Н. Н. Колос, Е. Н. Юрченко, В. Д. Орлов, С. В. Шишкина, О. В. Шишкин

ИССЛЕДОВАНИЕ ПРОДУКТОВ ВЗАИМОДЕЙСТВИЯ ЦИКЛИЧЕСКИХ ДИКЕТОНОВ С АЗОТСОДЕРЖАЩИМИ 1,4-БИНУКЛЕОФИЛАМИ

Взаимодействием арилбис(5,5-диметилциклогександион-1,3-ил-2)метанов с *о*-фенилендиамином и *о*-аминофенолом получены 3,3-диметил-11-арил-2,3,4,5,10,11-гексагидробензо[*b*,*e*]-1,4-диазепин-1-оны и 3,3,6,6-тетраметил-9-арил-10-(2-оксифенил)-2,4,5,7,9-декагидроакридин-1,8-дионы соответственно. Предложен однореакторный метод синтеза производных гексагидродибензо[*b*,*e*]-1,4-диазепин-1-онов; структура первого члена этого ряда доказана с помощью РСА.

Ключевые слова: *о*-аминофенол, арилбис(5,5-диметилциклогександион-1,3-ил-2)метаны, гексагидродибензо[*b*,*e*]-1,4-диазепин-1-оны, декагидроакридин-1,8-дионы, димедон, *о*-фенилендиамин, циклоконденсация.

В циклических 1,5-дикетонах положение карбонильных групп определяет исключительно легкую их циклизацию и делает удобной основой для синтеза азот-, кислород- и серосодержащих гетероциклов [1, 2].

Цель настоящей работы – изучение реакционной способности аддуктов Михаэля 1a-j [3, 4], полученных из димедона и ароматических альдегидов или фурфурола (аддукт 1j), по отношению к бидентатным нуклеофилам – *о*-фенилендиамину 2 и *о*-аминофенолу 3. Циклические тетракетоны 1a-j существуют в енольных формах, что делает их структурно-близкими α,β -ненасыщенным кетонам, реакционная способность которых по отношению к 1,4-динуклеофилам была изучена ранее [5, 6].

На направленность взаимодействия соединений **1**а–і с *о*-фенилендиамином **2** при кипячении этих реагентов в 2-пропаноле (методика A) влияет электронный характер заместителей в R. Так, из тетракетонов **1**а (R = Ph) и **1b–f** (электроноакцепторные заместители в R: 4-F, 4-Cl, 4-Br, 4-NO₂) получены соответствующие гексагидродибензодиазепиноны **4**а–f.

При наличии в R электронодонорных заместителей (4-OMe, 4-NMe₂, 2-OH) у соединений **1**g–i имеет место либо распад последних (в случае тетракетонов **1**g,h) с образованием соответствующих азометинов **5**a,b, либо превращение в декагидроакридиндион **6** (из тетракетона **1**i). Из гетарилзамещенного тетракетона **1**j (R = фурил-2) получен гексагидродибензодиазепинон **4**j.

В указанных выше условиях (методика A) тетракетоны **1а–d,g,h** не реагировали с *о*-аминофенолом **3**. Лишь при кипячении этих реагентов в ДМФА были получены с хорошими выходами продукты взаимодействия – декагидроакридиндионы **7а–f**.

Полученные результаты позволяют представить взаимодействие соединений 1 с бинуклеофилами 2, 3 следующим образом.

1, 4, 7–10 а R = Ph, b R = 4-FC₆H₄, c R = 4-ClC₆H₄, d R = 4-BrC₆H₄; 1, 4, 8, 10 е R = 4-O₂NC₆H₄, f R = 3-O₂NC₆H₄, g R = 4-MeOC₆H₄, h R = 4-Me₂NC₆H₄, i R = 2-HOC₆H₄, j R = фурил-2; 4, 10 k R = 2-HO-3-MeOC₆H₃, l R = тиенил-2, m R = 5-нитротиенил-2, n R = PhCO, o R = 4-O₂NC₆H₄CO; 5a, 7e, 9e R = 4-MeOC₆H₄; 5b, 7f, 9f R = 4-Me₂NC₆H₄; 6 X = NH₂; 7a–f X = OH

