Д. Зицане, И. Равиня, З. Тетере, М. Петрова

СИНТЕЗ ПРОИЗВОДНЫХ 3,5-ДИОКСОПИРАЗОЛИДИНА

При реакции моногидразидов 2-R-4-метилциклогекс-4-ен-1,1-дикарбоновых кислот с диэтиловым эфиром этоксиметиленмалоновой кислоты получены N-(2,2-диэтоксикарбонилэтенил)гидразиды 2-R-4-метилциклогекс-4-ен-1,1-дикарбоновых кислот, которые ацилируются ангидридами трифторуксусной и уксусной кислот с образованием производных 3,5-диоксопиразолидина и 5-оксопиразолина соответственно.

Ключевые слова: гидразиды циклогексендикарбоновых кислот, 3,5-диоксопиразолидины, диэтиловый эфир этоксиметиленмалоновой кислоты, 5-оксопиразолины.

Ранее [1] нами установлено, что взаимодействие моногидразидов 2-R-4-метилциклогекс-4-ен-1,1-дикарбоновых кислот с ангидридами кислот приводит к образованию 4,4-спирозамещенных 3,5-диоксопиразолидинов.

Настоящая работа посвящена изучению возможностей синтеза производных 3,5-диоксопиразолидина в аналогичных условиях из N-замещенных моногидразидов. Для получения последних проведена реакция гидразидов **1а–f** с диэтиловым эфиром этоксиметиленмалоновой

1, **3–5 a** R = H, **b** R = Ph, **c** R = 4-FC₆H₄, **d** R = 4-ClC₆H₄, **e** R = 4-BrC₆H₄, **f** R = 4-O₂NC₆H₄ 216

кислоты (2). Как и при конденсации эфира 2 с арилгидразинами, реакция соединения 2 с гидразидами 1а–f протекает исключительно по енольной этоксигруппе диэтилэтоксиметиленмалоната 2 с образованием N-(2,2-диэтоксикарбонилэтенил)гидразидов 2-R-4-метилциклогекс-4-ен-1,1-дикарбоновых кислот 3а–f.

Таблица 1

Coe- ди-	Брутго- формула	<u>Найдено, %</u> Вычислено, %				Т. пл.,	Выход,
нение		С	Н	Ν	Hal	°C	%
3a	$C_{17}H_{24}N_2O_7$	<u>55.48</u> 55.43	<u>6.25</u> 6.57	<u>7.52</u> 7.60		162–164	91.4
3b	$C_{23}H_{28}N_2O_7$	<u>62.05</u> 62.14	<u>6.29</u> 6.36	<u>6.18</u> 6.30		168–169	78.9
3c	$C_{23}H_{27}FN_{2}O_{7} \\$	<u>59.83</u> 59.76	<u>6.02</u> 5.89	<u>6.12</u> 6.06	$\frac{4.14}{4.11}$	174–176	75.4
3d	$C_{23}H_{27}ClN_2O_7$	<u>57.46</u> 57.68	<u>5.74</u> 5.68	<u>5.58</u> 5.85	<u>7.35</u> 7.40	132–134	95.1
3e	$C_{23}H_{27}BrN_2O_7$	<u>52.71</u> 52.78	$\frac{5.06}{5.20}$	<u>5.50</u> 5.35	<u>15.53</u> 15.27	137–139	97.9
3f	$C_{23}H_{27}N_3O_9$	<u>56.46</u> 56.44	<u>5.54</u> 5.56	<u>8.32</u> 8.58		184–186	80.6
4a	$C_{17}H_{22}N_2O_6$	<u>58.97</u> 58.27	<u>6.32</u> 6.33	<u>7.87</u> 7.99		153–154	62.9
4b	$C_{23}H_{26}N_2O_6$	<u>64.55</u> 64.77	<u>5.58</u> 6.14	<u>6.76</u> 6.57		131–132	65.1
4c	$C_{23}H_{25}FN_2O_6$	$\frac{\underline{62.28}}{\underline{62.16}}$	<u>5.80</u> 5.67	$\frac{6.34}{6.30}$	$\frac{4.08}{4.27}$	114–116	68.4
4d	$C_{23}H_{25}ClN_2O_6$	<u>60.06</u> 59.94	<u>5.35</u> 5.47	<u>6.18</u> 6.08	<u>7.71</u> 7.70	138–140	78.9
4e	$C_{23}H_{25}BrN_2O_6$	<u>54.72</u> 54.66	<u>4.89</u> 4.99	<u>5.70</u> 5.54	<u>15.99</u> 15.81	140-142	78.5
4f	$C_{23}H_{25}N_3O_8$	<u>58.42</u> 58.59	<u>5.62</u> 5.35	<u>8.93</u> 8.91		124–125	73.7
5a	$C_{19}H_{24}N_2O_7$	<u>58.13</u> 58.15	<u>6.25</u> 6.16	<u>7.25</u> 7.14		132–133	64.1
5b	$C_{25}H_{28}N_2O_7$	<u>63.82</u> 64.08	<u>5.92</u> 6.04	<u>6.13</u> 5.98		102–103	61.7
5c	$C_{25}H_{27}FN_{2}O_{7} \\$	<u>61.83</u> 61.72	<u>5.61</u> 5.59	<u>5.83</u> 5.76	<u>3.90</u> 3.91	134–136	81.1
5d	$C_{25}H_{27}ClN_2O_7$	<u>59.95</u> 59.69	<u>5.38</u> 5.41	<u>5.36</u> 5.57	<u>7.12</u> 7.05	142–143	70.0
5e	$C_{25}H_{27}BrN_2O_7$	<u>54.72</u> 54.85	<u>4.91</u> 4.97	<u>5.15</u> 5.12	$\frac{14.63}{14.60}$	132–134	71.8
5f	$C_{25}H_{27}N_3O_9$	<u>58.52</u> 58.48	<u>5.35</u> 5.30	<u>8.21</u> 8.18		183–185	85.7

