, $J_{Ar}-2,6$); 7.33 (1H, $J_1 = 1.8$, $H_{Het}-5$)
7g	1.25 (1.5H, μ , $J = 6.6$) и 1.26 (1.5H, μ , $J = 6.6$, CH ₃); 1.74 (1H, μ , NH); 1.86–2.03 (1H, M) и 2.09–2.25 (1H, M, CH <u>CH₂</u>); 2.23–2.41 (2H, M, NCH 3.63 (0.5H, κ , $J = 6.6$) и 3.64 (0.5H, κ , $J = 6.6$, CHAr ¹); 4.10 (0.5H, μ , $J_1 = 8.6$, $J_2 = 6.0$) и 4.15 (0.5H, τ , $J = 7.7$, CH); 6.01 (0.5H, μ , $J = 3.1$) и 6 (0.5H, μ , $J = 3.1$, H _{Het} -3); 6.24 (1H, y μ , H _{Het} -4); 6.94 (1H, τ , $J = 8.6$) и 6 (1H, τ , $J = 8.6$, H_{Ar} -3,5); 7.14 (1H, μ , π , $J_1 = 8.6$, $J_2 = 5.4$) и 7.20 (1H, μ , π , $J_1 = 8.6$, $J_2 = 5.4$, H_{Ar} -2,6); 7.22 (2H, c) и 7.23 (2H, c, H_{Ar1} -2,3,5,6); 7.30 (1H, $\gamma \mu$, H_{Her} -8)
7h	1.28 (1.5H, μ , $J = 6.6$) μ 1.29 (1.5H, μ , $J = 6.6$, CH ₃); 1.52 (1H, μ , NH); 1.87–2.00 (1H, μ) μ 2.11–2.24 (1H, μ , CH <u>CH₂</u>); 2.24–2.44 (2H, μ , NCH 3.64 (0.5H, κ , $J = 6.6$) μ 3.65 (0.5H, κ , $J = 6.6$, CHAr ¹); 4.12 (0.5H, μ , $J_1 = 8.9$, $J_2 = 6.3$) μ 4.16 (0.5H, τ , $J = 7.7$, CH); 6.00 (0.5H, μ , $J = 3.2$) μ 6 (0.5H, μ , $J = 3.2$, H _{Het} -3); 6.23 (0.5H, μ . μ , $J_1 = 3.2$, $J_2 = 1.9$) μ 6.25 (0.5H, μ $J_1 = 3.2$, $J_2 = 1.9$, H _{Het} -4); 6.92 (1H, τ , $J = 8.7$) μ 6.97 (1H, τ , $J = 8.7$, H _{Ar} -3,5); 7 (1H, μ . μ , $J_1 = 8.7$, $J_2 = 5.4$) μ 7.18 (1H, μ . μ , $J_1 = 8.7$, $J_2 = 5.4$, H _{Ar} -2,6); 7.17–7 (5H, μ , C ₆ H ₅); 7.29 (0.5H, μ , $J = 1.9$) μ 7.30 (0.5H, μ , $J = 1.9$, H _{Het} -5)
8a	1.93 (1.5H, с) и 2.00 (1.5H, с, Ac); 2.02–2.14 (1H, м) и 2.20–2.36 (1 м, CH <u>CH</u> ₂); 3.03–3.22 (1.5H, м) и 3.31 (0.5H, д. д. д. $J_1 = 13.3, J_2 = 5.3, S_1 = 5.7, S_2 = 5.7, $
8b	1.91 (1.5H, c) u 2.02 (1.5H, c, Ac); 2.00–2.14 (1H, M) u 2.19–2.36 (1H, M, CHCH 3.00–3.20 (1.5H, M) u 3.28 (0.5H, д. д. д. $J_1 = 13.5, J_2 = 9.5, J_3 = 5.7,$ NCH 3.76 (1.5H, c) u 3.77 (1.5H, c, OCH ₃); 3.93 (1H, т, $J = 7.7,$ CH); 4.37 (1H, c 4.38 (0.5H, д, $J = 14.5$) u 4.43 (0.5H, д, $J = 14.5,$ CH ₂ Ar ¹); 6.07 (0.5H, $J = 3.1$) u 6.09 (0.5H, $d_1, J = 3.1, H_{\text{Het}}$ -3); 6.26 (0.5H, $d_1, J_1 = 3.1, J_2 = 1$ u 6.29 (0.5H, $d_1, J_1 = 3.1, J_2 = 1.9,$ H _{Het} -4); 6.77 (1H, $d_1, J = 8.6$) u 6.82 (1 $d_2, J = 8.6,$ H _{Ar1} -3,5); 6.97 (2H, $\tau, J = 8.6,$ H _{Ar} -3,5); 7.01 (1H, $d_1, J = 8.6$) u 7 (1H, $d_1, J = 8.6,$ H _{Ar1} -2,6); 7.20 (2H, $d_1, J_1 = 8.6, J_2 = 5.4,$ H _{Ar} -2,6); 7 (0.5H, $d_1, J = 1.9$) u 7.35 (0.5H, $d_1, J = 1.9,$ H _{Het} -5)
8c	1.06 (1.5H, T, $J = 7.2$) и 1.07 (1.5H, T, $J = 7.2$, CH ₃); 2.01–2.14 (1H, и 2.22–2.36 (1H, м, CH <u>CH₂</u>); 2.19 (1H, к, $J = 7.2$) и 2.27 (1H, к, $J = 7.2$) CH_2 CH ₃); 3.03–3.23 (1.5H, м) и 3.34 (0.5H, д. д. д. $J_1 = 13.4$, $J_2 = 9.2$ $J_3 = 5.6$, NCH ₂); 3.93 (0.5H, T, $J = 7.7$) и 3.95 (0.5H, T, $J = 7.7$, CH); 4.47 (1C c) и 4.48 (0.5H, д. $J = 14.7$) и 4.53 (0.5H, д. $J = 14.7$, CH ₂ C ₆ H ₅); 6.06 (0.5 д. $J = 3.2$) и 6.11 (0.5H, д. $J = 3.2$, H_{Het} -3); 6.26 (0.5H, д. $J_1 = 3.2$, $J_2 = 1$ и 6.28 (0.5H, д. $J_1 = 3.2$, $J_2 = 1.9$, H_{Het} -4); 6.97 (1H, T, $J = 8.7$) и 6.99 (1 т. $J = 8.7$ H 43 5); 7 11–7 35 (8H м H26 C.Hz, Hug-5)
8d	1.04 (3H, τ , $J = 7.3$, CH ₂ CH ₃); 1.97–2.11 (1H, μ) μ 2.19–2.31 (1H, μ , CH <u>CH₂</u>); 2 (1H, κ , $J = 7.3$) μ 2.27 (1H, κ , $J = 7.3$, <u>CH₂</u> CH ₃); 2.96–3.18 (1.5H, μ) μ 3.28 (0.5 μ , μ , μ , $J_1 = 13.4$, $J_2 = 9.6$, $J_3 = 5.5$, NCH ₂); 3.76 (3H, c , OCH ₃); 3.91 (1H, μ $J = 7.7$, CH); 4.37 (1H, c) μ 4.37 (0.5H, μ , $J = 14.5$) μ 4.42 (0.5H, μ , $J = 14$ CH ₂ Ar ¹); 6.05 (0.5H, μ , $J = 3.2$) μ 6.08 (0.5H, μ , $J = 3.2$, H _{Het} -3); 6.25 (0.5H, μ , μ , $J = 3.2$, $J_2 = 1.9$) μ 6.27 (0.5H, μ , μ , $J_1 = 3.2$, $J_2 = 1.9$, H _{Het} -4); 6.75 (1H, μ , $J = 8.6$) μ 6 (1H, μ , $J = 8.6$, H _{Ar1} -3.5); 6.93–7.03 (4H, μ , H _{Ar} -3,5, H _{Ar1} -2,6); 7.19 (2H, μ , μ , J 8.7, $J_2 = 5.4$, H _{Ar} -2,6); 7.30 (0.5H, μ , $J = 1.9$) μ 7.34 (0.5H, μ , $J = 1.9$, H _{Het} -5)

