Посвящается академику В. Минкину в знак уважения к его вкладу в органическую химию и прекрасным человеческим качествам, вспоминая его сотрудничество с коллегами из Риги

Л. Баумане, А. Краузе, С. Беляков, Л. Силе, Л. Чернова, М. Грига, Г. Дубурс, Я. Страдынь

СИНТЕЗ, СТРУКТУРА И ЭЛЕКТРОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ НИТРИЛОВ 4-АРИЛ-2-КАРБАМОИЛМЕТИЛТИО-5-ЭТОКСИКАРБОНИЛ-1,4-ДИГИДРОПИРИДИН-3-КАРБОНОВЫХ КИСЛОТ

Нитрилы 4-арил-2-карбамоилметилтио-5-этоксикарбонил-1,4-дигидропиридин-3-карбоновой кислоты получены S-алкилированием соответствующего нитрила 2-тиоксо-1,2,3,4-тетрагидропиридин-3-карбоновой кислоты иодацетамидом или методами однореакторного многокомпонентного синтеза: конденсацией этилового эфира 2арилиденацетоуксусной кислоты, 2-цианотиоацетамида, пиперидина и иодацетамида; этилового эфира ацетоук-сусной кислоты, 3-арил-2-цианотиоакриламида, пиперидина и иодацетамида; этилового эфира ацетоуксусной кислоты, ароматического альдегида, 2цианотиоацетамида, пипери-дина и иодацетамида. Проведен сравнительный анализ способности нитрилов 4-арил-2-алкилтио-5-этоксикарбонил-1,4-дигидропиридин-3карбоновых кислот к электрохимиче-скому окислению в зависимости от электронных свойств арилзаместителя в положении 4 гетероцикла и 2-алкилтиозаместителя. Данные рентгеноструктурного анализа указывают на существование водородной связи между С=О 2-карбамоилметилтиозаместителя и NH гид-рированного гетероцикла, чем объясняется более легкое окисление изучаемых соединений по сравнению с 2-метилтиозамещенными 1,4-дигидропиридинами.

Ключевые слова: 1,4-дигидропиридины, водородная связь, однореакторный мультикомпонентный метод, электрохимическое окисление, PCA.

Нитрилы 2-алкилтио-4-арил-1,4-дигидропиридин-3-карбоновых кислот представляют интерес как потенциальные антиоксиданты [1, 2], отличающиеся также кардиоваскулярной [3, 4] и гепатопротекторной [5] активностью.

Продолжая изучение химических и электрохимических свойств 2-алкилтио-1,4-дигидропиридинов [4, 6] и методы их получения [7, 8], мы синтезировали ряд новых нитрилов 4-арил-2-карбамоилметилтио-6-метил-5-этоксикарбонил-1,4-дигидропиридин-3-карбоновых кислот 1, в которых широко варьировались заместители в 4-фенильном кольце. Проведен сравнительный анализ способности нитрилов 4-арил-2-алкилтио-5-этоксикарбонил-1,4-дигидропиридин-3-карбоновых кислот 1 и 4 к электрохимическому окислению в зависимости от электронных свойств арилзаместителя в положении 4 гетероцикла и 2-алкилтиозаместителя, так как соответствующие значения потенциалов количественно характеризуют антиоксидантные свойства соединений. Данные электрохимического окисления были использованы для более целенаправленного поиска биологически активных веществ. Нитрилы 4-арил-2-карбамоилметилтио-5-этоксикарбонил-1,4-дигидропиридин-3-карбоновых кислот 1 получены конденсацией: А) этилового эфира 2-арилиденацетоуксусной кислоты, 2-цианотиоацетамида, пиперидина и иодацетамида; В) этилового эфира ацетоуксусной кислоты, 3-арил-2-цианотиоакриламида, пиперидина и иодацетамида; С) этилового эфира ацетоуксусной кислоты, ароматического альдегида, 2-цианотиоацетамида, пиперидина и иодацетамида и D) алкилированием нитрилов 4-арил-2тиоксо-1,2,3,4-тетрагидропиридин-3-карбоновых кислот 2 иодацетамидом (схема). Для сравнительного анализа соединение 1g получено всеми четырьмя методами. Методы многокомпонентного синтеза A (выходы соединений в пересчете на альдегид 47–60%), В (54–62%) и С (68–85%) имеют преимущества по сравнению с методом D (постепенный синтез, 33– 50%). Пятикомпонентный метод C в изученных случаях оказался наиболее эффективным и "зеленым" (отпадает необходимость синтеза лакриматоров – 3-арил-2-цианотиоакриламидов).

