Б. Б. Семенов, К. А. Новиков, Ю. И. Смушкевич, В. Н. Азев^а, В. В. Качала⁶

ДИАСТЕРЕОНАПРАВЛЕННЫЙ СИНТЕЗ 1-АРИЛ-4-ФЕНИЛ-β-КАРБОЛИНОВ

Проведена диастереонаправленная реакция Пикте–Шпенглера с образованием ранее неизвестных 1-арил(алкил)-4-фенил-β-карболинов и показано, что все полученные диастереомеры β-карболинов имеют преобладающую *R**,*R**-конфигурацию. Диастереослелективность данной реакции 44–70%.

Ключевые слова: β-карболины, β-фенилтриптамин, диастереоселективный синтез, реакция Пикте-Шпенглера.

Нами была установлена высокая диастереоселективность α-фенил-*нор*грамина в реакции Михаэля с циклическими кетонами и ацетоуксусным эфиром [1, 2]. Настоящая работа посвящена изучению диастереоселективности реакции β-фенилтриптамина (1) с ароматическими и алифатическими альдегидами (реакция Пикте–Шпенглера [3]).

Для изучаемой нами реакции возможны два направления: по фенильному кольцу с образованием тетрагидрохинолина [3] и по пиррольному кольцу индола с образованием β -карболина [4, 5]. Мы предположили, что вследствие π -избыточности индольного цикла реакция будет протекать с его участием. В работе [4] описан синтез 1-незамещенных 4-фенил- β карболинов и показано, что они обладают выраженной биологической активностью.

Ранее был предложен механизм реакции Пикте–Шпенглера, включающий стадии образования производного спиро[3H-индол-3.2'-пирролидина] и его последующую перегруппировку в β -карболин [6–8]. На основании этого мы предположили, что в нашем случае реакция будет протекать через образование интермедиата **2** при использовании в качестве исходных соединений альдегидов разнообразного строения и β -фенилтриптамина. Известно, что диастереоселективность определяется стереоэлектронными либо пространственными факторами [9]. В соответствии с этим в интермедиате **2** заместители в положении 2 и 4 пирролидинового цикла должны быть максимально удалены друг от друга, т. е. иметь *транс*-расположение. При перегруппировке соединения **2** в β -карболиновую систему под влиянием, по-видимому, тех же стерических факторов образуются преимущественно (*R**,*R**) 1-арил(алкил)-4-фенил- β -карболины **3** (здесь и далее* обозначает относительную конфигурацию).

3 R = Me, **4** R = Ph, **5** R = p-ClC₆H₄, **6** R = p-MeOC₆H₄, **7** R = p-O₂NC₆H₄, **8** R = m-O₂NC₆H₄

Строение полученных соединений исследовано с помощью одно- и двумерной спектроскопии ЯМР. В одномерных спектрах ЯМР ¹Н и ¹³С наблюдались два набора сигналов разной интенсивности, соответствующие двум диастереомерам (сигналы отнесены путем анализа двумерных спектров COSY, HSQC и HMBC). Пространственное строение каждого диастереомера выявлено при помощи двумерной спектроскопии Н–Н NOE (NOESY), которая позволила выявить близко расположенные протоны.

Рассмотрим установление конфигурации обоих диастереомеров на примере соединений **3**а,b. Протоны при H-3 во всех исследованных соединениях имеют выраженную экваториальную и аксиальную природу, о чем свидетельствует форма сигналов протонов H-3 и H-3а в спектрах ЯМР ¹H. Это облегчает установление конфигурации диастереомеров. В спектре NOESY для минорного $1S^*, 4R^*$ -изомера наблюдались корреляционные пики между протонами группы 1-CH₃ (H-1') и аксиальным протоном H-3а (рис. 1).

