В. Н. Яровенко, С. Л. Семенов, И. В. Заварзин, Н. Д. Чувылкин, М. М. Краюшкин

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ЭЛЕКТРОННОГО СТРОЕНИЯ И РЕАКЦИОННОЙ СПОСОБНОСТИ МЕТИЛОВОГО ЭФИРА 2-МЕТИЛ-4H-ТИЕНО[3,2-*b*]ПИРРОЛ-5-КАРБОНОВОЙ КИСЛОТЫ

В приближении MNDO проведено квантово-химическое исследование, показавшее, что селективность ацилирования метилового эфира 2-метил-4H-тиено[3,2-*b*]пиррол-5-карбоновой кислоты в условиях реакции Фриделя–Крафтса в присутствии AlCl₃ в большей степени зависит от распределения электронной плотности в комплексах, чем от структурных параметров.

Ключевые слова: тиенопирролы, молекулярная структура, полуэмпирические квантово-химические расчеты, региоселективное ацилирование.

Тиенопирролы являются аналогами индолов и поэтому представляют значительный интерес в синтезе различных биоактивных веществ. Большое внимание уделяется созданию физиологически активных соединений на основе эфиров 4H-тиено[3,2-*b*]пиррол-5-карбоновой кислоты [1–3].

Учитывая электроноизбыточный характер тиенопирролов, их модификацию осуществляют, как правило, с помощью электрофильных процессов. Одним из привлекательных методов функционализации тиенопирролов является введение ацильных групп, которые в дальнейшем можно превращать в различные функциональные группы, в том числе в гетероциклические фрагменты. Однако серьезной и малоизученной проблемой является проведение региоселективных реакций с тиенопирролами, имеющими свободные положения как в тиофеновом, так и в пиррольном цикле.

Ранее нами было показано, что в присутствии двукратного избытка $AlCl_3$ ацилирование метилового эфира 2-метил-4H-тиено[3,2-*b*]пиррол-5-карбоновой кислоты (1) проходит региоселективно в положение 3 дигетероцикла, давая продукт 2, в то время как при использовании эквимолярных количеств $AlCl_3$ и тиенопиррола образуется смесь 3- и 6-ацилпроизводных 2 и 3 (схема 1) [4].

С целью оценки влияния структурных и электронных факторов на селективность ацилирования в настоящей работе сопоставлены рассчитанные теплоты реакций и экспериментально установленные доли образующихся изомеров, а также вычисленные распределения электронной плотности в комплексах тиенопиррола с AlCl₃ и возможные маршруты электрофильной атаки в неполярных и полярных растворителях.

Расчеты проводились с помошью программы MOPAC [5] стандартным полуэмпирическим квантово-химическим методом MNDO с полной оптимизацией геометрии молекул тиенопиррола 1, монокетонов 2, 3, комплексов с хлористым алюминием 4–8 и σ-комплексов 9, 10 (схема 2).

Обсуждение полученных результатов

Полученные методом MNDO оптимизированные геометрические параметры структур 1–10 представлены в табл. 1 и 2, структурные формулы указанных соединений с принятой нами нумерацией атомов приведены на схеме 2.

Как показали выполненные нами квантово-химические расчеты, переход от свободной молекулы тиенопиррола 1 к комплексу 4 сопряжен с незначительным укорочением связи C(7)–C(8) (от 1.48 до 1.46 Å) и небольшим удлинением связи C(8)=O(1) (от 1.23 до 1.26 Å).

Копланарность, присущая изолированной молекуле тиенопиррола, практически сохраняется во всех комплексах с AlCl₃. Угол отклонения связи C=O карбоксильной группы от плоскости кольца дигетероцикла находится в пределах от -11 до -17° , т. е. по существу, не нарушаются условия, обеспечивающие эффективное сопряжение модифицированной комплексообразованием карбонильной группы с ароматической системой.

В табл. 3 приведены рассчитанные в приближении MNDO энтальпии образования (ΔH_f), дипольные моменты (μ), энергии граничных молекулярных орбиталей (ε_f , ε_v) и их разности, а также заряды на атомах (Q).