Эти наблюдения согласуются с данными по синтезу нитрилов 2-метилтио-1,4-дигидропиридин-3-карбоновых кислот 4. Установлено [4], что конструирование 1,4-дигидропиридин-2(3Н)-тионового цикла является весьма сложной задачей, так как эти соединения в разбавленных растворах легко окисляются (соединение 1d не удается получить методом D). Необходимо найти условия, позволяющие быстро их выделить из реакционной среды или трансформировать в более стабильные 2-алкилтио-1,4дигидропиридины, что возможно в случае применения методов А-С. С другой стороны, этиловые эфиры 2-арилиденацетоуксусной кислоты, полученные из ароматического альдегида и этилового эфира ацетоуксусной кислоты (исходные в случае метода А), образуются как смесь иис- и транс-изомеров [9], и их выделение порой длительно и трудоемко, так как при нагревании образуются продукты дальнейшей реакции по Михаэлю с участием этилового эфира ацетоуксусной кислоты как метиленового компонента. Лакриматоры 3-арил-2-цианотиоакриламиды, полученные из ароматического альдегида и 2-цианотиоацетамида (исходные в случае метода В), в присутствии оснований склонны к димеризации [10]. Кроме того, этиловые эфиры 2-арилиденацетоуксусной кислоты и 3-арил-2-цианотиоакриламиды, в отличие от ароматических альдегидов, при хранении не окисляются и поэтому в ряде случаев использованы как исходные компоненты с применением менее эффективных методов синтеза (A, B или D).

Применение методов А–С приводит к образованию 1,4-дигидропиридинов 1 с примесью 6-гидрокси-1,4,5,6-тетрагидропиридинов 3. При подкислении реакционной смеси, содержащей соединения 1 и 3, протекает окончательная дегидратация гидроксипроизводного 3 с образованием исключительно 1,4-дигидропиридинов 1.

Структура соединений 1 доказана спектроскопически. В ИК спектрах наиболее характерными являются полосы поглощения валентных колебаний цианогрупп при 2190–2200 см⁻¹ и три полосы С=О групп при 1686–1707 (СООЕt), 1670–1692 (СОNH₂) и 1632–1652 см⁻¹. Последнюю полосу можно отнести к валентным колебаниям С=О амидной группы, которая подвергнута влиянию водородной связи. В спектрах ЯМР ¹Н наблюдаются сигналы H-4 протонов при 4.42–5.12 м. д., подтверждающие

417

1,4-дигидропиридиновую структуру соединений 1.

a R = H, **b** R = 4-OH; **c** R = 4-OMe; **d** R = 2-OMe; **e** R = 4-Cl; **f** R = 3-Cl; **g** R = 2-Cl; **h** R = 4-NO₂; **i** R = 3-NO₂; **j** R = 4-CN; B: = пиперидин

419

Схема

Соеди	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл.,	Me-	Вы- ход,	
нение	формула	С	Н	Ν	S	Ĵ	тод	%*
1a	$C_{18}H_{19}N_3O_3S$					194–196 [7]	A D	75 (60) 79 (50)
1b	$\begin{array}{c} C_{18}H_{19}N_{3}O_{4}S\cdot\\ 1/2\ H_{2}O\end{array}$	<u>56.31</u> 56.53	<u>5.27</u> 5.27	<u>10.92</u> 10.98	<u>8.49</u> 8.38	202–204	В	94 (54)
1c	$C_{19}H_{21}N_3O_4S$					173–175 [4]	В	83 (60)
1d	$C_{19}H_{21}N_{3}O_{4}S$	<u>58.88</u> 58.90	<u>5.42</u> 5.46	$\frac{10.81}{10.84}$	<u>8.25</u> 8.28	203–205	В	84 (60)
							С	68 (68)
1e	$C_{18}H_{18}ClN_3O_3S$	<u>54.81</u> 55.17	<u>4.66</u> 4.63	<u>10.58</u> 10.72	<u>8.07</u> 8.18	193–195	А	72 (54)
1f	$C_{18}H_{18}ClN_3O_3S$	<u>55.17</u> 55.17	$\frac{4.48}{4.63}$	$\frac{10.78}{10.72}$	<u>8.19</u> 8.18	189–191	С	85 (85)
1g	$C_{18}H_{18}ClN_3O_3S$	<u>55.21</u> 55.17	<u>4.52</u> 4.63	$\frac{10.75}{10.72}$	<u>8.19</u> 8.18	193–195	А	84 (60)
							B C D	84 (62) 82 (82) 87(33)
1h	$C_{18}H_{18}N_4O_5S$	<u>53.68</u> 53.72	<u>4.38</u> 4.51	$\frac{13.80}{13.92}$	<u>7.99</u> 7.97	185–187	А	71 (47)
1i	$C_{18}H_{18}N_4O_5S$					184–186 [7]	D	84 (41)
1j	$C_{19}H_{18}N_4O_3S$					184–186 [8]	C D	73 (73) 73 (49)

Характеристики синтезированных соединений 1

* В пересчете на альдегид.

Характеристики синтезированных соединений и данные ИК и ЯМР ¹Н спектров представлены в таблицах 1, 2.

