П.А.Стужин, Е.А.Поздышева, О.В.Мальчугина, И.А. Попкова, К.Эрколани^а

ТЕТРАКИС(ТИАДИАЗОЛО)ПОРФИРАЗИНЫ

3*. ИССЛЕДОВАНИЕ КИСЛОТНО-ОСНОВНЫХ СВОЙСТВ И УСТОЙЧИВОСТИ ТЕТРАКИС-3,4-(1,2,5-ТИАДИАЗОЛО)ПОРФИРАЗИНА В СЕРНОКИСЛОТНЫХ РАСТВОРАХ

Методом AM1 определены величины протонного сродства различных типов донорных центров в молекуле тетракис-3,4-(1,2,5-тиадизоло)порфиразина $H_2\{(SN_2)_4PA\}$ и показано, что протонирование *мезо*-атомов азота является предпочтительным. Спектрофотометрическим методом установлено, что в этом соединении основность *мезо*-атомов азота порфиразинового макроцикла сильно понижена и в среде CF₃COOH они вступают лишь в незавершенное кислотно-основное взаимодействие (КОВ), образуя кислотные сольваты, а завершенное КОВ (протонирование) наблюдается лишь в присутствии H_2SO_4 . Методом спектрофотометрического титрования в среде $CF_3COOH-H_2SO_4$ определены константы основности *мезо*-атома азота. Изучена кинетика деструкции макроциклического хромофора в конц. H_2SO_4 и предложен ее возможный механизм.

Ключевые слова: порфиразины, 1,2,5-тиадиазол, AM1 расчеты, основные свойства, протонное сродство, электронные спектры поглощения.

Порфиразины (H₂PA) являются многоцентровыми основаниями, в которых имеющиеся донорные центры – два внутренних пирролениновых атома азота и четыре мостиковых мезо-атома азота – включены в единую сопряженную π -систему макроцикла и их основные свойства сильно взаимосвязаны и взаимозависимы [3, 4]. При аннелировании в β , β -положения пиррольных колец азотсодержащих гетероциклов, как это имеет место, например, в случае давно уже известных тетра(пиридино)- или тетра(пиразино)порфиразинов, H₂{(Py)₄PA} и H₂{(Pyz)₄PA} [5], в сопряженной системе появляются дополнительные донорные центры, также способные к участию в кислотно-основном взаимодействии (KOB). Недавно [1] нами был получен новый порфиразин с аннелированными 1,2,5-тиадиазольными кольцами – тетракис-3,4-(1,2,5-тиадиазоло)порфиразин, H₂{(SN₂)₄PA} (рис. 1). В настоящей работе мы изучили его основные свойства.

В растворителях нейтрального характера (хлорбензол, дихлорметан) H₂{(SN₂)₄PA} растворим очень плохо. В растворителях основного или протонодонорного характера за счет сильной специфической сольватации

^{*} Сообщения 1, 2 см. [1, 2].

Рис. 1. Структурная формула тетракис-3,4-(1,2,5-тиадиазоло)порфиразина, H₂{(SN₂)₄PA} и использованная схема нумерации атомов

кислотных и основных центров молекулы растворимость существенно увеличивается. Так, в пиридине наблюдается очень сильная сольватация связей N–H и образование так называемой "пиридиниевой соли" 2Py·H₂{(SN₂)₄PA} [1].

В протонодонорных средах (карбоновые кислоты) растворимость возрастает за счет кислотной сольватации донорных атомов азота (внутрициклические пирролениновые (N_{pyr}), *мезо*-атомы азота (N_{meso}) и атомы азота тиадиазольных фрагментов (N_{het})). В сильнопротонодонорных средах (растворы минеральных кислот), помимо кислотной сольватации (незавершенное КОВ), может также происходить перенос протона к донорному центру внутри сольватной оболочки за счет пересольватации с образованием H-ассоциатов и ион-ионных ассоциатов (завершенное КОВ) и диссоциация ионного ассоциата с образованием ионизированной протонированной формы:

B: + HA ◄	B:HA ➡	$B:H^{\delta_+}A^{\delta} \stackrel{\Longrightarrow}{\Longrightarrow}$	B:H ⁺ A [−] =	$B:H^+ + A^-$
1	кислотный ассоциат	Н-ассоциат	ион-ионный ассоциат	протониро- ванная форма

Поскольку все кислотные и основные центры $H_2\{(SN_2)_4PA\}$ входят в состав единого макроциклического π -хромофора процессы КОВ сильно отражаются на виде и положении полос в электронных спектрах поглощения (ЭСП). Исследование зависимости ЭСП порфиразинов от кислотности и ионизирующей способности среды позволяет определить локализацию процессов КОВ и количественно оценить основные свойства [3, 6].