1	2
8e	1.05 (3H, r, $J = 7.3$, CH ₂ CH ₃); 1.99–2.12 (1H, M) и 2.19–2.36 (1H, M, CH <u>CH</u> ₂); 2.16 (1H, κ , $J = 7.3$) и 2.28 (1H, κ , $J = 7.3$, <u>CH</u> ₂ CH ₃); 3.00–3.19 (1.5H, M) и 3.30 (0.5H, д. д. д. $J_1 = 13.5$, $J_2 = 9.7$, $J_3 = 5.5$, NCH ₂); 3.74 (1.5H, c) и 3.76 (1.5H, c, OCH ₃); 3.77 (3H, c, OCH ₃); 3.93 (1H, yIII. r, $J = 7.7$, CH); 4.37 (1H, c) и 4.37 (0.5H, д. $J = 14.5$) и 4.41 (0.5H, д. $J = 14.5$, CH ₂ Ar ¹); 6.07 (0.5H, д. $J = 3.2$) и 6.10 (0.5H, д. $J = 3.2$, H _{Het} -3); 6.26 (0.5H, д. $J_1 = 3.2$, $J_2 = 1.8$) и 6.28 (0.5H, д. $J_1 = 3.2$, $J_2 = 1.8$, H _{Het} -4); 6.55–6.61 (1H, M, H _{Ar1} -6); 6.62–6.70 (1H, M, H _{Ar1} -2); 6.72 (0.5H, д. $J = 8.1$, H _{Ar1} -5); 6.97 (1H, r, $J = 8.7$) и 6.99 (1H, r, $J = 8.7$, H _{Ar} -3,5); 7.20 (2H, д. $J_1 = 8.7$, $J_2 = 5.5$, H _{Ar} -2,6); 7.31 (0.5H, д. $J = 1.8$) и 7.35 (0.5H, д. $J = 1.8$, H _{Het} -5)
8f	1.05 (3H, r, $J = 7.3$, CH ₂ CH ₃); 1.98–2.13 (1H, M) и 2.21–2.38 (1H, M, CH <u>CH₂</u>); 2.18 (1H, κ, $J = 7.3$) и 2.28 (1H, κ, $J = 7.3$, <u>CH₂CH₃</u>); 3.07–3.23 (1.5H, M) и 3.32 (0.5H, д. д. д. $J_1 = 13.5$, $J_2 = 9.7$, $J_3 = 5.6$, NCH ₂); 3.95 (1H, r, $J = 7.7$, CH); 4.50 (1H, c) и 4.56 (1H, c, CH ₂ Ar ¹); 6.07 (0.5H, д. $J = 3.2$) и 6.10 (0.5H, $J_1 = 3.2$, H _{Het} -3); 6.26 (0.5H, $J_1 = 3.2$, $J_2 = 1.9$) и 6.27 (0.5H, $J_1 = 3.2$, $J_2 = 1.9$, H _{Het} -4); 6.94–7.29 (6H, M, H _{Ar} -3,5, H _{Ar1} -3,4,5,6); 7.20 (2H, $J_1 = 3.7$, $J_2 = 5.4$, H _{Ar} -2,6); 7.31 (0.5H, $J_2 = 1.9$) и 7.34 (0.5H, $J_1 = 1.9$, H _{Het} -5)
9	2.10 (1H, \exists , T. \exists , $J_1 = 13.8$, $J_2 = 7.9$, $J = 6.3$) u 2.30 (1H, \exists , T. \exists , $J_1 = 13.8$, $J_2 = 7.7$, $J = 6.7$, CH <u>CH</u> ₂); 2.53 (4H, c, C(O)CH ₂); 3.37 (1H, \exists , \exists , \exists , $J_1 = 13.3$, $J_2 = 7.9$, $J_3 = 6.3$) u 3.42 (1H, \exists , \exists , \exists , $J_1 = 13.3$, $J_2 = 7.9$, $J_3 = 6.3$, NCH ₂); 4.01 (1H, ym. t , $J = 7.6$, CH); 6.10 (1H, \exists , $J = 3.2$, H _{Het} -3); 6.27 (1H, \exists , \exists , $J_1 = 3.2$, $J_2 = 1.9$, H _{Het} -4); 7.00 (2H, t , $J = 8.7$, H _{At} -3,5); 7.24 (2H, \exists , d , $J_1 = 8.7$, $J_2 = 5.4$, H _{At} -2,6); 7.34 (1H, \exists , $J = 1.9$, H _{Het} -5)
10	2.23 (1H, д. т. д, J_1 = 13.6, J_2 = 8.1, J = 6.5) и 2.41 (1H, д. к, J_1 = 13.6, J_2 = 6.8, CH <u>CH</u> ₂); 3.60 (1H, д. д. д. J_1 = 13.7, J_2 = 7.8, J_3 = 6.4) и 3.63 (1H, д. д. д. J_1 = 13.7, J_2 = 7.8, J_3 = 6.4, NCH ₂); 4.06 (1H, yun. т, J = 7.6, CH); 6.10 (1H, д. J = 3.2, H _{Het} -3); 6.23 (1H, д. д. J_1 = 3.2, J_2 = 1.9, H _{Het} -4); 6.96 (2H, т, J = 8.7, H _{Ar} -3,5); 7.25 (2H, д. д. J_1 = 8.7, J_2 = 5.4, H _{Ar} -2,6); 7.30 (1H, д. J_2 = 1.9, H _{Het} -5); 7.73–7.81 (4H, м, Ar ¹)