Комплексообразование тиенопиррола 1 с AlCl₃ (структура 4) сопровождается существенным переносом электронной плотности с донорного молекулярного фрагмента (тиенопиррола) на акцептор (AlCl₃), при этом

Таблица 1

Связь	d, Å											
Связв	1	2	3	4	5	6	7	8	9	10		
C(1)–C(2)	1.49	1.49	1.49	1.49	1.53	1.49	1.50	1.49	1.49	1.50		
C(2)–C(3)	1.38	1.39	1.38	1.38	1.40	1.38	1.40	1.38	1.52	1.39		
C(3)–C(4)	1.44	1.45	1.44	1.45	1.45	1.44	1.45	1.45	1.50	1.43		
C(4)–N(1)	1.38	1.38	1.38	1.37	1.38	1.38	1.37	1.37	1.38	1.41		
C(4)–C(5)	1.43	1.43	1.42	1.44	1.43	1.43	1.43	1.44	1.43	1.42		
C(5)–S(1)	1.67	1.66	1.67	1.67	1.66	1.67	1.66	1.67	1.66	1.64		
C(5)–C(6)	1.42	1.42	1.42	1.41	1.42	1.43	1.42	1.42	1.42	1.49		
C(6)–C(7)	1.41	1.41	1.42	1.43	1.41	1.42	1.42	1.43	1.36	1.54		
C(7)–C(8)	1.48	1.48	1.48	1.46	1.48	1.50	1.47	1.47	1.49	1.51		
C(8)–O(1)	1.23	1.23	1.23	1.26	1.23	1.23	1.26	1.26	1.26	1.23		
C(8)–O(2)	1.36	1.36	1.38	1.34	1.36	1.36	1.33	1.33	1.33	1.32		
O(2)–C(9)	1.41	1.41	1.41	1.42	1.41	1.40	1.42	1.42	1.43	1.43		
C(3)–C(10)	_	1.50	_	_	-	-	1.49	1.49	_	_		
C(6)–C(10)	_	_	1.50	_	1.48	1.49	_	_	_	-		
C(10)–C(11)	_	1.52	1.53	_	1.53	1.53	1.53	1.52	_	_		
C(10)–O(3)	_	1.23	1.22	_	1.25	1.24	1.25	1.24	_	_		
O(1)–Al(1)	_	_	_	1.80	_	1.82	_	1.84	1.85	1.89		
Al(1)–Cl(1)	_	-	-	2.11	-	2.11	_	2.11	2.12	2.11		
Al(1)-Cl(2)	_	_	_	2.12	_	2.12	_	2.11	2.08	2.07		
Al(1)-Cl(3)	_	_	_	2.13	_	2.13	_	2.12	2.13	2.13		
O(3)–Al(2)	_	_	_	_	1.83	1.84	1.83	1.81	_	_		
Al(2)–Cl(4)	-	-	-	_	2.11	2.11	2.11	2.12	_	-		
Al(2)–Cl(5)	_	_	_	_	2.12	2.11	2.11	2.12	_	-		
Al(2)–Cl(6)	-	-	_	_	2.12	2.12	2.12	2.13	_	-		

Длины связей (d) структур 1–10, оптимизированные методом MNDO

Таблица 2

Валентные	углы (ω)	структур 1-	-10, оптими	зированные	методом MNDO

Валентный	ω, град.										
угол	1	2	3	4	5	6	7	8	9	10	
C(1)-C(2)-C(3)	127	129	127	127	128	127	129	126	120	125	
C(2)–C(3)–C(4)	109	109	110	109	109	109	109	109	99	110	
C(3)-C(4)-C(5)	113	113	113	113	113	113	113	113	123	115	
C(4)-C(5)-S(1)	110	110	110	111	111	110	111	110	111	112	
C(4)-C(5)-C(6)	108	108	108	107	108	108	108	107	105	112	
C(5)-C(6)-C(7)	107	107	106	107	107	106	107	107	107	97	
C(5)-C(4)-N(1)	108	108	108	109	108	108	108	109	111	108	
C(4)-N(1)-C(7)	109	108	108	109	108	108	108	109	110	111	
N(1)-C(7)-C(8)	120	120	119	122	120	120	121	121	128	124	
C(7)–C(8)–O(1)	126	126	126	126	126	123	124	125	139	121	
O(1)-C(8)-O(2)	120	120	120	118	121	115	120	119	114	121	
C(8)-O(2)-C(9)	125	125	125	128	125	127	128	128	125	124	
C(8)–O(1)–Al(1)	-	_	-	174	_	169	_	179	147	144	
O(1)-Al(1)-Cl(1)	-	_	-	103	_	101	_	104	97	107	
O(1)-Al(1)-Cl(2)	-	-	-	104	-	103	-	102	168	111	
O(1)-Al(1)-Cl(3)	-	-	-	104	-	105	-	102	108	111	
C(2)-C(3)-C(10)	-	128	-	_	_	-	127	127	_	-	
C(3)-C(10)-C(11)	_	117	-	-	-	-	119	120	-	_	
C(3)-C(10)-O(3)	-	121	-	_	_	-	122	118	_	-	
C(10)–O(3)–Al(2)	-	_	-	_	155	157	158	160	_	-	
O(3)-Al(2)-Cl(4)	-	_	-	_	103	102	102	101	_	-	
O(3)-Al(2)-Cl(5)	-	_	-	_	102	103	103	103	_	-	
O(3)-Al(2)-Cl(6)	-	_	-	_	105	102	104	103	_	-	
C(5)-C(6)-C(10)	-	_	126	-	125	119	_	-	-	-	
C(6)-C(10)-C(11)	-	_	117	_	121	119	_	_	_	-	
C(6)-C(10)-O(3)	-	_	121	_	118	119	_	_	_	-	