Образование продуктов типа 4, 6, 7 включает стадию нуклеофильного присоединения по β -положению еноновой системы, в которой принимает участие аминогруппа соединений 2, 3. Дальнейшее превращение промежуточных енаминов 8, 9 может проходить двумя путями. Первый включает нуклеофильную атаку sp^3 -гибридного центра первичной аминогруппой с элиминированием молекулы димедона, тогда как второй – атаку по активированной виниленовой связи электронной парой енаминного атома азота с формированием акридинового ядра. Наличие заместителей, увеличивающих частичный положительный заряд на sp^3 -гибридном центре, способствует формированию диазепинового цикла. Образование акридонов является следствием уменьшения заряда на sp^3 -гибридном атоме углерода (синтез продукта 6) либо низкой нуклеофильности соседнего нуклеофильного центра (синтез продуктов 7а–f).

В условиях однореакторного синтеза с участием о-фенилендиамина, димедона и альдегидов 10а-о единственными продуктами были гексагидробензодиазепиноны 4. Так, при кипячении димедона с диамином 2 в 2-пропаноле в течение 30-40 мин в присутствии каталитических количеств АсОН с последующим добавлением в реакционную смесь ароматического альдегида 10а-о (методика Б) были синтезированы соединения 4a-o. Этим же методом получены диазепины 4g-i, содержащие электронодонорные группы в R, а также продукты 4n,o с заместителем ArCO в положении 11 (в реакционную смесь вместо альдегидов вводили соответствующие глиоксали). Соединения 4а-о в условиях однореакторного синтеза получаются с лучшими выходами (табл. 1), а время реакции существенно сокращается (см. экспериментальную часть). Промежуточный енамин 11 в этих условиях нами не выделялся, но факт его присутствия подтвержден в работе [7]. Образование енамина определяет направленность всего процесса, так как в экспериментах с одновременным участием диамина 2, димедона и ароматического альдегида 10 были получены исключительно 2-арилбензимидазолы, т. е. скорость взаимодействия диамина с альдегидом выше скорости образования енамина, что хорошо согласуется с нашими данными [8]. Состав и строение соединений 4a-o, 6, 7a-f подтверждены данными элементного анализа, ИК и ЯМР ¹Н спектров (табл. 1 и 2); в случае соединения 4а – также данными РСА (рисунок и табл. 3-5).

Согласно данным РСА, продукт **4a** является 3,3-диметил-11-фенил-2,3,4,5,10,11-гексагидродибензо[b,e]-1,4-диазепин-1-оном. В независимой части элементарной ячейки кристалла соединения **4a** находятся две молекулы (I и II), которые различаются конформацией циклогексенового фрагмента. Шестичленное кольцо в молекуле I имеет форму искаженного *кресла*. Отклонение атомов С(8) и С(9) от среднеквадратичной плоскости остальных атомов цикла составляет 0.52 и 0.13 Å соответственно.

В молекуле II циклогексеновый фрагмент находится в конформации *софа*. Отклонение атома C(8') от среднеквадратичной плоскости остальных атомов цикла составляет 0.65 Å.