При электрохимическом окислении соединений **1**а–ј в безводном ацетонитриле на стационарном стеклографитовом электроде был зарегистрирован один пик окисления в интервале потенциалов от 1.18 до 1.29 В относительно насыщенного каломельного электрода. Для соединения **1**а зарегистрированы также полярограммы электрохимического окисления на вращающемся дисковом электроде, а на кольцевом электроде записаны волны восстановления окисленных продуктов. Оказалось, что электроокисление протекает по ранее установленному пути [6]: на дисковом электроде регистрируется одна волна окисления с потенциалом полуволны $E_{1/2} = 1.09$ В, а на кольцевом – волна восстановления продукта – протонированного пиридина – при потенциале $E_{1/2} = -1.12$ В (относительно Аg/AgNO₃).

Спектральные	характеристики	соединений 1

Соеди- нение	ИК спектр, v, см $^{-1}$	Спектр ЯМР ¹ Н (ДМСО-d ₆), б, м. д. (<i>J</i> , Гц)
1a	1642, 1676, 1700 (C=O); 2195 (C=N); 3160, 3328 (NH, NH ₂)	1.00 и 3.91 (5H, т и кв, OC ₂ H ₅); 2.24 (3H, с, CH ₃ -6); 3.55 и 3.68 (2H, д и д, <i>J</i> = 14.4, SCH ₂); 4.47 (1H, с, H-4); 7.1–7.3 (5H, m, C ₆ H ₅); 7.58 и 7.88 (2H, уш. с и уш. с, CONH ₂); 10.40 (1H, с, NH)
1b	1637, 1670, 1686 (C=O), 2190 (C≡N), 3270, 3360, 3458 (NH, NH₂, OH)	1.10 и 3.97 (5H, т и кв, OC ₂ H ₅); 2.30 (3H, с, CH ₃ -6); 3.63 и 3.72 (2H, д и д, <i>J</i> = 14.4, SCH ₂); 4.42 (1H, с, H-4); 6.72 и 6.98 (4H, д и д, C ₆ H ₄), 7.62 и 7.92 (2H, уш. с и уш. с, CONH ₂); 9.34 (1H, с, OH); 10.32 (1H, с, NH)
1c	1652, 1678, 1700 (C=O), 2200 (C≡N), 3214, 3362 (NH, NH ₂)	1.10 и 3.92 (5H, т и кв, OC ₂ H ₅); 2.28 (3H, с, CH ₃ -6); 3.58 и 3.72 (2H, д и д, <i>J</i> = 14.6, SCH ₂); 3.68 (3H, с, OCH ₃); 4.54 (1H, с, H-4); 6.84 и 7.07 (4H, д и д, C ₆ H ₄); 7.57 и 7.86 (2H, уш. с и уш. с, CONH ₂); 10.32 (1H, с, NH)
1d	1645, 1675, 1690 (C=O), 2190 (C≡N), 3165, 3198, 3350 (NH, NH ₂)	1.02 и 3.88 (5H, т и кв, OC ₂ H ₅); 2.33 (3H, с, CH ₃ -6); 3.58 и 3.70 (2H, д и д, <i>J</i> = 14.4, SCH ₂); 3.76 (3H, с, OCH ₃); 4.97 (1H, с, H-4); 6.8–7.3 (4H, м, C ₆ H ₄); 7.60 и 7.88 (2H, уш. с и уш. с, CONH ₂); 10.33 (1H, с, NH)
1e	1643, 1688, 1707 (C=O), 2198 (C≡N), 3160, 3338 (NH, NH ₂)	1.08 и 3.97 (5H, т и кв, OC ₂ H ₅); 2.32 (2H, с, CH ₃ -6); 3.62 и 3.74 (2H, д и д, <i>J</i> = 14.4, SCH ₂); 4.54 (1H, с, H-4); 7.72 и 7.38 (4H, д и д, C ₆ H ₄); 7.58 и 7.87 (2H, с и с, CONH ₂); 10.42 (1H, с, NH)
1f	1650, 1672, 1700 (C=O), 2190 (C≡N), 3180, 3350 (NH, NH ₂)	1.08 и 3.96 (5H, т и кв, OC ₂ H ₅); 2.32 (2H, с, CH ₃ -6); 3.62 и 3.74 (2H, д и д, <i>J</i> = 14.4, SCH ₂); 4.56 (1H, с, H-4); 7.05–7.45 (4H, м, C ₆ H ₄); 7.60 и 7.90 (2H, с и с, CONH ₂); 10.45 (1H, с, NH)
1g	1643, 1692, 1705 (С=О), 2196пл, 2200 (С=N), 3150, 3330 (NH, NH ₂)	1.00 и 3.86 (5H, т и кв, OC_2H_5); 2.34 (2H, с, CH_3 -6); 3.60 и 3.72 (2H, д и д, $J = 14.8$, SCH_2); 5.12 (1H, с, H-4); 7.2–7.5 (4H, м, C_6H_4); 7.62 и 7.90 (2H, с и с, $CONH_2$); 10.44 (1H, с, NH)
1h	1647, 1680, 1707 (C=O), 2190 (C≡N) 3160, 3340 (NH, NH ₂)	1.08 и 3.97 (5H, т и кв, OC ₂ H ₅); 2.36 (2H, с, CH ₃ -6); 3.56 и 3.78 (2H, д и д, <i>J</i> = 14.4, SCH ₂); 4.74 (1H, с, H-4); 7.52 и 8.26 (4H, д и д, C ₆ H ₄); 7.66 и 7.96 (2H, с и с, CONH ₂); 10.58 (1H, с, NH)
1i	1632, 1671, 1686 (C=O); 2192 (C≡N); 3140, 3208, 3318, 3342 (NH, NH ₂)	1.09 и 3.95 (5H, т и кв, OC ₂ H ₅); 2.31 (3H, с, CH ₃ -6); 3.75 и 3.64 (2H, д и д, <i>J</i> = 14.4, SCH ₂); 4.70 (1H, с, H-4); 7.1–8.1 (4H, м, C ₆ H ₄); 7.56 и 7.87 (2H, уш. с и уш. с, CONH ₂); 10.42 (1H, с, NH)
1j	1646, 1683, 1704 (C=O); 2196, 2228 (C=N); 3160, 3348 (NH, NH ₂)	1.07 и 3.95 (5H, т и кв, OC ₂ H ₅); 2.35 (3H, с, CH ₃ -6); 3.64 и 3.74 (2H, д и д, <i>J</i> = 14.8, SCH ₂); 4.64 (1H, с, H-4); 7.38 и 7.78 (4H, м, C ₆ H ₄); 7.62 и 7.90 (2H, уш. с и уш. с, CONH ₂); 10.49 (1H, с, NH)