Рис. 1. Фрагмент спектра NOESY соединений **За,b** (жирный шрифт для изомера 1*R**,4*R**)

Корреляция была также выявлена между орто-протонами фенила Н-4 и обоими протонами H-3 и H-3a, что говорит в пользу экваториального расположения фенильной группы в шестичленном цикле и аксиальном расположении метильной группы в этом цикле, о чем свидетельствовало наличие корреляции между протонами метильной группы и H-3a. Для основного изомера наблюдались иные корреляции. Так, орто-протоны фенильной группы имели те же кросс-пики с протонами Н-3 и Н-3а, а протон Н-1 взаимодействовал с аксиальным протоном Н-За, что свидетельствовало об его аксиальном расположении в этом цикле. Данный факт, как и отсутствие корреляции между протонами метильной группы и аксиальным протоном Н-За, позволяет сделать вывод о транс-расположении фенильной и метильной групп в шестичленном цикле. В обоих случаях наблюдалась корреляция между протоном H-4 и экваториальным протоном Н-Зе. Необходимо отметить, что сигналы протонов при атоме N-2 сильно уширены, поэтому корреляционных пиков не давали и структурной информации не несли. Таким образом, установлена конфигурация пары соединений За и Зb; первое представляет собой изомер 1*R**,4*R**, второе – 1*S**,4*R** (рис. 2).

Рис. 2. Корреляционные взаимодействия в соединениях За, b

Строение остальных соединений установлено аналогично: в случае преобладающих $1R^*, 4R^*$ -изомеров в спектрах NOESY наблюдалась корреляция аксиального протона H-3a с *орто*-протонами фенильного кольца H-4 и с протоном H-1, что однозначно свидетельствовало о *транс*-расположении заместителей в положениях 1 и 4. В случае же минорных $1S^*, 4R^*$ -диастереомеров, наблюдалась характерная корреляция протона H-3a, с *орто*-протонами фенильной группы H-4, а также с *орто*-прото-нами (H-1') арильного заместителя при C-1, что явилось доказательством *цис*-расположения заместителей в положениях 1 и 4. На рис. 3 приведен фрагмент спектра NOESY для соединений **5a,b**.

Рис. 3. Фрагмент спектра NOESY соединений **5а,b** (жирный шрифт для диастереомера *1R*,4R*)

Таблица 1

Диастереомеры	de, % *	Диастереомеры	de, % *
3a (1 <i>R</i> *,4 <i>R</i> *) : 3b (1 <i>S</i> *,4 <i>R</i> *)	44	6a (1 <i>R</i> *,4 <i>R</i> *) : 6b (1 <i>S</i> *,4 <i>R</i> *)	64
4a (1 <i>R</i> *,4 <i>R</i> *) : 4b (1 <i>S</i> *,4 <i>R</i> *)	70	7a (1 <i>R</i> *,4 <i>R</i> *) : 7b (1 <i>S</i> *,4 <i>R</i> *)	62
5a (1 <i>R</i> *,4 <i>R</i> *) : 5b (1 <i>S</i> *,4 <i>R</i> *)	62	8a (1 <i>R</i> *,4 <i>R</i> *) : 8 b (1 <i>S</i> *,4 <i>R</i> *)	56

Соотношение диастереомеров соединений 3-8

* *de* – диастереоселективность реакции.

Предлагаемый нами метод позволяет получать соединения **3–8** с заведомым диастереомерным избытком *R**,*R**-диастереомеров с различными заместителями в положении 1 β-карболинового цикла.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С получали на приборе DRX-500 фирмы Bruker (500 и 125 МГц соответственно) в ДМСО- d_6 при 30 ^oС по стандартным методикам фирмы Bruker. Двумерные спектры HSQC и HMBC получены с применением градиентной методики. Внутренний стандарт ТМС. Масс-спектры регистрировали на спектрометре Finnigan MAT SSQ-710 при энергии ионизирующих электронов 70 эВ.