Соели-	Брутто-	Найдено, %	Т. пл	ИК спект	о, ν, см ⁻¹	Выход,
нение	формула	Вычислено, % N	°C	C=O	NH	% (метод)
4a	$C_{21}H_{22}N_2O$	<u>8.29</u> 8.81	251–252	1628	3318, 3292	65 (А), 70 (Б)
4b	$C_{21}H_{21}FN_2O$	$\frac{8.30}{8.33}$	237–239	1608	3245, 3303	55 (А), 63 (Б)
4c	$C_{21}H_{21}ClN_2O$	<u>8.18</u> 7.94	239–240	1620	3288, 3233	71 (А), 74 (Б)
4d	$C_{21}H_{21}BrN_2O$	$\frac{7.35}{7.05}$	241–242	1638	3235, 3303	60 (А), 64 (Б)
4e	$C_{21}H_{21}N_3O_3$	<u>12.00</u> 11.57	274–275	1627	3353, 3280	80 (А), 86 (Б)
4f	$C_{21}H_{21}N_3O_3$	<u>11.44</u> 11.57	144–146	1635	3235, 3315	70 (А), 73 (Б)
4g	$C_{22}H_{24}N_2O_2$	<u>8.12</u> 8.04	203–205	1615	3246, 3315	60 (Б)
4h	$C_{23}H_{27}N_{3}O$	$\frac{11.01}{11.63}$	228–230	1640	3240, 3310	64 (Б)
4 i	$C_{21}H_{22}N_2O_2$	<u>8.20</u> 8.38	164–166	1650	3250, 3305	70 (Б)
4j	$C_{22}H_{24}N_2O_3$	<u>7.99</u> 7.69	216–218	1630	3236, 3303	68 (Б)
4k	$C_{19}H_{20}N_2O_2$	<u>9.19</u> 9.09	269–270	1622	3350, 3285	52 (А), 60 (Б)
41	$C_{19}H_{20}N_2OS$	<u>8.69</u> 8.64	227–229	1635	3265, 3303	62 (Б)
4m	$C_{19}H_{19}N_3O_3S$	<u>11.76</u> 11.38	243–245	1635	3285, 3347	68 (Б)
4n	$C_{22}H_{22}N_2O_2$	$\frac{8.34}{8.09}$	233–234	1678	3360, 3303	75 (Б)
40	$C_{22}H_{21}N_3O_4$	$\frac{10.84}{10.74}$	210-212	1675	3370, 3320	65 (Б)
6	$C_{29}H_{32}N_2O_3$	<u>5.96</u> 6.14	205–206	1620, 1648	3465, 3370	60 (A)
7a	$C_{29}H_{31}NO_3$	<u>3.00</u> 3.17	244–246	1622, 1649	3610	64
7b	$C_{29}H_{30}FNO_3$	$\frac{2.95}{3.05}$	298-300	1620, 1642	3610	65
7c	C ₂₉ H ₃₀ ClNO ₃	$\frac{3.15}{2.94}$	286–288	1622, 1643	3610	67
7d	$C_{29}H_{20}BrNO_3$	$\frac{2.89}{2.69}$	283–284	1625, 1640	3610	65
7e	$C_{30}H_{33}NO_4$	$\frac{2.91}{2.97}$	260–262	1620, 1645	3610	72
7f	$C_{31}H_{36}N_2O_3$	$\frac{5.54}{5.78}$	290–291	1624, 1650	3612	68

Характеристики соединений 4, 6, 7

Таблица 2

	Химические сдвиги, б, м. д. (КССВ, <i>J</i> , Гц)								
Соеди- нение	CH ₃ , c (ΣΗ)	CH ₃ , c (ΣH)	$\begin{array}{c} C_{(4)}H_2 \\ (1H_A, \pi, \pi, 1H_B, \pi, J=16.0) \end{array}$	С ₍₂₎ H ₂ (2H, д, J = 16.2)	N ₍₁₀₎ H (1H, c)	N ₍₅₎ H (1H, c)	С ₍₁₁₎ Н (с или С ₍₉₎ Н) (ΣН)	OH, NH ₂ , OCH ₃ N(CH ₃) ₂ , c (OCH ₃)	Н _{аром} , м (ΣН)
4a	1.08 (3)	1.14 (3)	2.10, 2.18	2.56	6.17	8.75	5.65 (1)		6.55-7.25 (9)
4b	1.03 (3)	1.07 (3)	2.03, 2.20	2.60	6.07	8.70	5.65 (1)		6.49–7.16 (8)
4c*	1.07 (3)	1.15 (3)	2.10, 2.20	2.55	4.39	6.72	5.90 (1)		6.40-7.10
4d	1.03 (3)	1.08 (3)	2.04, 2.22	2.50	6.03	8.63	5.63 (1)		6.42-7.25 (8)
4 e	1.08 (3)	1.15 (3)	2.10, 2.20	2.58	6.36	8.96	5.77 (1)		6.52-8.00 (8)
4f	1.05 (3)	1.17 (3)	2.03, 2.24	2.60	6.21	8.75	5.80(1)		6.45-8.00 (8)
4 g	1.05 (3)	1.11 (3)	2.05, 2.20	2.56	5.90	8.55	5.65 (1)	3.66 (3)	6.49–7.39 (8)
4h	1.01 (3)	1.05 (3)	2.05, 2.15	2.54	5.98	8.61	5.55 (1)	2.52(6)	6.40-6.93 (8)
4i	1.05 (3)	1.10 (3)	2.04, 2.19	2.55	5.85	8.75	5.30 (1)	9.63 (1)	6.39-6.91 (8)
4k	1.05 (3)	1.11 (3)	2.03, 2.20	2.70	5.85	8.70	5.50	8.95 (1), 3.62 (3)	6.16-6.93 (7)
4j*	1.09 (3)	1.17 (3)	2.02, 2.16	2.62	4.43	6.75	5.10(1)		6.20–7.15 (7)