ЭСП H₂{(SN₂)₄PA} в нейтральных растворителях характеризуются наличием расщепленной *Q*-полосы поглощения ($\lambda(Q_x) = 653$, $\lambda(Q_y) = 641$ нм), что типично для порфиразинов с *D*_{2h} симметрией π-хромофора (рис. 2, спектр *I*). Величина расщепления $\Delta E(Q) = 290 \text{ см}^{-1}$ гораздо меньше, чем в незамещенном порфиразине H_2PA или фталоцианине H_2Pc ($\Delta E(Q) = 2180$ и cM^{-1} 730 соответственно [7]). Это объясняется сильным электроноакцепторным действием аннелированных тиадиазольных фрагментов и, как следствие этого, усилением внутримолекулярных связей Н во внутренней полости макроцикла. В ЭСП "пиридиниевой соли" $2Py H_2\{(SN_2)_4PA\}$ (puc. 2, cnektp 2) исчезает расщепление длинноволновой О-полосы поглощения и он становится аналогичным ЭСП металлокомплексов, имеющих *D*_{4h} симметрию.

Рис. 2. ЭСП H₂{(SN₂)₄PA} в хлорбензоле (1), пиридине (2), CF₃COOH (3), (с 96%) водной H₂SO₄ (4), 100% H₂SO₄ (5), CISO₃H (6), 35% олеуме (7)

В ЭСП растворов H₂{(SN₂)₄PA} в муравьиной и трифторуксусной кислотах (рис. 2, спектр 3) наблюдается небольшой гипсохромный сдвиг *Q*-полос поглощения ($\lambda(Q_x) = 647$, $\lambda(Q_y) = 634$ в НСООН и $\lambda(Q_x) = 645$, $\lambda(Q_y) = 629$ нм в CF₃COOH) и увеличение $\Delta E(Q)$ до 320–390 см⁻¹. В среде конц. водной H₂SO₄ (рис. 2, спектр 4) максимум *Q*-полосы поглощения смещается батохромно до $\lambda(Q_x) = 661-662$ и $\lambda(Q_y) = 639-641$ нм ($\Delta E(Q) = 470$ см⁻¹). При увеличении концентрации H₂SO₄ от 90 до 100% полоса Q_y становится менее выраженной и превращается в плечо (рис. 2, спектр 5). В 35% олеуме максимум *Q*-полосы поглощения смещается далее батохромно до 676 нм (рис. 2, спектр 7). В хлорсульфоновой кислоте *Q*-полоса уширена и имеет максимум около 670 нм (рис. 2, спектр 6).

Следует отметить, что в конц. водной H_2SO_4 макроцикл оказывается неустойчивым и подвергается быстрой деструкции с образованием бесцветных продуктов (рис. 3). Скорость деструкции практически не зависит от концентрации H_2SO_4 в пределах 92–98% (см. табл. 1), однако в 100% H_2SO_4 , и в особенности в олеуме устойчивость макроцикла резко возрастает.

Спектральные изменения, происходящие при КОВ с донорными центрами в молекуле порфиразина, достаточно хорошо качественно описываются на основе простой четырехорбитальной модели ЭСП протонированных форм порфиразинов [3, 6]. Согласно этой модели завершенное КОВ с *мезо*-атомами азота N_{meso} порфиразинов должно приводить к батохромному сдвигу *Q*-полос поглощения. Гипсохромный сдвиг может теоретически наблюдаться при протонировании внутрициклических пирролениновых атомов азота N_{pyr} , как это имеет место, например, в случае порфиринов и их *мезо*-моноазазамещенных [3, 4, 6].