* Соединения 2, 7g,h, 8a-f – в виде смеси двух диастереоизомеров с примерно равным количеством.

** Спектры ЯМР ¹Н снимали в смеси DMCO-d₆-CCl₄, 1:3.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрометре UR-20 в вазелиновом масле. Спектры ЯМР ¹Н зарегистрированы на приборе Varian Mercury-300 (300 МГц), внутренний стандарт ТМС.

Этиловый эфир фурфурилиденцианоуксусной кислоты (1) получен по известной методике [2].

Этиловый эфир β -(*n*-фторфенил)- β -(2-фурил)- α -цианопропионовой кислоты (2). К эфирному раствору реактива Гриньяра, полученному из 8.4 г (0.33 моль) магния в 50 мл абсолютного эфира и 59.5 г (0.34 моль) *n*-фторбромбензола в 200 мл эфира, при слабом кипении и перемешивании, добавляют раствор 53.5 г (0.27 моль) эфира 1 в 50 мл бензола. Реакционную смесь перемешивают 1.5 ч при 42–44 °С, далее выдерживают 16–20 ч при комнатной температуре, подкисляют 10% HCl, экстрагируют эфиром. Экстракт промывают водой, сушат и остаток после отгонки растворителей перегоняют в вакууме. Получают 65.0 г (81.2%) эфира **2**. ИК спектр, ν , см⁻¹: 1590, 1610 (C=C аром.), 1720 (C=O), 2225 (CN). **β-(***n***-Фторфенил)-β-(2-фурил)пропионитрил (3)**. Растворяют при нагревании 25.2 г (0.45 моль) КОН в 135 мл этиленгликоля. Полученный раствор прибавляют к 65 г (0.22 моль) эфира **2**. Смесь кипятят с обратным холодильником 3 ч, далее охлаждают, добавляют 135 мл воды и экстрагируют эфиром. Экстракт промывают водой, сушат и остаток после отгонки эфира перегоняют в вакууме. Получают 48.7 г нитрила **3**. ИК спектр, v, см⁻¹: 1585, 1615 (C=C аром.), 2225 (CN).