Характеристики синтезированных соединений 3–5

Спектральные характеристики синтезированных соединений

Соеди-	ИК спектр, v , см ⁻¹		Спектр ЯМР ¹ Н бмл (КССВ / Гл)*	
нение	C=O	NH	Спектр лин 11, 0, м. д. (КССВ, 0, 1 ц)	
1	2	3	4	
3a	1740, 1700, 1680, 1640	3315–3215	1.21 (3H, т, <i>J</i> = 7, CH ₃); 1.25 (3H, т, <i>J</i> = 7, CH ₃); 1.66 (3H, с, CH ₃); 1.97–2.20 (4H, м, 2CH ₂); 2.58 (2H, м, 2CH); 4.21 (4H, м, 2CH ₂); 5.42 (1H, м, =CH–); 7.98 (1H, д, <i>J</i> = 12.5, =CH–); 9.48 (1H, уш. с, NH); 10.16 (1H, д, <i>J</i> = 12.5, NH); 11.20 (1H, уш. с, COOH)	
3b	1748, 1700, 1690, 1650	3300–3200	1.22 (3H, т, <i>J</i> = 7, CH ₃); 1.25 (3H, т, <i>J</i> = 7, CH ₃); 1.67 (3H, с, CH ₃); 2.28-2.89 (4H, м, 2CH ₂); 3.61 (1H, м, CH); 4.07 (4H, кв, <i>J</i> = 7, 2CH ₂); 5.44 (1H, м, =CH–); 7.16 (5H, м, Ar); 7.69 (1H, д, <i>J</i> = 13, =CH); 9.13 (1H, уш. с, NH); 9.29 (1H, уш. с, COOH); 9.93 (1H, д, <i>J</i> = 13, NH)	
3c	1742, 1702, 1675, 1617	3330–3220	1.22 (3H, т, <i>J</i> = 7, CH ₃); 1.25 (3H, т, <i>J</i> = 7, CH ₃); 1.71 (3H, c, CH ₃); 2.26–2.82 (4H, м, 2CH ₂); 2.65 (1H, м, CH); 4.13 (4H, кв, <i>J</i> = 7, 2CH ₂); 5.49 (1H, м, =CH–); 6.78–7.24 (4H, м, Ar); 7.73 (1H, д, <i>J</i> = 13, =CH); 9.29 (1H, уш. с, NH); 9.93 (1H, д, <i>J</i> = 13, NH); 10.31 (1H, уш. с, COOH)	
3d	1738, 1700, 1670, 1615	3328-3220	1.23 (3H, т, <i>J</i> = 7, CH ₃); 1.25 (3H, т, <i>J</i> = 7, CH ₃); 1.69 (1H, с, CH ₃); 2.19–2.93 (4H, м, 2CH ₂); 3.63 (1H, м, CH); 4.15 (4H, кв, <i>J</i> = 7, 2CH ₂); 5.51 (1H, м, =CH); 7.26 (4H, м, Ar); 7.76 (1H, д, <i>J</i> = 14, =CH–); 9.15 (1H, уш. с, NH); 9.87 (1H, д, <i>J</i> = 14, NH); 9.92 (1H, уш. с, COOH)	
3e	1734, 1702, 1670, 1620	3350–3220	1.21 (3H, т, <i>J</i> = 7, CH ₃); 1.23 (3H, т, <i>J</i> = 7, CH ₃); 1.62 (3H, с, CH ₃); 1.84–2.91 (4H, м, 2CH ₂); 3.78 (1H, м, CH); 4.12 (4H, кв, <i>J</i> = 7, 2CH ₂); 5.49 (1H, м, =CH); 7.16 (2H, м, <i>J</i> = 8, Ar); 7.44 (2H, м, <i>J</i> = 8, Ar); 7.69 (1H, д, <i>J</i> = 14, =CH–); 10.29 (1H, д, <i>J</i> = 14, NH); 11.10 (1H, уш. с, NH); 11.50 (1H, уш. с, COOH)	