 $\it Puc.$ 3. Изменение ЭСП раствора $\rm H_2\{(SN_2)_4PA\}$ в водной (c94%) $\rm H_2SO_4$ с течением времени

Таблица 1

Концен-	Концен-			2		
трация	трация	lg	Τ,	$k_{\mathrm{p}\phi} \cdot 10^3$,	<i>Е</i> _{акт} ,	$-\Delta S^{\neq}$,
H_2SO_4 , %	H_3O^+ ,	$[H_3O^+]$	К	c^{-1}	кДж/моль	Дж/моль•К
	моль/л					
92.03	6.62	0.82	288	4.17 ± 0.07	47 ± 3	135 ± 10
			298	8.41 ± 0.45		
			308	14.93 ± 1.43		
92.90	6.14	0.79	288	4.41 ± 0.15	47 ± 7	135 ± 14
			298	9.41 ± 0.94		
			308	15.78 ± 0.95		
93.75	5.72	0.75	288	4.29 ± 0.27	50 ± 5	125 ± 17
			298	9.21 ± 0.87		
			308	16.59 ± 0.49		
94.47	5.27	0.72	288	4.55 ± 0.01	47 ± 1	133 ± 2
			298	8.86 ± 0.54		
			308	16.52 ± 0.43		
95.61	4.4	0.64	288	4.75 ± 0.11	43 ± 9	150 ± 25
			298	9.77 ± 0.36		
			308	15.04 ± 0.61		
96.68	3.5	0.54	288	4.58 ± 0.17	44 ± 8	145 ± 23
			298	9.50 ± 0.62		
			308	15.12 ± 0.75		
97.78	2.22	0.34	288	4.58 ± 0.11	46 ± 2	138 ± 7
			298	8.61 ± 0.43		
			308	15.93 ± 0.61		
		288	4.47 ± 0.39	46 ± 9	137 ± 30	
Среднее значение		298	9.11 ± 1.02			
* · ·		308	15.70 ± 0.89			

Кинетические параметры деструкции $H_2{SN_2}PA$ в водных растворах конц. H_2SO_4

Однако при этом вследствие повышения симметрии π-хромофора расщепление О-полосы должно уменьшаться (монопротонирование) или исчезать вовсе. Более того, как было недавно показано [4], для диазапорфиринов и порфиразинов, в отличие от собственно порфиринов, при протонировании двух N_{руг} атомов с образованием симметричного дикатиона наблюдается не гипсохромный, а батохромный сдвиг *Q*-полосы поглощения. К гипсохромному сдвигу *Q*-полосы может приводить КОВ с атомами азота тиадиазольных фрагментов N_{het}, поскольку оно усиливает их электроноакцепторное действие на порфиразиновый макроцикл. Однако кислотные свойства НСООН и CF₃COOH (функция кислотности Гаммета $H_0 = -2.22$ и -3.03, соответственно, [8, 9]) явно недостаточны для протонирования атомов азота тиадиазольных фрагментов (р $K_a = -4.9$ для 1,2,5-тиадиазола [10]). Поэтому можно полагать, что в среде 100% СF₃СООН наблюдается лишь незавершенное КОВ со всеми донорными центрами молекулы, т. е. их кислотная сольватация, сопровождаемая сольватохромным эффектом (гипсохромный сдвиг) и приводящая к ослаблению внутримолекулярных связей Н (увеличение расщепления *Q*-полосы). Интересно отметить, что наличие воды в CF₃COOH усиливает сольватохромный эффект. Так, если продажную CF₃COOH дополнительно не осушать (перегонка над конц. H_2SO_4), то полоса Q_x наблюдается при 642, а $Q_{\rm v}$ при 624 нм ($\Delta E(Q) = 450 \text{ см}^{-1}$).

Нами было проведено спектрофотометрическое титрование $H_2\{(SN_2)_4PA\}$ в среде CF₃COOH- H_2SO_4 . Повышение кислотности, происходящее при добавлении H_2SO_4 к CF₃COOH, приводит к батохромному сдвигу *Q*-полос поглощения ($\lambda(Q_x) = 657$, $\lambda(Q_y) = 634$ нм, $\Delta E(Q) = 550$ см⁻¹), причем в картине спектральных изменений наблюдаются четкие изобестические точки (рис. 4). Такой характер спектральной эволюции свидетельствует о протекании в этих условиях завершенного процесса КОВ (протонирования) по одному из *мезо*-атомов азота.