Потенциалы электроокисления соединений **1а–ј** малочувствительны к изменению электронодонорных свойств заместителя в фенильном кольце в положении 4 1,4-дигидропиридинового цикла. Переход от выраженного электронодонорного заместителя *napa*-OCH₃ (соединение **1c**) к сильному электроноакцептору *napa*-NO₂ (соединение **1h**) повышает потенциал электроокисления лишь на 60 мВ (табл. 3). Такая же замена заместителей в нитрилах 4-арил-2-метилтио-5-этоксикарбонил-1,4-дигидропиридин-3-

карбоновой кислоты 4 сдвигает потенциал окисления в положительную область на 110 мВ [4], в симметричных 4-арил-2,6-диметил-3,5-ди(этоксиэт-оксикарбонил)-1,4-дигидропиридинах – на 120 мВ [11], а в 4-арил-2,6-диметил-3,5-ди(этоксикарбонил)-1,4-дигидропиридинах – на 240 мВ [12]. Малая чувствительность и неудовлетворительная корреляция с гамметовскими σ^* -константами потенциалов электрохимического окисления соединений 1 указывают на роль новых эффектов, помимо чисто электронного влияния.

Все изученные 2-карбамоилметилтио-1,4-дигидропиридины 1а-ј имеют одну особенность – они окисляются легче, чем соответствующие 2-метилтио-1,4-дигидропиридины 4а-і [4, 6]. Для 4-фенилпроизводного 1а разность потенциалов соответствующих соединений двух рядов составляет 60 мВ, а по мере увеличения электронодонорных или электроноакцеп-торных свойств заместителя в фенильном цикле она достигает 160 мВ (см. табл. 3 и [4]). Это не соответствует представлениям о влиянии донорных или акцепторных свойств заместителя на потенциалы электро-окисления исходных соединений, так как карбамоильная группа в положе-нии 2 1,4электроноакцепторными дигидропиридинового цикла обладает свойствами и должна затруднять отрыв первого электрона в электрохимическом процессе. 2-Метилтио-1,4-дигидропиридины 4 [4] были исследованы в ацетонитриле с добавкой камфоры; в настоящей же работе не было необходимости в такой добавке из-за малой адсорбируемости вещества на поверхности электрода. Установлено, что значения потенциалов пика окисления в чистом ацетонитриле и с добавкой камфоры для соединений 1а и 1ј совпадают. Следовательно, причины выявленной аномалии следует искать в другом.

