Р. А. Гаджилы, А. Г. Алиев, Р. А. Наджафова, Р. И. Ибрагимов

ВЗАИМОДЕЙСТВИЕ 2-ГАЛОГЕН-3-ХЛОРПРОПЕНИЛКЕТОНОВ С ЭТИЛОВЫМ ЭФИРОМ β-АМИНОКРОТОНОВОЙ КИСЛОТЫ

Реакция 2-галоген-3-хлор-1-пропенилкетонов с этиловым эфиром β-аминокротоновой кислоты приводит к получению этиловых эфиров 6-алкил(арил, бензил, циклогексил)-2-метил-4-хлорметилникотиновых кислот. Установлено, что при повышенных температурах полученные соединения частично превращаются в соответствующие дигидрофурано[3,4-*c*]-пиридины.

Ключевые слова: 2-галоген-3-хлор-1-пропенилкетоны, дигидрофурано[3,4-*c*]пиридины, этиловый эфир β-аминокротоновой кислоты, этиловые эфиры 6-алкил(арил, бензил, циклогексил)-2-метил-4-хлорметилникотиновых кислот.

Взаимодействие 2,3-дихлорпропилалкилкетонов с алкиловыми эфирами аминоуксусной кислоты приводит к получению 1-алкоксикарбонилметил-2-алкилпирролов [1], а в случае взаимодействия β-хлорвинилкетонов с этиловым эфиром β-аминокротоновой кислоты – к этиловым эфирам никотиновой кислоты [2]. Мы установили также, что взаимодействие 2,3-дихлорпропенилалкилкетонов с этиловым эфиром β-аминокротоновой кислоты приводит к получению этиловых эфиров 6-алкил-2-метил-4хлорметилникотиновых кислот [3].

Однако дальнейшие исследования показали, что во время вакумной перегонки продуктов указанной реакции наряду с этиловыми эфирами 6-алкил-2-метил-4-хлорметилникотиновых кислот 2a-e, начиная с $R \ge C_2H_5$, происходит частичное превращение последних в 6-алкил-4-метил-3-оксо-1,2-дигидрофурано[3,4-*c*]пиридины **3b**–d. Установлено, что в ряду этиловых эфиров 6-алкил-2-метил-4-хлорметилникотиновых кислот с увеличением радикала R выход лактонов **3** резко возрастает. Так, например, при перегонке производных никотиновой кислоты **2а**–е побочно образуются лактоны **3b** – 8, **3c** – 15, **3d** – 24, **3e** – 36%. Объяснением данной закономерности может служить то обстоятельство, что по мере увеличения алкильного радикала температура кипения перегоняемого соединения возрас-тает и тем самым увеличивается вероятность термической внутримолекулярной циклизации соединений **2a**–e. В случае перегонки этиловых эфиров 6-бензил(фенил, *n*-толил, *n*-хлорфенил, циклогексил)-2-метил-4-хлорметилникотиновых кислот **2f**–j наблюдалась полная лактонизация.

С целью предотвращения внутримолекулярной циклизации соединений **2f**–**j** в лактоны, соответствующие 6-бензил(фенил, *n*-толил, *n*-хлорфенил, циклогексил)производные никотиновой кислоты были выделены и идентифицированы в виде гидрохлоридов.

1–3 a R = Me, **b** R = Et, **c** R = Pr, **d** R = Bu, **e** R = C₅H₁₁, **f** R = Bn, **g** R = Ph, **h** R = m-C₆H₄Me, **i** R = m-C₆H₄Cl, **j** R = c-C₆H₁₁; **1a–j** Hal = Cl, Br

Реакцию проводят в эфире или метаноле в присутствии эквимолярного количества триэтиламина при 35–40 °С в течение 5 ч и получают этиловые эфиры 6-алкил(арил, бензил, циклогексил)-2-метил-4-хлор- метилникотиновых кислот **2а**–**j** или их гидрохлориды с выходами 57–84%.