Спектры ЯМР ¹Н синтезированных соединений

41	1.01 (3)	1.04 (3)	2.05, 2.21	2.50	6.10	8.70	5.90 (1)		6.60–7.09 (7)
4m	1.02 (3)	1.05 (3)	2.04, 2.24	2.58	6.40	8.92	5.91 (1)		6.68–7.05 (6)
4n	0.88 (3)	1.35 (3)	2.02, 2.18	2.50	6.17	8.84	6.17 (1)		6.40-7.95 (9)
40	0.84 (3)	1.05 (3)	2.00, 2.19	2.55	6.22	8.90	6.17 (1)		6.49-8.37 (8)
6	0.88 (6)	0.98 (6)	_**	2.24 (4H, c)			5.28 (1)	3.93 (2), 9.42 (1)	6.77–7.26 (8)
7a	0.68 (3), 0.87 (3)	0.72 (6)	1.60–2.20 (8Н, м)				5.03 (0.5), 4.93 (0.5)	10.45 (0.5), 10.34 (0.5)	7.00–7.54 (9)
7b	0.70 (6)	0.87 (6)	1.70-2.20 (8Н, м)				4.99 (1)	9.99 (1)	6.93-7.27 (8)
7c	0.68 (3), 0.87 (3)	0.73 (6)	1.70–2.20 (8Н, м)				5.01 (0.5), 4.91 (0.5)	10.45 (0.5), 10.34 (0.5)	6.95-7.52 (8)
7d	0.70 (3), 0.87 (3)	0.73 (6)	1.70–2.20 (8Н, м)				5.01 (0.5), 4.91 (0.5)	10.43 (0.5), 10.33 (0.5)	7.00–7.45 (8)
7e	0.68 (3), 0.87 (3)	0.72 (6)	1.65–2.20 (8Н, м)				4.88 (1)	10.40 (1), 3.69 (3)	6.95-7.45 (8)
7f	0.69 (3), 0.87 (3)	0.72 (6)	1.60–2.10 (8Н, м)				4.85 (0.5), 4.95 (0.5)	10.20 (0.5), 10.27 (0.5), 2.80 (6)	6.50–7.38 (8)

* Спектры измерены в CDCl₃ (соединение 4с, ј и 6) и ДМСО-d₆ (остальные соединения).
** δ, м. д.: 1.83 (2H, д, *J* = 18), 2.19 (2H, д, *J* = 18).

Диазепиновый цикл в обеих молекулах имеет форму, промежуточную между *твист-креслом* и *твист-ванной*. Отклонения атомов N(2) и C(13) от среднеквадратичной плоскости остальных атомов цикла 0.84 и 0.33 Å для молекулы I, 1.01 и 0.55 Å для молекулы II соответственно.