β-Фенилтриптамин (1). К смеси 26.6 г (0.1 моль) 3-(2-нитро-1-фенилэтил)индола [10] в 100 мл 94% спирта и 1 г свежеприготовленного никеля Ренея в течение 60 ч добавляют по каплям 75 мл гидразингидрата при температуре кипения смеси. Если кипячение прерывают, то добавляют новую порцию катализатора. Фильтруют, отфильтрованный катализатор промывают горячим спиртом (3 × 10 мл). Фильтрат упаривают. Остаток растворяют в безводном эфире и добавляют насыщенный раствор HCl в эфире. Образующийся гидрохлорид отфильтровывают, суспендируют в эфире, встряхивают с водным раствором щелочи. Эфирный раствор сушат MgSO₄ и упаривают. Выход 21 г (90%), т. пл. 131–132 °C. (Т. пл. 131–132 °C (из этилацетата [10]).

Получение соединений 3–8 (общая методика). К смеси 1.18 г (0.005 моль) β-фенилтриптамина, 37.5 мл (0.04 моль) 5% ацетальдегида добавляют 0.5 г конц. H₂SO₄. Кипятят до растворения соединения 1, охлаждают, осадок сульфатов карболинов отфильтровывают. Спектры ЯМР ¹Н и ¹³С приведены в табл. 2 и 3.

Сульфат 1-метил-4-фенил-2,3,4,9-тетрагидро-β-карболина (3). Выход 50%, т. пл. 218 °С (сульфата). Масс-спектр, *m/z* (*I*_{отн}, %): 262 [М]⁺ (10). Найдено, %: С 82.53; Н 7.02; N 10.45 (основание). С₁₈Н₁₈N₂. Вычислено, %: С 82.41; Н 6.92; N 10.68 (основание).

Сульфат 1,4-дифенил-2,3,4,9-тетрагидро-β-карболина (4). Выход 60%, т. пл. 228 °С (сульфата). Масс-спектр, *m/z* (*I*_{отн}, %): 324 [M]⁺ (14). Найдено, %: С 86.13; Н 6.72; N 7.15 (основание). С₂₃H₂₀N₂. Вычислено, %: С 85.15; Н 6.21; N 8.63 (основание).

Сульфат 4-фенил-1-(4-хлорфенил)-2,3,4,9-тетрагидро-β-карболина (5). Выход 63%, т. пл. 255 °С (сульфата). Масс-спектр, *m/z* (*I*_{отн}, %): 358 [M]⁺ (14). Найдено, %: С 77.33; Н 5.81; N 7.75 (основание). С₂₃Н₁₉СlN₂. Вычислено, %: С 76.98; Н 5.34; N 7.81 (основание).

Сульфат 1-(4-метоксифенил)-4-фенил-2,3,4,9-тетрагидро-β-карболина (6). Выход 55%, т. пл. 225 °С (сульфата). Масс-спектр, *m/z* (*I*_{отн}, %): 354 [M]⁺ (20). Найдено, %: С 81.83; Н 6.81; N 8.00 (основание). С₂₄H₂₂N₂O. Вычислено, %: С 81.33; Н 6.26; N 7.90 (основание).