При перегонке производных никотиновой кислоты **2а**-е при остаточном давлении 20–30 мм рт. ст. они полностью превращаются в соответствующие лактоны **3а**-е.

Образование лактонов **3** является удачным подтверждением структуры этиловых эфиров никотиновой кислоты **2**. Это очень важно, поскольку, в принципе, возможно и другое регионаправление циклоконденсации галогенкетонов **1** с этиловым эфиром β -аминокротоновой кислоты, осуществляющееся за счет первоначального нуклеофильного замещения аминогруппой атома галогена в положении 2 кетонов **1**, и приводящее к образованию изомерных этиловых эфиров 4-алкил(арил, бензил, циклогексил)-2-метил-6-хлорметилникотиновых кислот, не способных к внутримолекулярной циклизации.

Таким образом, можно утверждать, что реакция между 2,3-дигалогенкетонами 1 и этиловым эфиром β -аминокротоновой кислоты начинается с образования основания Шиффа, с последующей его внутримолекулярной циклизацией с элиминированием молекулы галогенводорода и превращением в этиловые эфиры никотиновой кислоты 2 (табл. 1).

В ИК спектрах соединений **2**, **3** наблюдаются характерные полосы поглощения пиридинового ядра при 2995–3400 ($\gamma_{\text{=C-H}}$), 1510–1595 ($\gamma_{\text{C=C}}$), 1120–1200 ($\delta_{\text{=C-H}}$), 1716–1730 ($\gamma_{\text{C=O}}$), 1235–1282 ($\gamma_{\text{C-O-C}}$), 1755–1780 ($\gamma_{\text{C=O}}$ лактона) и 710–745 см⁻¹ ($\gamma_{\text{C-CI}}$), положение которых совпадают с данными [4].

Характеристики соединений 2, 3

Таблица 1

Сое-	Брутто-	E	<u>Найдено, %</u> Зычислено, %	т ∘С**	Вы-	
ние*	формула	С	Н	Ν	1., C	<u>%</u>
2a	C ₁₁ H ₁₄ ClNO ₂	<u>58.59</u> 58.02	<u>6.37</u> 6.15	<u>6.42</u> 6.15	121–123 (2)	84
2b	$C_{12}H_{16}CINO_2$	<u>59.96</u> 59.62	<u>6.81</u> 6.62	<u>6.14</u> 5.80	128–130 (2)	76
2c	C ₁₃ H ₁₈ ClNO ₂	<u>61.42</u> 61.06	<u>7.29</u> 7.05	<u>5.31</u> 5.48	134–136 (1)	71
2d	$C_{14}H_{20}CINO_2$	<u>62.73</u> 62.34	<u>7.58</u> 7.42	<u>5.02</u> 5.19	148–149 (2)	64
2e	$C_{15}H_{22}CINO_2$	<u>64.01</u> 63.49	<u>7.63</u> 7.76	<u>4.86</u> 4.94	156–158 (2)	57
2f	C ₁₇ H ₁₈ ClNO ₂ •HCl	<u>60.55</u> 60.00	<u>5.67</u> 5.59	<u>4.45</u> 4.12	124–125	75
2g	C ₁₆ H ₁₆ ClNO ₂ •HCl	<u>59.46</u> 58.88	<u>5.33</u> 5.21	<u>4.50</u> 4.29	137–139	80
2h	C ₁₇ H ₁₈ ClNO ₂ •HCl	<u>60.39</u> 60.00	<u>5.72</u> 5.59	<u>4.37</u> 4.12	132–133	72
2i	$C_{16}H_{15}Cl_2NO_2$ •HCl	<u>53.47</u> 53.93	<u>4.63</u> 4.87	<u>3.88</u> 3.75	157–158	65
2j	C ₁₆ H ₂₂ ClNO ₂ •HCl	<u>57.19</u> 57.83	<u>6.71</u> 6.93	<u>4.37</u> 4.22	190–192	68
3 a	C ₉ H ₉ NO ₂	<u>66.85</u> 66.26	<u>5.49</u> 5.52	<u>9.18</u> 8.59	109–110	75
3b	$C_{10}H_{11}NO_2$	<u>68.23</u> 67.80	<u>6.47</u> 6.21	<u>7.69</u> 7.91	85–86	77
3c	$C_{11}H_{13}NO_2$	<u>68.67</u> 69.11	<u>6.98</u> 6.81	<u>7.86</u> 7.33	72–74	73
3d	$C_{12}H_{15}NO_2$	<u>69.59</u> 70.24	<u>7.11</u> 7.32	<u>6.43</u> 6.86	65–66	67
3e	$C_{13}H_{17}NO_2$	<u>71.84</u> 71.23	<u>7.93</u> 7.76	<u>6.39</u> 6.28	59–60	69
3f	$C_{15}H_{13}NO_2$	<u>75.91</u> 75.31	<u>5.67</u> 5.44	<u>6.01</u> 5.86	54–56	72
3g	$C_{14}H_{11}NO_2$	<u>74.20</u> 74.67	<u>4.58</u> 4.90	<u>6.47</u> 6.22	50–51	71
3h	C ₁₅ H ₁₃ NO ₂	<u>75.77</u> 75.31	<u>5.32</u> 5.44	<u>5.73</u> 5.86	47–48	73
3i	$C_{14}H_{10}CINO_2$	<u>64.42</u> 64.74	<u>3.68</u> 3.85	<u>5.67</u> 5.39	61–63	68
3ј	$C_{14}H_{17}NO_2$	<u>72.18</u> 72.72	<u>7.09</u> 7.36	<u>6.17</u> 6.06	87–89	70