Рис. 4. Изменение ЭСП H₂{(SN₂)₄PA} в среде CF₃COOH-H₂SO₄ при *H*₀= -3.03, -3.4, -3.82, -3.92, -4.09, -4.21, -4.83, -5.28

Локализация первой стадии протонирования $H_2\{(SN_2)_4PA\}$ на одном из 282

мезо-атомов азота подтверждается и данными модельных квантовохимических расчетов. Для оценки теплот образования и сродства к различных азотистых оснований успешно применяется протону полуэмпирический метод АМ1 [11, 12]. Мы использовали этот метод для сравнения устойчивости монопротонированных форм H₂{(SN₂)₄PA} (табл. 2). Оказалось, что на первой стадии КОВ протонирование по одному из *мезо*-атомов азота (рис. 5а) более выгодно, чем по атомам азота тиадиазольных фрагментов (на 22 и 39 кДж/моль для тиадиазольных циклов, аннелированных к пиррольному (рис. 5б) и пирролениновому кольцам соответственно). Протонирование внутрициклического пирроленинового атома азота N_{руг} также менее выгодно (на 31 кДж/моль), чем мезо-атома, и кроме того приводит к существенному нарушению планарной структуры макроцикла (рис. 5в). Интересно отметить, что по данным расчета протонное сродство мезо-атомов азота порфиразинового макроцикла снижается на 37 кДж/моль при аннелировании 1,2,5-тиадиазольных фрагментов, а атомы азота последних несколько увеличивают свою основность (на 16 кДж/моль). Величины протонного сродства различных порфиразинов, полученные расчетным методом для газовой фазы хорошо согласуются с экспериментальными данными для растворов в протонодонорных средах.

Используя известные значения функции кислотности Гаммета Н₀ для среды H₂SO₄-CF₃COOH [9, 13, 14], по уравнению Гаммета мы определили константу основности *мезо*-атома азота в $H_2\{(SN_2)_4PA\}$ р $K_{a1} = -4.06 \pm 0.15$. Тангенс угла наклона зависимости логарифма индикаторного отношения lgIn от H0 оказался близким к единице (tga = 1.02), что подтверждает участие в завершенном процессе КОВ на этой стадии только одного донорного центра. Найденное значение pK_{a1} для $H_2\{(SN_2)_4PA\}$ меньше, чем соответствующая величина для незамещенного порфиразина H₂PA $(pK_{a1} = +0.15 [15])$ и фталоцианина H_2PctBu_4 $(pK_{a1} = +0.86 [16])$. Это находится в соответствии с расчетными значениями протонного сродства для этих соединений и подтверждает, что аннелированные 1,2,5-тиадиазольные фрагменты, в отличие от бензольных колец, оказывают сильнейшее акцепторное действие на порфиразиновый макроцикл. В то же время величина р K_{a1} для $H_2\{(SN_2)_4PA\}$ выше, чем для тетракис(2,3-пиридино)порфиразина $H_2\{(^{2,3}Py)_4PA\}$ (р $K_{a1} = -8.2$ [17, 18]). Это связано с тем, что в последнем случае в отличие от $H_2\{(SN_2)_4PA\}$ протонирование атомов азота аннелированных гетероциклов предшествует протонированию *мезо*-атомов азота порфиразинового макроцикла (ср. рК_а = +5.21 для пиридина и р K_{a1} = -4.9 для 1,2,5-тиадиазола) и величина рK_{al} = -8.2 характеризует по сути основность *мезо*-атома азота в $H_2\{(^{2,3}PyH^+)_4PA\}$. Согласно данным тетракатионе расчета лля H₂{(^{2,3}Py)₄PA} протонное сродство пиридиновых атомов азота выше, чем мезо-атомов азота (табл. 2).