заряды на атомах углерода в положениях 3 и 6 дигетероцикла при переходе от изолированной молекулы тиенопиррола 1 к его комплексу с AlCl₃ 4 изменяются с -0.05 до -0.07 и с 0.03 до 0.10. Комплексообразование с AlCl₃ сопровождается существенным увеличением дипольного момента системы по сравнению с исходными реагентами, причем наибольшими дипольными моментами обладают образующиеся комплексы 6–8 (табл. 3).

При присоединении протона к комплексу 4 положения 3 и 6 в соединениях 9–10 в целом становятся менее доступными для электрофильной атаки ацилирующего агента. Вычисленная энтальпия реакции изолированной молекулы 1 с ацилирующим комплексом MeCOCl·AlCl₃ (схема 3, табл. 2-4) свидетельствует, что в газовой фазе более предпочтительным должно быть образование комплекса 5 в качестве конечного продукта. В то же время можно ожидать, что при проведении реакции в полярном растворителе в соответствии с сольватационной моделью Онзагера для сферических электронейтральных систем [6] более устойчивым окажется изомерный комплекс 7, так как его дипольный момент существенно выше (табл. 3), что приведет к образованию смеси продуктов. Таким образом, конкуренция электронных факторов (заряды на атомах) и сольватационных эффектов (дипольные моменты) не исключает протекания реакции между 1 и ацилирующим комплексом MeCOCl·AlCl₃ по двум реакционным центрам, в результате чего будет образовываться смесь продуктов, соотношение которых трудно предсказать.

Таблица З

Соеди- нение ΔH_{f} , ккал•моль ⁻¹	ΔH_{f}	D	a aD	a aD	$\varepsilon_v - \varepsilon_f$	<i>Q</i> , a. e.		
	μ, D	<i>Е</i> _f , Э D	ε _ν , э D	эВ	C(3)	C(6)		
1	-43.9	0.8	-8.8	-0.6	8.2	-0.05	0.03	
2	-81.8	2.4	-9.0	-0.8	8.2	-0.12	0.03	
3	-82.1	3.3	-9.0	-0.8	8.2	-0.04	-0.06	
4	-210.7	9.9	-9.7	-1.9	7.8	-0.07	0.10	
5	-237.8	14.2	-9.9	-2.0	7.9	-0.05	-0.14	
6	-393.6	12.1	-10.5	-2.8	8.3	-0.08	-0.07	
7	-243.9	9.9	-9.6	-1.9	7.7	-0.20	-0.03	
8	-406.8	14.7	-10.6	-2.6	8.0	-0.20	0.09	
9	-23.4	-	-14.0	-7.2	6.8	0.04	0.13	
10	-19.1	-	-13.9	-7.0	6.9	0.00	0.08	

Характеристики тиенопиррола 1, монокетонов 2, 3, их комплексов с AlCl₃ 4–8 и σ-комплексов 9, 10, вычисленые в приближении MNDO *

* ΔH_f – энтальпии образования, μ – дипольный момент, ε_f – энергия ВЗМО, ε_{ν} – энергия НВМО, Q – заряд на атоме.