2 a $n_{\rm D}^{20} = 1.5207$, $d_{4}^{20} = 1.1558$; **b** $n_{\rm D}^{20} = 1.5175$, $d_{4}^{20} = 1.1339$; **c** $n_{\rm D}^{20} = 1.5140$, $d_{4}^{20} = 1.1339$; **c** $n_{\rm D}^{20} = 1.5140$, $d_{4}^{20} = 1.1339$; **c** $n_{\rm D}^{20} = 1.5140$, $d_{4}^{20} = 1.1339$; **c** $n_{\rm D}^{20} = 1.5140$, $d_{4}^{20} = 1.1339$; **c** $n_{\rm D}^{20} = 1.5140$, $d_{4}^{20} = 1.1339$; **c** $n_{\rm D}^{20} = 1.5140$, $d_{4}^{20} = 1.1339$; **c** $n_{\rm D}^{20} = 1.5140$, $d_{4}^{20} = 1.1339$; **c** $n_{\rm D}^{20} = 1.5140$; $d_{4}^{20} = 1.5140$ 1.1123;

d $n_{\rm D}^{20} = 1.5108$, $d_4^{20} = 1.0014$, **e** $n_{\rm D}^{20} = 1.5075$, $d_4^{20} = 0.9918$; **f**-**j** – гидрохлориды. ** Для соединений **2а**-**e** приведены т. кип. (мм рт. ст.), для соединений **2f**-**j** и **3fa**-**j** – т. пл.

Соели-	Химические сдвиги, б, м. д. (Ј, Гц)						
нение	=CH, c	CH ₂ , c	СН ₃ , с	СН ₂ –СН ₃ к; т	R		
2a	6.90	4.49	2.46	4.26, 1.30 (<i>J</i> = 6.9)	2.43, c		
2h	6.84	4.45	2.53	4.18, 1.27 (<i>J</i> = 6.8)	3.20, с; 7.32–8.00, м		
2i	7.06	4.59	2.58	4.33, 1.35 (J = 7.0)	7.16–7.65, м		
3a	7.00	5.01	2.72	-	2.45, c		
3b	7.02	5.05	2.70	-	1.23, т; 2.87, к (J=7.0)		
3i	7.04	5.03	2.73	-	7.30–7.88, м		

Спектры ЯМР ¹Н соединений 2, 3

В спектрах ЯМР ¹Н (табл. 2) соединений **2**, **3** присутствуют характерные синглетные сигналы протонов пиридинового ядра, групп CH_2 , и CH_3 , триплетные и квадруплетные сигналы протонов группы $CO_2CH_2CH_3$, а также сигналы протонов радикалов R.