3f	1730, 1715, 1680, 1615	3400–3310	1.21 (3H, т, <i>J</i> = 7, CH ₃); 1.23 (3H, т, <i>J</i> = 7, CH ₃); 1.71 (3H, с, CH ₃); 1.92–2.93 (4H, м, 2CH ₂); 4.05 (1H, м, CH); 4.13 (4H, кв, <i>J</i> = 7, 2CH ₂); 5.59 (1H, м, CH); 7.49 (2H, м, <i>J</i> = 8, Ar); 7.69 (1H, д, <i>J</i> = 13, =CH–); 8.15 (2H, м, <i>J</i> = 8, Ar); 10.25 (1H, д, <i>J</i> = 13, NH); 10.96 (1H, уш. с, NH); 11.10 (1H, уш. с, COOH)	
4a	1740, 1720, 1680, 1610	3100	1.29 (3H, т, <i>J</i> = 7, CH ₃); 1.32 (3H, т, <i>J</i> = 7, CH ₃); 1.69 (3H, с, CH ₃); 1.89–2.33 (6H, м, 3CH ₂); 4.24 (2H, кв, <i>J</i> = 7, CH ₂); 4.31 (2H, кв, <i>J</i> = 7, CH ₂); 5.38 (1H, м, =CH–); 8.08 (1H, с, =CH–); 10.07 (1H, уш. с, NH)	
4b	1745, 1730, 1680, 1610	3220	1.21 (6H, м, 2CH ₃); 1.71 (3H, с, CH ₃); 1.92–3.38 (5H, м, 2CH ₂ , CH); 4.26 (4H, м, 2CH ₂); 5.43 (1H, м, CH); 7.16 (5H, м, C ₆ H ₅); 7.96 (1H, с, =CH–); 9.78 (1H, уш. с, NH)	
4c	1740, 1720, 1680, 1610	3210	1.25 (3H, т, <i>J</i> = 7, CH ₃); 1.28 (3H, т, <i>J</i> = 7, CH ₃); 1.76 (3H, с, CH ₃); 2.02–2.99 (4H, м, 2CH ₂); 3.33 (1H, м, CH); 4.18 (4H, кв, <i>J</i> = 7, 2CH ₂); 5.38 (1H, м, =CH–); 6.89–7.11 (4H, м, Ar); 7.96 (1H, с, =CH–); 9.60 (1H, уш. с, NH)	
4d	1740, 1725, 1685, 1620	3230	1.29 (3H, т, <i>J</i> = 7, CH ₃); 1.31 (3H, т, <i>J</i> = 7, CH ₃); 1.82 (3H, с, CH ₃); 2.09–3.39 (5H, м, CH); 3.39 (5H, м, 2CH ₂ , CH); 4.21 (4H, кв, <i>J</i> = 7, 2CH ₂); 5.42 (1H, м, =CH–); 7.05–7.21 (4H, м, Ar); 9.02 (1H, с, =CH–); 9.02 (1H, уш. с, NH)	
4e	1745, 1720, 1682, 1615	3210	1.22 (3H, т, <i>J</i> = 7, CH ₃); 1.25 (3H, т, <i>J</i> = 7, CH ₃); 1.73 (3H, с, CH ₃); 1.97–3.01 (4H, м, 2CH ₂); 3.36 (1H, м, CH); 4.19 (4H, кв, <i>J</i> = 7, 2CH ₂); 5.39 (1H, м, =CH–); 7.05–7.42 (4H, м, Ar); 8.02 (1H, с, =CH–); 9.36 (1H, уш. с, NH)	