Рис. 5. Строение монопротонированных форм $H_2\{[(SN_2)_4]PA\}$, оптимизированное методом AM1: $a - 8,33,35-H_2\{(SN_2)_4PA\}H^+, \delta - 3,33,35-H_2\{[(SN_2)_4H]PA\}^+, \delta - 33,34,35-H_3\{(SN_2)_4PA\}^+$

КОВ с атомами азота аннелированных 1,2,5-тиадиазольных фрагментов становится, по-видимому, возможным в средах с кислотностью $H_0 < -7$, т. е. при концентрации H₂SO₄ в CF₃COOH >1 моль/л и в водной H₂SO₄ (c > 80%). В ЭСП это отражается в уширении, потере структурности и небольшом батохромном сдвиге максимума *Q*-полосы (с 657 до 662 нм). С протонированием тиадиазольных колец связана вероятно и неустойчивость макроциклического хромофора в этой кислотной форме, особенно в водной H₂SO₄ (c 80-98%). Процесс деструкции имеет первый порядок по концентрации порфиразина, но его эффективная константа скорости ($k_{3\phi}$) практически не зависит от концентрации H₂SO₄ и иона гидроксония H₃O⁺. Обычно деструкция порфиразинового макроцикла в водной H₂SO₄ протекает как гидропротолитический процесс, и ее скорость

Основание и его протонированная форма	Теплота образования Δ <i>Н_f</i> , кДж/моль	Сродство к протону <i>ΔН</i> _{ВН+} , кДж/моль	Локали- зация КОВ	Константа основности р <i>К</i> _а
1,2,5-Тиадиазол	207.9			-4.9
1,2,5-Тиадиазолий	912.6	831.7	N _{het}	
H ₂ PA	1174.6			-0.15
H_2PAH^+	1804.1	906.9	N _{meso}	
H ₂ Pc	1332.1			+0.86
H_2PcH^+	1926.8	941.7	N _{meso}	
$33,35-H_2\{(SN_2)_4PA\}$	1994.3			-4.06
$8,\!33,\!35\text{-}H_2\{(SN_2)_4PA\}H^{\!+}$	2660.6	866.7	N _{meso}	
$33{,}34{,}35{\text{-}}\text{H}_3{\{(SN_2)_4PA\}}^+$	2691.6	839.0	N_{pyr}	
$3,33,35\text{-}H_2\{[(SN_2)_4H]PA\}^+$	2682.8	847.8	N _{het}	
$11,33,35-H_2\{[(SN_2)_4H]PA\}^+$	2700.0	830.6	N _{het}	
$H_2\{(^{2,3}Py)_4PA\}$	1547.5			-8.2
$H_2\{(^{2,3}Py)_4PA\}H^+$	2155.1	928.8	N _{meso}	
$H_2\{[(^{2,3}Py)_4H]PA\}^+$	2145.7	938.1	N _{het}	

Теоретические и экспериментальные характеристики основности порфиразинов: теплоты образования (ΔH_f), и сродство к протону (ΔH_{BH+}), рассчитанные методом AM1, экспериментальные значения констант основности р K_a

возрастает с ростом концентрации иона H₃O⁺, т. е. при уменьшении концентрации H₂SO₄ в области Бранда (90-98%). Для H₂PA порядок реакции деструкции по H_3O^+ является вторым [19], для $H_2\{(^{2,3}Pv)_4PA\}$ – третьим [18], а для H₂Pc – четвертым [20]. При этом считается [20], что лимитирующей стадией гидропротолитической деструкции порфиразинового макроцикла является атака иона гидрооксония по α-углеродному атому пиррольных колец. Можно предположить, что наблюдаемые отличия в кинетике деструкции макроцикла H₂{(SN₂)₄PA} связаны с тем, что в этом случае лимитирующей стадией является расщепление протонированного 1.2.5-тиадиазольного кольца, сопровождающееся дальнейшим быстрым распадом порфиразинового макроцикла. На самом деле эффективная константа скорости деструкции H₂{(SN₂)₄PA} в 92-98% $H_2SO_4 k_{3\phi}^{298}$ в 2–15 раз меньше, чем для H_2PA в тех же условиях. Напротив, скорость деструкции макроцикла в H₂Pc и H₂{(^{2,3}Py)₄PA}, в которых аннелированные циклы устойчивы к расщеплению, на 3-5 порядков меньше, чем для H₂{(SN₂)₄PA}. Следует отметить, что процесс деструкции порфиразинового макроцикла в H₂{(SN₂)₄PA} характеризуется более низкими значениями энергии активации (E_a = 46 ± 9 кДж/моль) и более отрицательной энтропией активации ($\Delta S^{\neq} = -137 \pm 30 \ \text{Дж/(моль·K)}$), чем это наблюдалось для H₂PA ($E_a = 65 \text{ кДж/моль}, \Delta S^{\neq} = -103 \text{ Дж/(моль·К)}$ [19]). Это указывает на возрастание роли сольватационного фактора и согласуется с предлагаемым механизмом, в котором лимитирующей стадией является расщепление протонированного тиадиазольного цикла в кислотном сольвате.