Схема 3

В случае же реакции комплекса **4** с ацилирующим агентом MeCOCl•AlCl₃ (схема 4, табл. 3 и 4) можно ожидать образования только комплекса **6**, так как существенная разница в зарядах на атомах углерода в положениях 3 и 6 в комплексе **4** направляет электрофильный атакующий агент в положение 3. (Вычисленные в приближении MNDO энтальпии образования: комплекса MeCOCl•AlCl₃ $\Delta H_f = -210.1$ ккал·моль⁻¹; молекулы HCl $\Delta H_f = -15.3$ ккал·моль⁻¹.)

Аналогично, сравнив вычисленные энтальпии реакций и дипольные моменты комплексов **6** и **8**, можем сделать вывод, что в этом случае будет образовываться только комплекс **6** (табл. 3, 4, схема 4). Следовательно, согласованное влияние электронных факторов (заряды на атомах) и сольватационных эффектов (дипольные моменты) делает благоприятным протекание реакции только по положению 3 тиенопиррола.

Таблица 4 297

Реакция	Δ <i>H</i> _{r(3)} , ккал•моль ⁻¹	Δ <i>H</i> _{r(6)} , ккал•моль ⁻¹	$\Delta H_{r(6)} - \Delta H_{r(3)},$ ккал•моль ⁻¹	μ _{(3),} D	μ _{(6),} D	Δμ, D
Схема 3	-5.3 (5)	0.8 (7)	6.1	9.9	14.2	4.3
Схема 4	1.3 (6)	11.9 (8)	10.6	14.7	12.1	2.6

Рассчитанные методом MNDO энтальпии реакций

 $\Delta H_{r(3)}$ – энтальпии реакции по положению 3 тиенопиррола, $\Delta H_{r(6)}$ – энтальпии реакции по положению 6 тиенопиррола, $\Delta H_{r(6)} - \Delta H_{r(3)}$ – разность энтальпий реакций по положению 6 и 3, $\mu_{(3)}$ – дипольный момент комплекса при атаке по положению 3, $\mu_{(6)}$ – дипольный момент комплекса при атаке по положению 3, $\mu_{(6)}$ – дипольный момент комплекса при атаке по положению 6 дигетероцикла.

Таким образом, из результатов выполненных нами квантово-химических расчетов можно сделать вывод о том, что процесс ацилирования метилового эфира 2-метил-4H-тиено[3,2-b]пиррол-5-карбоновой кислоты в условиях реакции Фриделя–Крафтса в присутствии AlCl₃ в большей степени определяется распределением электронной плотности в рассмотренных системах, тогда как роль структурных параметров является менее значительной. Электронное строение изолированной молекулы тиенопиррола 1 и его комплексов с AlCl₃ указывает на то, что региоселективное ацилирование в положение 3 тиенопиррола должно происходить при использовании избытка AlCl₃, а при применении эквимолярных количеств тиенопиррола и AlCl₃ должна образовываться смесь монокетонов 2 и 3.

Выводы, сделанные на основе квантово-химических расчетов молекул тиенопиррола и его комплексов с хлористым алюминием, согласуются с экспериментальными данными и, следовательно, данный расчетный метод может использоваться для оценки селективности процессов ацилирования тиенопирролов.

СПИСОК ЛИТЕРАТУРЫ

- 1. P. J. Manoury, M. Aletru, EP Pat. 252809; Chem. Abstrs., 110, 135070 (1989).
- H. S. Andersen, T. K. Jones, D. D. Holsworth, WO Pat. 9940914; Chem. Abstr., 131, 170342 (1999).
- 3. A. J. Barker, J. G. Kettle, A. W. Faull, WO Pat. 9946268; Chem. Abstr., 131, 214301 (1999).
- 4. В. Н. Яровенко, С. Л. Семенов, И. В. Заварзин, А. В. Игнатенко, М. М. Краюшкин,
- Изв. АН, Сер. хим., 431 (2003).
- 5. Т. Кларк, Компьютерная химия, Мир, Москва, 1990, 383 с. [T. Clark, A Handbook of Computational Chemistry, J. Wiley and Sons, New York, 1985.]
- 6. Б. Я. Симкин, И. И. Шейхет, Квантово-химическая и статистическая теория растворов. Вычислительные методы и применение, Химия, Москва, 1989, 256 с.

Институт органической химии им. Н. Д. Зелинского РАН, Москва 119991 e-mail: yarov@ioc.ac.ru Поступило в редакцию 01.07.2004