Протоны	Химические сдвиги, б, м. д.											
	3a (1 <i>R</i> *,4 <i>R</i> *)	3b (1 <i>S</i> *,4 <i>R</i> *)	4a (1 <i>R</i> *,4 <i>R</i> *)	4b (1 <i>S</i> *,4 <i>R</i> *)	5a (1 <i>R</i> *,4 <i>R</i> *)	5b (1 <i>S</i> *,4 <i>R</i> *)	6a (1 <i>R</i> *,4 <i>R</i> *)	6b (1 <i>S</i> *,4 <i>R</i> *)	7a (1 <i>R</i> *,4 <i>R</i> *)	7b (1 <i>S</i> *,4 <i>R</i> *)	8a (1 <i>R</i> *,4 <i>R</i> *)	8b (1 <i>S</i> *,4 <i>R</i> *)
H-1	4.91	4.75	5.89	5.76	5.75	5.58	5.76	5.60	5.89	5.70	5.92	5.75
H-2	-	-	-	-	-	-	-	-	-	-	-	-
H-3	3.79	3.56	3.67	3.41	3.59	3.37	3.60	3.39	3.60	3.40	3.65	3.40
H-3a	3.20	3.22	3.38	2.85	3.16	2.82	3.19	2.89	3.17	2.81	3.20	2.82
H-4	4.55	4.41	4.60	4.46	4.51	4.36	4.61	4.42	4.51	4.37	4.56	4.39
H-1'	1.61	1.64	-	-	-	-	-	-	-	-	-	-
H-2'	-	-	7.43	7.44	7.45	7.45	7.38	7.30	7.68	8.06	8.30	_*
H-3'	-	-	7.49	_*	7.56	7.51	7.00	7.02	8.30	8.39	-	-
H-4'	-	-	7.44	_*	-	-	-	-	-	-	8.31	_*
H-5'	-	-	-	-	-	-	3.78	3.76	-	-	7.78	_*
H-6'	-	-	-	-	-	-	-	-	-	-	7.89	_*
<i>о</i> -Н	7.28	7.31	7.29	7.35	7.30	7.32	7.30	7.30	7.31	_*	7.29	_*
<i>m</i> -H	7.35	7.35	7.35	_*	7.32	7.32	7.30	7.30	7.33	_*	7.33	_*
<i>р</i> -Н	7.35	7.35	7.31	_*	7.32	7.32	7.26	7.26	7.37	_*	7.29	_*
H-1"	11.33	11.29	10.76	11.02	10.71	10.94	10.67	10.94	10.74	10.99	10.77	11.02
H-4"	6.53	6.58	6.58	6.69	6.59	6.69	6.59	6.72	6.64	_*	6.61	_*
H-5"	6.76	6.78	6.74	6.80	6.74	6.79	6.74	6.80	6.78	_*	6.76	_*
H-6"	7.04	7.08	6.99	7.03	6.98	7.01	6.97	7.00	6.99	_*	6.99	_*
H-7"	7.40	7.40	7.27	7.32	7.25	7.30	7.31	7.36	7.26	_*	7.25	v

Спектры ЯМР ¹Н соединений 3-8

Таблица 2

* Сигнал не отнесен.

1526

	Химические сдвиги, б, м. д.										
Атомы	3a (1 <i>R</i> *,4 <i>R</i> *)	3b (1 <i>S</i> *,4 <i>R</i> *)	4a (1 <i>R</i> *,4 <i>R</i> *)	4b (1 <i>S</i> *,4 <i>R</i> *)	5a (1 <i>R</i> *,4 <i>R</i> *)	5b (1 <i>S</i> *,4 <i>R</i> *)	6a (1 <i>R</i> *,4 <i>R</i> *)	6b (1 <i>S</i> *,4 <i>R</i> *)	7a* (1 <i>R</i> *,4 <i>R</i> *)	8a** (1 <i>R</i> *,4 <i>R</i> *)	
C-1	49.0	47.3	56.9	54.6	55.9	54.0	56.5	54.6	56.0	56.0	
C-3	48.5	44.9	49.7	46.2	50.6	47.3	50.3	47.1	49.9	50.1	
C-4	37.4	36.8	38.4	38.2	39.6	39.6	38.8	38.9	38.7	39.2	
C-1'	16.7	17.9	_***	_***	139.1	_***	129.7	129.7	145.6	139.9	
C-2'	-	_	129.6	_***	131.1	129.3	130.7	130.5	130.7	123.9	
C-3'	-	-	129.3	_***	128.3	128.3	114.2	114.1	123.6	147.8	
C-4'	-	-	129.3	_***	_***	_***	159.8	159.5	147.7	123.6	
C-5'	-	-	-	-	-	-	55.4	55.8	-	130.2	
C-6'	-	-	-	-	-	-	-	_	-	136.0	
i-	140.3	140.3	141.4	_***	142.8	141.5	142.0	142.7	141.9	141.9	
0-	128.2	128.2	128.4	128.4	128.2	128.2	128.4	128.4	128.3	128.3	
<i>m</i> -	128.3	128.3	128.4	_***	128.2	128.2	128.4	128.4	128.3	128.3	
<i>p</i> -	127.3	127.2	127.1	_***	126.5	126.7	127.0	126.8	126.8	126.8	
C-2"	132.0	132.5	131.7	_***	134.1	133.7	133.0	133.4	132.0	132.1	
C-3"	108.2	107.3	110.4	110.3	110.6	109.2	110.5	110.4	110.6	110.7	
C-3a"	125.0	125.0	125.2	_***	125.7	126.2	125.6	125.8	125.3	125.4	
C-4"	118.8	118.8	118.9	118.8	118.7	118.5	118.9	118.7	118.8	118.8	
C-5"	118.8	118.8	118.7	118.7	118.3	118.4	118.7	118.8	118.6	118.6	
C(6")	121.4	121.5	121.3	121.3	120.8	120.8	121.3	121.4	121.2	121.2	
C(7")	111.4	111.4	111.6	111.6	111.3	111.5	111.6	111.5	111.4	111.4	
C-7a"	136.4	136.3	136.6	136.5	136.3	136.4	136.7	136.6	136.5	136.5	