Таким образом, описанный метод позволяет с высокими выходами и селективно синтезировать ранее не известные этиловые эфиры 4-хлорметилникотиновых кислот, которые могут быть исходными соединениями для получения структурных аналогов витамина PP, кардиамина и т. д.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на спектрометрах UR-20 и Specord M-80 с использованием тонкого слоя для жидких соединений и вазелинового масла для кристаллических. Спектры ЯМР ¹Н регистрировали на спектрометре Tesla BS-487В (80 МГц) внутренний стандарт ГМДС (δ 0.05 м. д.) для 5–10% растворов веществ в CCl₄ или ацетоне-d₆. Чистоту синтезированных соединений контролировали TCX на пластинках Silufol UV-254.

Исходные 2,3-дихлорпропенилкетоны получали по методике [5].

Этиловые эфиры 6-алкил-2-метил-4-хлорметилникотиновых кислот 2а-е. К раствору 0.1 моль 2-бром-3-хлор- или 2,3-дихлорпропенилалкилкетонов 1а-е в 100 мл эфира по каплям прибавляют 12.9 г (0.1 моль) этилового эфира β-аминокротоновой кислоты и 14 мл (0.1 моль) триэтиламина при 20–25 °C. Реакционную смесь кипятят 5 ч. После охлаждения ее промывают водой, водный слой экстрагируют эфиром, эфирные вытяжки объединяют, сушат MgSO₄. После отгонки растворителя остаток перегоняют в вакууме.

Гидрохлориды этиловых эфиров 6-бензил(фенил, *n*-толил, *n*-хлорфенил, циклогексил)-6-метил-4-хлорметилникотиновых кислот 2а-j. Аналогично указанной методике из 0.1 моль 2,3-дихлорпропенилбензил(фенил, *n*-толил, *n*-хлорфенил, циклогексил)кетонов 1а-j, 12.9 г (0.1 моль) этилового эфира β-аминокротоновой кислоты и 14 мл (0.1 моль) триэтиламина после соответствующей обработки получают безводный эфирный

раствор этиловых эфиров никотиновой кислоты 2а-j, через который пропускают ток 1187

сухого хлористого водорода. Осажденные кристаллы отфильтровывают, перекристаллизовывают из этилового спирта.

6-Алкил(бензил, фенил, *n***-толил,** *n***-хлорфенил, циклогексил)-4-метил-3-оксо-1,2дигидро[3,4-***c***]пиридины 3а–j. Эфирный раствор этиловых эфиров никотиновой кислоты 2а–j упаривают в вакууме и подвергают вакуумной перегонке при остаточном давлении 20–30 мм рт. ст. После перекристаллизации из гексана получают дигидрофурано[3,4-***c***]пиридины.**

СПИСОК ЛИТЕРАТУРЫ

- 1. Р. А. Гаджилы, Р. А. Наджафова, В. Г. Джафаров, С. С. Асадова, В. М. Федосеев, *XГС*, 769 (1993).
- 2. Н. К. Кочетков, А. Гонсалес, А. Н. Несмеянов, ДАН, **59**, 609 (1951).
- И. И. Ибрагимов, А. Н. Кост, А. Г. Алиев, С. П. Годжаев, Р. А. Гаджилы, Л. А. Свиридова, А. с. СССР 515746; Б. И., № 20, 65 (1976).
- 4. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976, с. 206, 219.
- 5. И. И. Ибрагимов, Э. И. Мамедов, А. Г. Алиев, Т. С. Мехтиева, Ш. З. Мехтиева, С. А. Гусейнов, Т. И. Абдуллаева, *ЖОрХ*, **26**, 1654 (1990).

Институт полимерных материалов НАН Азербайджана, Сумгаит Аз5004 e-mail:ipoma@dcacs.ab.az Поступило в редакцию 02.12.2003