γ-(*n***-Фторфенил)-γ-(2-фурил)пропиламин** (4). К охлажденному раствору 10.6 г (0.28 моль) LiAlH₄ в 200 мл сухого эфира по каплям прибавляют эфирный раствор 30 г (0.14 моль) нитрила 3, поддерживая температуру реакционной массы в пределах 0 ± 2 °C. Перемешивание продолжают еще 1 ч при той же температуре, затем охлаждают до -10 °C (баня со льдом и солью) и добавляют последовательно по каплям 10 мл воды, 10 мл 15% раствора NaOH и 31 мл воды. Реакционную массу фильтруют, неорганический осадок промывают эфиром, который затем объединяют с органическим слоем фильтрата. Эфирный раствор сушат и остаток после упаривания растворителя перегоняют в вакууме. Получают 26.5 г амина 4. ИК спектр, v, см⁻¹: 1590, 1610 (C=C аром.), 3300 (NH₂).

Аг¹(R)-Метил[γ-(*n***-фторфенил)-γ-(2-фурил)пропил]амины 7а–h**. Смесь эквимолярных количеств амина 4 и ароматического альдегида 5а–f или кетона 5g,h в бензоле или ксилоле (в случае 5g,h) кипятят 4 ч с насадкой Дина–Старка до полного выделения воды. Далее удаляют растворитель, остаток растворяют в метаноле и к полученному раствору при перемешивании и охлаждении водой добавляют порциями эквимолярное количество NaBH₄ так, чтобы температура реакционной смеси не превышала 20 °C. Реакционную массу перемешивают еще 1 ч при комнатной температуре, затем отгоняют метанол, остаток подщелачивают 20% раствором NaOH, экстрагируют эфиром. Экстракт сушат, отгоняют эфир из остатка, перегонкой выделяют амины 7а–h.

N-(R¹CO)[Ar¹(R)-Метил][γ-(*n***-фторфенил)-γ-(2-фурил)пропил]амины 8а–f**. К раствору 0.03 моль амина 7а–f и 3 г (0.032 моль) триэтиламина в 30 мл абсолютного бензола, прибавляют эквимолярное количество хлорангидрида уксусной (в случае 7а,b) или пропио-новой кислоты 7с–f. Смесь кипятят с обратным холодильником 4 ч, затем охлаждают, промывают водой, экстрагируют бензолом. Экстракт сушат и после отгонки бензола из остатка перегонкой выделяют амиды 8а–f.

N-[γ-(*n***-Фторфенил)-γ-(2-фурил)пропил]маленнимид (9)**. Смесь 7 г (0.032 моль) амина **4** и 3.2 г (0.02 моль) янтарного ангидрида в 50 мл бензола кипитят 10 ч с ловушкой Дина–Старка до полного отделения воды. Далее бензол упаривают, из остатка перегонкой в вакууме выделяют 6.3 г продукта **9**. ИК спектр, v, см⁻¹: 1590, 1610 (C=C аром.), 1690 (C=O).

N-[ү-(*n***-Фторфенил)-ү-(2-фурил)]пропилфталимид (10)**. Из 7 г (0.032 моль) амина **4** и 4.8 г (0.032 моль) фталевого ангидрида по описанной выше для продукта **9** методике получают 6.6 г фталимида **10**. ИК спектр, v, см⁻¹: 1590, 1610 (С=С аром.), 1690 (С=О).

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. С. Арутюнян, Л. А. Акопян, Г. А. Геворгян, Г. М. Сихчян, Г. А. Паносян, *XГС*, 517 (2005).
- 2. J. S. Sandhu, S. Mahan, P. S. Sethi, J. Indian Chem. Soc., 48, 693(1971).

Институт тонкой органической химии им. А. Л. Мнджояна НАН Республики Армении, Ереван 375014 e-mail: gagevorgyan@yahoo.com Поступило в редакцию 22.10.2002 После доработки 21.01.2005

^аЦентр исследования строения молекул НАН Республики Армении, Ереван 375014