Для представителей сравниваемых рядов соединений был проведен PCA. Монокристаллы выращены для 2-карбамоилметилтио-1,4-дигидропиридина **1e** и его аналога 2-метилтио-1,4-дигидропиридина **4e**. Пространственные модели молекул соединений **1e** и **4e** представлены на рис. 1, 2,

Таблица З

Значения потенциалов пиков окисления при циклической развертке потенциала на стационарном электроде (*E_n*) для соединений 1а–j в ацетонитриле на фоне 0.1 М (C₄H₉)₄NPF₆*

Соединение	E_n, \mathbf{B}	Соединение	E_n, \mathbf{B}
1 a	1.26	4a	1.32
1b	1.23	4b	1.32
1c	1.22	4c	1.33
1d	1.18	4d	1.28
1e	1.28	4e	1.42
1f	1.27	4f	1.42
1g	1.28.	4g	1.36
1h	1.28	4h	1.44
1i	1.29	4i	1.42
1j	1.28	4j	1.42

* Для сравнения приведены значения потенциалов электроокисления соединений **4a-j** [4].

Рис. 1. Пространственная модель молекулы соединения **1e** с обозначением атомов и их эллипсоидами тепловых колебаний

Рис. 2. Пространственная модель молекулы соединения **4**е с обозначением атомов и их эллипсоидами тепловых колебаний

Таблица 4

Chast	l,	Å	
Связь	1e	4e	
N(1)–C(2)	1.382(9)	1.374(3)	
N(1)–C(6)	1.388(9)	1.383(4)	
C(2)–C(3)	1.355(10)	1.351(4)	
C(3)–C(4)	1.528(10)	1.526(4)	
C(4)–C(5)	1.518(10)	1.525(4)	
C(5)–C(6)	1.345(10)	1.354(4)	
C(2)–S(7) 1.752(7)		1.763(3)	
Угол	ω, Γ	рад.	
C(2) N(1) $C(6)$	121 9(7)	122 2(3)	
N(1) - C(2) - C(3)	121.9(7) 120.0(7)	125.2(3) 119.2(2)	
N(1) - C(2) - S(7)	119 7(6)	119.2(2)	
R(1) = C(2) = S(7) C(3) = C(2) = S(7)	120.1(6)	117.2(2) 121.3(2)	
C(3) = C(2) = S(7) C(2) = C(3) = C(4)	120.1(0)	121.3(2) 122.0(2)	
C(2) = C(3) = C(4)	109 7(6)	122.0(2) 109.9(2)	
C(3) = C(4) = C(3) C(4) = C(5) = C(6)	109.7(0)	109.9(2) 121.1(2)	
C(4) = C(5) = C(6) = N(1)	122.6(7)	110 8(2)	
C(3) = C(0) = N(1) C(2) = S(7) = C(8)	120.0(7)	117.0(2) 102.4(2)	
(2) = 3(7) = C(0)	0.079(7)	0.114(3)	
$\Delta N(1), A$	0.077(7)	0.114(3) 0.274(2)	
$\Delta C(4), A$	0.199(7)	0.274(3)	
$\Delta S(7), A$	0.200(2)	0.3098(8)	
φ ₁ , град.	6.8(4)	10.1(2)	
ψ ₂ , град.	13.2(3)	18.2(2)	

Длины связей (1) и валентные углы (co) молекул соединений 1е и 4e*

* $\Delta N(1)$, $\Delta C(4)$, $\Delta S(7)$ – выходы соответствующих атомов из плоскости C(2), C(3), C(5), C(6); φ_1 – двугранный угол между плоскостями C(2), N(1), C(6) и C(2), C(3), C(5), C(6); φ_2 – двугранный угол между плоскостями C(3), C(4), C(5) и C(2), C(3), C(5), C(6).

длины связей и величины валентных углов в молекулах обоих соединений, а также некоторые параметры, характеризующие конформацию этих молекул, – в табл. 4. Рентгеноструктурный анализ однозначно указывает на то, что в молекуле соединения **1е**, в отличие от **4е**, имеется водородная связь. Посредством внутримолекулярной водородной связи $N(1)-H(1)\cdotsO(10)$ в молекуле соединения **1е** образуется семичленный цикл, конденсированный с дигидропиридиновым циклом. Длина водородной связи составляет 2.789(12) Å (H(1) $\cdotsO(10) = 2.0(1)$ Å, угол $N(1)-H(1)\cdotsO(10) = 168(9)^{\circ}$, что соответствует водородной связи средней силы [13]. Дигидропиридиновые циклы в молекулах **1е** и **4е** имеют конформацию уплощенной *ванны*, причем в молекула **1е** степень уплощения выше, чему, по-видимому, способствует образование внутримолекулярной водородной связи.