218

Окончание таблицы 2

1	2	3	4
4f	1740, 1716, 1680, 1610	3200	1.25 (6H, м, 2CH ₃); 1.78 (3H, с, CH ₃); 2.09–3.09 (4H, м, 2CH ₂); 3.53 (1H, м, CH); 4.21 (4H, м, 2CH ₂); 5.49 (1H, м, CH); 7.31 (2H, м, Ar); 8.11 (3H, м, Ar, =CH–); 9.97 (1H, уш. с, NH)
5a	1760, 1732, 1700, 1630		1.22 (6H, т, <i>J</i> = 7, 2CH ₃); 1.66 (3H, с, CH ₃); 1.86–2.38 (6H, м, 3CH ₂); 2.53 (3H, с, CH ₃); 4.11 (4H, кв, <i>J</i> = 7, 2CH ₂); 5.28 (1H, м, =CH–); 7.44 (1H, с, =CH–)
5b	1770, 1745, 1715, 1645		1.27 (6H, т, <i>J</i> = 7, CH ₃); 1.29 (3H, т, <i>J</i> = 7, CH ₃); 1.76 (3H, с, CH ₃); 2.04 (3H, с, CH ₃); 2.11–3.01 (4H, м, 2CH ₂); 3.22 (1H, м, CH); 4.22 (2H, кв, <i>J</i> = 7, CH ₂); 4.25 (2H, кв, <i>J</i> = 7, CH ₂); 5.38 (1H, м, =CH–); 7.21 (1H, с, =CH–); 7.25 (5H, м, Ar)
5c	1760, 1740, 1716, 1640		1.22 (3H, т, <i>J</i> = 7, CH ₃); 1.25 (3H, т, <i>J</i> = 7, CH ₃); 1.73 (3H, с, CH ₃); 2.13 (3H, с, CH ₃); 2.07–3.02 (4H, м, 2CH ₂); 3.24 (1H, м, CH); 4.18 (2H, кв, <i>J</i> = 7, CH ₂); 4.23 (2H, кв, <i>J</i> = 7, CH ₂); 5.37 (1H, м, =CH–); 7.04 (4H, м, Ar); 7.07 (1H, м, =CH–)
5d	1765, 1740, 1715, 1640		1.27 (6H, т, <i>J</i> = 7, CH ₃); 1.29 (3H, т, <i>J</i> = 7, CH ₃); 1.73 (3H, с, CH ₃); 2.02–2.89 (4H, м, 2CH ₂); 2.17 (3H, с, CH ₃); 3.22 (1H, м, CH); 4.18 (4H, м, 2CH ₂); 5.41 (1H, м, =CH–); 7.16 (1H, с, =CH–); 7.21 (4H, м, Ar)
5e	1760, 1740, 1715, 1640		1.24 (3H, т, <i>J</i> = 7, CH ₃); 1.27 (3H, т, <i>J</i> = 7, CH ₃); 1.71 (3H, с, CH ₃); 2.07–2.93 (4H, м, 2CH ₂); 3.21 (1H, м, CH); 4.18 (4H, м, 2CH ₂); 5.28 (1H, м, =CH–); 7.11 (2H, м, <i>J</i> = 8, Ar); 7.11–7.38 (5H, м, Ar, =CH–)
5f	1765, 1730, 1716, 1640		1.26 (3H, т, <i>J</i> = 7, CH ₃); 1.28 (3H, т, <i>J</i> = 7, CH ₃); 1.73 (3H, с, CH ₃); 2,16 (3H, с, CH ₃); 2.02–3.07 (4H, м, 2CH ₂); 3.42 (1H, м, CH); 4.18 (2H, кв, <i>J</i> = 7, CH ₂); 4.21 (2H, кв, <i>J</i> = 7, CH ₂); 5.38 (1H, м, =CH–); 7.29 (2H, м, <i>J</i> = 8, Ar); 7.32 (1H, с, =CH); 8.16 (2H, м, <i>J</i> = 8, Ar)

* Соединения **3c**,**f** в ДМСО-d₆, остальные соединения – в CDCl₃.