Несмотря на независимость скорости деструкции от концентрации иона гидроксония, его наличие в реакционной среде (и, соответственно, в составе сольватной оболочки макроцикла) является необходимым как для расщепления 1,2,5-тиадиазольного фрагмента, так и для последующей деструкции порфиразинового макроцикла. В среде хлорсульфоновой кислоты и олеума, где в отличие от водной H_2SO_4 отсутствуют ионы H_3O^+ , макроцикл H₂{(SN₂)₄PA} устойчив. В этих условиях становится возможным протонирование второго мезо-атома азота, приводящее к батохромному сдвигу *Q*-полосы до 676 нм (рис. 2, спектры 4–7). На основании данных по величинам функции кислотности Н₀ для этих сред было оценочно определено значение $pK_{a2} = -13 \pm 1$. Разница в величинах pK_{a1} и pK_{a2} , характеризующих протонирование первого и второго *мезо*атомов азота в H₂{(SN₂)₄PA} очень велика и составляет девять порядков фталоцианинов – 2–3 порядка), что является следствием (для протонирования атомов азота тиадиазольных фрагментов на промежуточных стадиях.

Таким образом, в работе экспериментально установлено, что 1,2,5-тиадиазольные фрагменты, проявляя выраженные σ - и π -акцепторные свойства по отношению к порфиразиновому макроциклу, оказывают существенное влияние на его кислотно-основные свойства, приводя к возрастанию кислотных свойств внутрициклических связей N–H и резкому снижению основности *мезо*-атомов азота.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Тетракис-3,4-(1,2,5-тиадиазоло)порфиразин, $H_2\{(SN_2)_4PA\}$, синтезирован по методике, описанной нами ранее [1].

Для проведения спектрофотометрического титрования готовят серию растворов с постоянной концентрацией $H_2\{(SN_2)_4PA\}$ (10^{-5} М) в кислых средах с различной кислотностью – CF₃COOH–H₂SO₄, олеум, хлорсульфоновая кислота. Используют олеум и 96% H₂SO₄ марки "х. ч.", из которых кондуктометрическим методом готовят 100% H₂SO₄. Хлорсульфоновую и трифторуксусную кислоту марки "ч". перегоняют (CF₃COOH для осушки над 96% H₂SO₄). Приготовленные растворы заливают в кювету, термостатируют при 298 К и регистрируют ЭСП на спектрофотометре Hitachi U-2000. По величине оптической плотности на длине волны максимума поглощения нейтральной (или кислотной) форм определяют величину индикаторного отношения $I_n = (A_0-A)/(A-A_{\infty})$ и рассчитывают константы основности р K_{ai} по уравнению Гаммета:

$$pK_{ai} = H_0 + \lg I_n$$

Значения функции кислотности *H*₀ для кислых сред различного состава были взяты из [21].

Для изучения кинетики деструкции $H_2\{(SN_2)_4PA\}$ растворяют в водной (с 92–98%) H_2SO_4 , раствор помещают в спектрофотометрическую кювету и после предварительного термостатирования измеряют зависимость изменения оптической плотности на длинноволновой полосе поглощения от времени. Эффективную константу скорости деструкции рассчитывают по уравнению:

$$k_{\mathrm{b}\phi} = (1/\tau) \ln[(\mathrm{A} - \mathrm{A}_{\infty})/(\mathrm{A}_{0} - \mathrm{A}_{\infty})]$$