Рис. 3. Пространственная модель упаковки молекул в элементарной ячейке кристаллов **1e**

Рис. 4. Кристаллическая структура 4е в проекции на кристаллографическую плоскость (010)

Таблица 5

Характеристика	1e	4 e	
Брутто-формула	[C ₁₈ H ₁₈ ClN ₃ O ₃ S]·[C ₂ H ₅ OH] _{1/2}	C ₁₇ H ₁₇ ClN ₂ O ₂ S	
Цвет кристаллов	Бесцветный	Желтый	
Размер монокристалла, мм	$0.04 \times 0.13 \times 0.37$	$0.12 \times 0.23 \times 0.35$	
Кристаллическая сингония	Триклинная	Моноклинная	
Параметры кристаллической			
решетки, Å, град.			
а	8.413(1)	13.1194(7)	
b	10.403(2)	9.8636(7)	
С	14.168(3)	13.4731(9)	
α	68.482(7)	90	
β	87.997(8)	104.225(3)	
γ	68.23(1)	90	
Объем элементарной ячейки, V, Å ³	1063.9(3)	1690.0(2)	
Пространственная группа	$P \overline{1}$	$P 2_1/n$	
Ζ	2	4	
<i>F</i> (000)	434	728	
Плотность, D_x , г/см ³	1.295	1.371	
μ , Mm^{-1}	0.30	0.36	
$2\theta_{\max}$, °	50.0	55.0	
Число рефлексов			
измеренных	5537	6402	
независимых	3506	4136	
используемых в МНК	$1605 (I > 2\sigma_I)$	2535 (<i>I</i> > 3σ _{<i>I</i>})	
Число уточняемых параметров	255	276	
<i>R</i> -фактор	0.089	0.052	
wR_2	0.226	0.207	
$\Delta \rho_{\rm max}$, e/Å ³	0.32	0.41	
Δho_{\min} , e/Å ³	-0.25	-0.53	

Кристаллографические данные и параметры уточнения кристаллических структур 1е и 4е

В исследованных кристаллах обоих соединений имеются также межмолекулярные водородные связи (табл. 6). В структуре соединения 1е длины межмолекулярных водородных связей близки среднестатистическим значениям для водородных связей типа NH…O и NH…N [14]. В структуре 4е водородная связь является вилочной, поэтому соответствующие расстояния N…O и N…Cl длиннее среднестатистических [19]. Упаковки молекул в кристаллах 1е и 4е представлены на рис. 3 и 4. В кристаллической структуре 1е обнаружены разупорядоченные молекулы этанола C_2H_5OH (монокристаллы 1е выращены в смеси ацетонэтанол, 1:1). Для всех атомов молекулы этанола величины *g*-факторов составляют 0.5.

Таблица б

Соеди- нение	Связь D–Н…А	Длина связи Н D…A, Å	Расстояние D…A, Å	Угол, D–Н…А, град.	Симметрия атома А
1e	N(11)–H(111)···O(10)	2.896(12)	1.84(7)	165(5)	2-x, -y, -z
	N(11)–H(112)···N(13)	3.019(13)	2.05(8)	173(6)	1-x, 1-y, -z
4e	N(1)–H(1)…O(19)	3.060(4)	2.40(4)	142(3)	3/2- <i>x</i> , 1/2+ <i>y</i> , 3/2- <i>z</i>
	N(1)–H(1)…Cl(17)	3.715(3)	3.30(3)	116(2)	1/2+ <i>x</i> , 1/2+ <i>y</i> , 3/2+ <i>z</i>

Параметры межмолекулярных водородных связей в кристаллических структурах 1е и 4е

В ходе рентгеноструктурных исследований соединения 1е обнаружена внутримолекулярная водородная связь между протоном у атома азота в гетероцикле и атомом кислорода карбамоильной группы, а для соединения 4е таковая отсутствует, что, по-видимому, объясняет указанный эффект легкости электрохимического окисления соединения 1е. Пониженная кратность связей у атомя азота в положении 1 и у атома углерода в положении 4 гетероцикла указывает на уменьшение сопряжения между положением 1. где сосредоточена плотность электрона, и положением 4 1,4-дигидропиридинового цикла. N-Замещенные 1,4-дигидропиридины электрохимически окисляются легче, чем N-незамещенные. Так, потенциал окисления 4-фенил-2,6-диметил-3,5-ди(этоксикарбонил)-1,4-дигидропиридина на 90 мВ выше, чем его N-CH₃ производного [15, 16], 4-(4-метоксифенил)-2,6-диметил-3,5-ди(метоксикарбонил)-1,4-дигидропиридина – на 61 мВ, чем его N-CH₂CH₃ производного [17], а 4-(4-нитрофенил)-1,4дигидропиридина – на 57 мВ, чем N–CH₂CH₃ замещенного [17]. С другой стороны, заместитель у атома азота создает стерические препятствия для свободного вращения заместителей в положениях 2 и 6 и далее – для заместителей в положениях 3 и 5 гетероцикла. Водородная связь -Н...О=С(NH₂)- ослабляет связь N-H, тем самым облегчая процесс депротонизации и отрыва электрона. Следовательно, наличие водородной связи у атома азота может являться фактором, способствующим отрыву электрона в соединениях 1 с тиометилкарбамоильной группой по сравнению с соединениями 4, имеющими тиометильную группу в положении 2 1,4-дигидропиридинового цикла.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрометре Perkin-Elmer 580В в вазелиновом масле. Спектры ЯМР ¹Н записаны на спектрометре WH 90/DC (90 МГц) в DMSO-d₆, внутренний стандарт ГМДС (δ, 0.05 м. д.). Контроль за ходом реакции и индивидуальностью веществ осуществлен с помощью ТСХ на пластинках Silufol UV-254, элюент хлороформ-гексанацетон, 2:1:1. Соединения перекристаллизованы из этанола. Синтез соединений **1a** (метод A и D) и **1i** (метод D) описан в [7], **1c** (метод B) в [4] и **1j** (метод D) – в [8]. Исходные 427