При кратковременном кипячении N-замещенных гидразидов **3a**–f с ангидридом трифторуксусной кислоты вследствие внутримолекулярного ацилирования образуются диэтил[(8-метил-1,4-диоксо-6-R-2,3-диазаспиро-[4,5]дец-8-ен-2-ил)метилен]малонаты **4a**–f. Их структура установлена на основании данных спектров ЯМР ¹H, а состав подтвержден данными элементного анализа. В спектрах ЯМР ¹H соединений **4a**–f в слабых полях наблюдается лишь один уширенный сигнал протона NH при 9.02–10.07 м. д. и отсутствуют, регистрируемое в спектрах ЯМР ¹H соединений **3a**–f, характерное поглощение *транс*-фиксированного фрагмента =CH–NH– в виде двух дублетов ($\delta_{=CH}$ 7.49–7.98, δ_{NH} 9.98–10.23 м. д.) и уширенный слабопольный сигнал протонов карбоксильной группы.

Реакция гидразидов 3a-f с уксусным ангидридом протекает при кипячении исходных продуктов в течение 1 ч и приводит к образованию аналогичных циклических, но уже ацетилированных продуктов. Наличие в молекуле 3,5-диоксопиразолидина двух нуклеофильных центров позволяет предположить возможность образования продуктов как О-ацилирования (**A**), так и N-ацилирования (**B**). По данным спектров ЯМР ¹Н и

элементного анализа судить о месте ацилирования невозможно. Выбор в пользу О-ацилпродукта (A) сделан нами на основании результатов работы [1] и данных ИК спектров, в которых наблюдаются высокочастотные полосы поглощения эфирных карбонилов ацетоксигрупп в области 1716–1700 см⁻¹ и отсутствует поглощение амидных карбонильных и – NH-групп.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н получены на приборе WH-90/DS (90 МГц), растворители CDCl₃ и ДМСО-d₆, внутренний стандарт ГМДС (0.055 м. д.). ИК спектры зарегистрированы на приборе Specord-75 для суспензий в вазелиновом масле и гексахлорбутадиене. Индивидуальность полученных соединений проверяли методом TCX на пластинках Silufol в системе растворителей хлороформ-метанол-ледяная уксусная кислота, 95 : 5 : 5.

Моногидразиды **1а-f** синтезированы нами ранее [3]. Диэтиловый эфир этоксиметиленмалоновой кислоты (**2**) предоставлен фирмой "БАПЕКС".

N-(2,2-Диэтоксикарбонилэтенил)гидразиды 2-R-4-метилциклогекс-4-ен-1,1-дикарбоновых кислот (3a-f). Суспензию 5 ммоль гидразидов **1a-f** и эквимолярное количество диэтилового эфира **2** в 40 мл этанола кипятят 1 ч. Половину этанола отгоняют, к остатку прибавляют ~10 мл воды и оставляют на 10–12 ч. Фильтруют, для анализа перекристаллизовывают из этанола.

Диэтил[(8-метил-1,4-диоксо-6-R-2,3-диазаспиро[4,5]дец-8-ен-2-ил)метилен]малонаты (4а-f). Кипятят 1 ммоль гидразидов 3а-f в 1.5 мл ангидрида трифторуксусной кислоты в течение 1 ч. Трифторуксусный ангидрид отгоняют, остаток растирают с гексаном. Фильтруют, перекристаллизовывают из смеси этанол-вода, 1 : 1.

Диэтил[(4-ацетокси-8-метил-1-оксо-6-R-2,3-диазаспиро[4,5]дека-3,7-дион-2-ил)метилен]малонаты (5а–f). Кипятят 1 ммоль гидразидов 3а–f в 1.5 мл ангидрида уксусной кислоты в течение 1 ч. Уксусный ангидрид отгоняют, к остатку добавляют ~10 мл воды и перемешивают 1 ч. Водный раствор сливают и затвердевшее масло перекристаллизовывают из этанола.

СПИСОК ЛИТЕРАТУРЫ

- 1. Д. Р. Зицане, З. Ф. Тетере, И. А. Рийкуре, М. В. Петрова, Э. Ю. Гудриниеце, У. О. Калей, *XTC*, 903 (2000).
- 2. D. Zicāne, Z. Tetere, I. Rāviņa, M. Petrova, RTU 43. Starptautiskā zin. konf., Rīga, 59 (2002).
- 3. Д. Р. Зицане, И. Т. Равиня, И. А. Рийкуре, З. Ф. Тетере, Э. Ю. Гудриниеце, У. О. Калей, *ЖОрХ*, **36**, 521 (2000).

Рижский технический университет, Puгa LV-1048, Латвия e-mail: daina_zi@ktf.rtu.lv e-mail: marina@osi.lv Поступило в редакцию 20.01.2003