286

Квантово-химические расчеты выполняют с использованием программы Нурегсhem 4.5. Предварительно геометрическую структуру исходной молекулы оптимизируют методом молекулярной механики MM⁺, а затем полуэмпирическим методом AM1 в неограниченном базисе Хартри–Фока проводят окончательную оптимизацию и определяют теплоту образования $\Delta H_f(B)$. Условия оптимизации (предел сходимости 4.18 × 10⁻⁴ кДж моль⁻¹, градиент 4.18 × 10⁷ кДж моль⁻¹м⁻¹) достигаются при использовании метода Поляк–Рибьера (Polak–Ribiere). Аналогично выполняют расчет $\Delta H_f(BH^+)$ для различных монопротонированных форм. Протонное сродство ΔH_{BH^+} определяют по формуле [11, 12]:

$$\Delta H_{\rm BH^+} = \Delta H_f(\rm H^+) + \Delta H_f(\rm B) - \Delta H_f(\rm BH^+)$$

При этом как и в [11, 12] в расчете используют экспериментальное значение $\Delta H_{f}(H^{+}) = 1534.9 \text{ кДж/моль.}$

Данная работа финансировалась за счет гранта Министерства образования РФ СПб 97-0-9.4-362.

СПИСОК ЛИТЕРАТУРЫ

- 1. P. A. Stuzhin, E. M. Bauer, C. Ercolani, Inorg. Chem., 37, 1533 (1998).
- 2. E. M. Bauer, D. Cardarilli, C. Ercolani, P. A. Stuzhin, U. Russo, *Inorg. Chem.*, 38, 6414 (1999).
- P. A. Stuzhin, O. G. Khelevina, B. D. Berezin, Azaporphyrins: Acid-Base Properties in Phthalocyanines: Properties and Applications, Vol. 4, C.C. Leznoff and A. B. P. Lever (editors), VCH Publishers, New York, (1996), p. 19.
- 4. P. A. Stuzhin, J. Porph. & Phthalocyanines, 3, 500 (1999).
- 5. S. V. Kudrevich, J. E. van Lier, Coord. Chem. Rev., 156, 163 (1996).
- 6. П. А. Стужин, О. Г. Хелевина, *Координац. химия*, 24, 783 (1998).
- 7. P. A. Stuzhin, O. G. Khelevina, Coord. Chem. Rev., 147, 41 (1996).
- 8. R. Stewart, T. Mathews, *Can. J. Chem.*, 607 (1960).
- 9. H. H. Hyman, R. A. Garber, J. Am. Chem. Soc., 81, 1847 (1959).
- L. M. Weinstock, I. Shinkai, in Comprehensive Heterocyclic Chemistry. The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds, A. R. Katrizky (Ed.), Pergamon Press, Oxford, 1984, Vol. 6, p. 513.
- 11. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
- 12. M. J. S. Dewar, K. M. Dieter, J. Am. Chem. Soc., 108, 8075 (1986).
- 13. G. G. Dalinga, G. ter Marten, Rec. Trav. Chim., 79, 737 (1960).
- 14. E. L. Mackor, J. P. Smit, J. H. van der Waals, Trans. Faraday Soc., 53, 1309 (1957).
- 15. Б. Д. Березин, П. А. Стужин, О. Г. Хелевина, ХГС, 1677 (1986).
- 16. Н. Ю. Боровков, А. С. Акопов, *Журн. физ. химии*, **60**, 750 (1986).
- 17. А. С. Акопов, В. В. Быкова, Б. Д. Березин, Координац. химия, 9, 1332 (1981).
- 18. А. С. Акопов, В. В. Быкова, Б. Д. Березин, ЖОрХ, 17, 1027 (1981).
- 19. О. Г. Хелевина, П. А. Стужин, Б. Д. Березин, Журн. физ. химии, 60, 1881 (1986).
- 20. Б. Д. Березин, Координационные соединения порфиринов и фталоцианина, Москва, Наука, 1978, 280 с.
- Таблицы констант скорости и равновесия гетеролитических органических реакций.Итоги науки и техники. Серия общие вопросы органической химии, под. ред. В.А. Пальма, ВИНИТИ, Москва, 1978, 5(1), с. 524.

Ивановский государственный химико-технологический университет, Иваново 153460, Россия e-mail: stuzhin@isuct.ru Поступило в редакцию 07.05.2002 После доработки 07.08.2004

^аРимский университет "Ла Сапиенца", 00185 Рим, Италия e-mail: claudio.ercolani@uniromal.it