этиловые эфиры 2-арилиденацетоуксусной кислоты синтезированы согласно практикуму по органической химии [18], а 3-арил-2-цианотиоакриламиды – согласно [10]. Выходы продуктов: этиловый эфир 2-бензилиденацетоуксусной кислоты – 80 %, этиловый эфир 2-(4-хлорбензилиден)ацетоуксусной кислоты – 75%, этиловый эфир 2-(2-хлорбензилиден)ацетоуксусной кислоты – 75%, этиловый эфир 2-(2-хлорбензилиден)ацетоуксусной кислоты – 66%, этиловый эфир 2-(3-нитробензилиден)ацетоуксусной кислоты – 80%, 3-(4-гидроксифенил)-2-цианотиоакриламид – 57%, 3-(4-метоксифенил)-2-цианотиоакриламид – 81%, 3-(2-хлорфенил)-2-цианотиоакриламид – 72% и 3-(2-хлорфенил)-2-цианотиоакриламид – 76%.

Циклические вольтамперные кривые регистрировали при помощи электрохимической системы PAR-170 с использованием трехэлектродной ячейки на стационарном стеклографитовом электроде. Электрод сравнения – водный насыщенный каломельный электрод, снабженный переходным мостиком для работы в неводных растворителях. Электрохимические исследования по методу вращающегося дискового электрода с кольцом проводили на установке, состоящей из системы вращения электрода Ring-Disk-Electrode System Model 636 фирмы PAR и двойного потенциостата E-350 фирмы Bruker. Дисковый и кольцевой электроды изготовлены из стеклографита. Вычисленный коэффициент эффективности электродов 0.39 [19], скорость вращения электродов 2000 мин⁻¹. Все потенциалы измеряли относительно 0.1 н. серебряного электрода сравнения (Ag/AgNO₃). Все исследования проведены в безводном ацетонитриле, очищенном по методике работы [20]. Концентрация деполяризатора 5.10⁻⁴ моль.л⁻¹. В качестве фонового электролита использовали 1.10¹ моль.л⁻¹ гексафторфосфат тетрабутиламмония.

Для РСА монокристаллы соединения 1е выращены в смеси растворителей ацетон – этиловый спирт (1:1), а монокристаллы соединения 4е – в хлороформе. Кристаллическую структуру соединений 1е и 4е определяли с помощью автоматического дифрактометра Nonius KappaCCD (съемка при комнатной температуре, молибденовое излучение с $\lambda = 0.71073$ Å, графитовый монохроматор, φ и ω сканирование). Структуры расшифрованы по методике [21] и уточнены полноматричным методом наименьших квадратов по программам [22] (для 1е) и [23] (для 4е). Основные кристаллографические характеристики 1е и 4е даны в табл. 5.

Общие методы синтеза нитрилов 4-арил-6-метил-2-карбамоилметилтио-5-эт-оксикарбонил-1,4-дигидропиридин-3-карбоновых кислот (1). А. Смесь 5 ммоль этилового эфира 2-арилиденацетоуксусной кислоты, 5 ммоль 2-цианотиоацетамида в 15–20 мл этанола и 6 ммоль пиперидина кратковременно нагревают до растворения и через 10 мин добавляют 5.5 ммоль иодацетамида. Кипятят 1–2 мин на водяной бане и добавляют 2 мл 3М HCl в этаноле. Образовавшийся осадок отфильтровывают, промывают 5–10 мл охлажденного до 0 °C этанола и 10 мл воды. Получают соединения 1a,e,g,h.

В. Смесь 5 ммоль этилового эфира ацетоуксусной кислоты, 5 ммоль 3-арил-2-цианотиоакриламида в 15–20 мл этанола и 6 ммоль пиперидина кратковременно нагревают до растворения и через 10 мин добавляют 5.5 ммоль иодацетамида. Кипятят 5 мин на водяной бане и добавляют 2 мл 3M HCl в этаноле. Образовавшийся осадок отфильтровывают, промывают 5–10 мл охлажденного до 0 °C этанола и 10 мл воды. Получают соединения **1b–d,g**.