Спектры ЯМР ¹³С соединений 3-8

* Соединение 7b ((1*S**,4*R**) для атомов С-1–С-4 и *i*-С–С-7а" сигналы не отнесены.

** Соединение **8b** (1*S**,4*R**) сигналы не отнесены.

*** Сигнал не отнесен.

Таблица З

Сульфат 1-(4-нитрофенил)-4-фенил-2,3,4,9-тетрагидро-β-карболина (7). Выход 80%, т. пл. >260 °С (сульфата). Масс-спектр, *m/z* (*I*_{отн}, %): 369 [M]⁺ (30). Найдено, %: С 74.33; Н 5.05; N 11.40 (основание). С₂₃H₁₉N₃O₂. Вычислено, %: С 74.78; Н 5.18; N 11.37 (основание).

Сульфат 1-(3-нитрофенил)-4-фенил-2,3,4,9-тетрагидро-β-карболина (8). Выход 76%, т. пл. >260 °С (сульфата). Масс-спектр, *m/z* (*I*_{отн}, %): 369 [M]⁺ (27). Найдено, %: С 74.43; Н 4.95; N,11.40 (основание). С₂₃Н₁₉N₃O₂. Вычислено, %: С 74.78; Н 5.18; N 11.37 (основание).

СПИСОК ЛИТЕРАТУРЫ

- 1. Б. Б. Семенов, Ю. И. Смушкевич, Г. В. Гринцелев-Князев, М. Ю. Антипин, *Изв. АН*, *Сер. хим.*, **3**, 543 (2001).
- Б. Б. Семенов, Ю. И. Смушкевич, И. И. Левина, Л. Н. Курковская, К. А. Лысенко, В. В. Качала, XГС, 848 (2005).
- 3. A. Piktet, T. Spengler, Ber., 44, 2030 (1911).
- 4. J. Lehmann, N. Jiang, A. Behncke, Arch. Pharm., 326, 813 (1993).
- 5. B. E. Maryanoff, D. F. Mccomsey, B. A. Duhl-Emswiler, J. Org. Chem., 48, 5062 (1983).
- 6. E. D. Cox, J. M. Cook, Chem. Rev., 95, 1797 (1995).
- 7. T. Hino, M. Nakagawa, *Heterocycles*, **46**, 673 (1997).
- 8. K. Tanaka, Y. Mori, K. Narasaka, Chem. Lett., 33, 26 (2004).
- 9. З. М. Ногради, Стереоселективный синтез, Мир, Москва, 1989, 54.
- 10. Е. П. Стынгач, К. И. Кучкова, Т. М. Ефремова, ХГС, 1523 (1973).

Российский химико-технологический университет им. Д. И. Менделеева, Москва 125190 e-mail: semenovb@mail.ru, e-mail:smu@muctr.edu.ru Поступило в редакцию 01.03.2004

^aTuft University, 02155 USA Medford

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 119991