С. Смесь 5 ммоль ароматического альдегида, 5 ммоль 2-цианотиоацетамида в 15–20 мл этанола и 1 ммоль пиперидина кратковременно нагревают до растворения. Затем, перемешивая при комнатной температуре, добавляют 5 ммоль этилового эфира ацетоуксусной кислоты и 5 ммоль пиперидина и через 10 мин 5.5 ммоль иодацетамида. Кипятят 5 минут на водяной бане и добавляют 2 мл 3М HCl в этаноле. Образовавшийся осадок отфильтровывают, промывают 5–10 мл охлажденного до 0 °С этанола и 10 мл воды. Получают соединения 1d,f,g.

D. Смесь 10 ммоль нитрила 2-тиоксо-1,2,3,4-тетрагидропиридин-3-карбоновой кислоты 2, 11 ммоль пиперидина и 11 ммоль иодацетамида в 20–40 мл этанола кипятят 2–5 мин на водяной бане и перемешивают в течении 5–10 мин при комнатной температуре. Образовавшийся осадок отфильтровывают, промывают 5–10 мл охлажденного до 0 °C этанола и 10 мл воды. Получают соединения **1a**,**g**,**i**,**j**.

Характеристики синтезированных соединений приведены в табл. 1 и 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. Э. Кируле, А. А. Краузе, А. Х. Велена, Д. Ю. Антипова, Г. Я. Арницане, И. А. Вуцина, Г. Я. Дубур, *Хим.-фарм. журн.*, **26**, № 11/12, 59 (1992).
- 2. Д. Тирзите, А. Краузе, А. Зубарева, Г. Тирзитис, Г. Дубурс, ХГС, 902 (2002).
- 3. А. А. Краузе, Р. О. Витолиня, М. Р. Романова, Г. Я. Дубур, *Хим.-фарм. журн.*, **22**, 955 (1988).
- 4. А. Краузе, Л. Баумане, Л. Силе, Л. Чернова, М. Вилюмс, Р. Витолиня, Г. Дубурс, Я. Страдынь, *ХГС*, 1022 (2004).
- 5. А. А. Краузе, А. Г. Одынец, А. А. Веррева, С. К. Германе, А. Н. Кожухов, Г. Я. Дубур, *Хим.-фарм. журн.*, **25**, № 7, 40 (1991).
- 6. Л. Баумане, А. Краузе, Л. Чернова, Л. Силе, Г. Дубурс, Я. Страдынь, ХГС, 1808 (2003).
- 7. А. А. Краузе, Э. Э. Лиепиныш, Ю. Э. Пелчер, Г. Я. Дубур, *XГС*, 124 (1987).
- 8. А. Краузе, Г. Дубурс, ХГС, 794 (2000).
- 9. P. Albough-Robertson, J. A. Katzenellenbogen, J. Org. Chem., 48, 5288 (1983).
- 10. J. S. A. Brunskill, A. De, D. F. Ewing, J. Chem. Soc., Perkin Trans. 1, 629 (1978).
- 11. Я. П. Страдынь, Ю. И. Бейлис, Я. Р. Улдрикис, Г. Я. Дубур, А. Э. Саусынь, Б. С. Чекавичус, *XIC*, 1525 (1975).
- 12. Я. П. Страдынь, Г. Я. Дубур, Ю. И. Бейлис, Я. Р. Улдрикис, А. Ф. Короткова, ХГС, 84 (1972).
- 13. Fundamentals of Crystallography, C. Giacovazzo (Ed.), Oxford Univer. Press, 2002, 590 p.
- 14. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).
- 15. Я. В. Огле, Я. П. Страдынь, Г. Я. Дубур, В. К. Лусис, В. П. Кадыш, ХГС, 1263 (1980).
- 16. J. Ogle, J. Stradins, L. Baumane, Electrochim. Acta, 39, 73 (1994).
- 17. C. López-Alarcón, L. J. Núňez-Vergara, J. A. Squella, Electrochim. Acta, 48, 2505 (2003).
- 18. Органикум. Практикум по органической химии, пер. с нем., 2, Мир, Москва, 1979, с. 147.
- 19. М. Р. Тарасевич, Е. И. Хрущева, В. Ю. Филиновский, Вращающийся дисковый электрод с кольцом, Наука, Москва, 1987, с. 247.
- 20. D. Clark, M. Fleishmann, D. Pletcher, J. Electroanal. Chem., 36, 137 (1972).
- 21. А. Ф. Мишнев, С. В. Беляков, *Кристаллография*, **33**, 835 (1988).
- 22. G. M. Sheldrick, *Crystallographic Computing*, **6**, H. D. Flack, L. Parkanyi, K. Simon (Eds.), IUCr and Oxford Univer. Press, 1993, p. 110.
- S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, *maXus* Computer Program for the Solution and Refinement of Crystal Structures. Bruker Nonius, The Netherlands, MacScience, Japan & The Univer. of Glasgow, 1999.

Латвийский институт органического синтеза, Рига LV-1006 e-mail: lbaumane@osi.lv Поступило в редакцию 29.10.2004