Фенильный заместитель при атоме C(12) (рисунок) имеет аксиальную ориентацию (в молекуле I торсионный угол C(6)–C(11)–C(12)–C(16) 96.2(2)°, в молекуле II – 84.1(2)°) и развернут относительно связи C(11)–C(12) (в молекуле I торсионный угол C(11)–C(12)–C(16)–C(21) 44.9(3)° и в молекуле II – 29.4(3)°).

Образование межмолекулярной водородной связи N(1')–H(1N')...O(1) (1–*х*, *y*–0.5, 0.5–*z*) (H'...O 2.11 Å, N'–H'...O 169°) приводит к удлинению связей O(1)–C(10) 1.253(2) (I), 1.254(2) (II), C(6)–C(11) 1.384(3) (I), 1.394(3) Å (II) и укорочению связи C(10)–C(11) 1.448(3) Å (I), 1.439(3) Å (II) по сравнению со средними значениями 1.210, 1.340 и 1.464 Å соответственно. В структуре обнаружены укороченные контакты O(1)...H(12) 2.36 (I) и 2.33 Å (II), H(15B)...C(10) 2.83 (I) и 2.81 (II) и H(15B')...C(6') 2.77 Å при сумме ван-дер-ваальсовых радиусов O...H 2.45 и H...C 2.87 Å.

Близость спектральных характеристик соединений **4a** и **4b**–о (см. табл. 1, 2) позволяет отнести их к одному изомерному ряду. Так, в их ИК спектрах имеются полосы валентных колебаний енаминной карбонильной группы низкой интенсивности в области 1615-1650 см⁻¹, а также две полосы в области 3230-3350 см⁻¹, отнесенные к валентным колебаниям вторичных аминогрупп.

Более информативны спектры ЯМР ¹Н соединений **4**. Положение, форма и интенсивность зарегистрированных сигналов протонов соответствуют указанному на схеме строению гексагидродибензодиазепинонов (табл. 2). Синглеты в области 6.0 и 8.50 м. д., исчезающие в условиях дейтерообмена, отнесены к иминному и енаминному протонам соответственно.

Продукт **6** заметно отличается по спектральным характеристикам от рассмотренных выше соединений типа **4**. В его спектре ЯМР ¹Н (табл. 2) сигналы протонов метиленовых и метильных групп имеют вдвое большую интенсивность, дейтерообмену подвергаются не два протона, как в **4** (δ 6.00 и 8.50 м. д.), а три, причем двухпротонный сигнал находится в сильном поле (δ 3.93 м. д.), а однопротонный – в слабом (9.42 м. д.). Первый сигнал отнесен к группе NH₂, а второй – к OH (енольной формы). Имеются существенные отличия и в ИК спектре соединения **6**: в нем наблюдаются две интенсивные полосы поглощения карбонильных групп в области 1620–1650 см⁻¹, а также полосы первичной аминогруппы в интервале 3350–3470 см⁻¹. Все это подтверждает строение продукта **6** как 3,3,6,6-тетраметил-9-(2-оксифенил)-10-(2-аминофенил)-2,4,5,7,9-декагидро-акридин-1,8-диона.

Рассмотренные спектры имеют много общего с аналогичными спектрами продуктов 7а–f, полученных при кипячении аминофенола 3 с соединениями 1а–d,g,h в ДМФА. Кроме того, в ИК спектрах продуктов 7а–f имеются полосы поглощения гидроксильных групп при 3610 см⁻¹. На основании сказанного соединениям 7а–f приписана структура декагидроакридин-1,8-дионов, содержащих в положении 10 *о*-оксифенильный радикал.

Строение молекулы соединения 4а

Таблица З

Длины связей (1) в молекуле соединения 4a

Связь	l, Å	Связь	l, Å	Связь	l, Å
O(1)–C(10)	1.253(2)	C(4')–C(5')	1.397(3)	C(11)–C(12)	1.513(3)
N(1)-C(5)	1.413(3)	C(6')-C(11')	1.394(3)	C(16)-C(17)	1.390(3)
N(2)–C(12)	1.487(3)	C(7')–C(8')	1.537(3)	C(17)–C(18)	1.389(4)
C(1)–C(13)	1.395(3)	C(8')–C(9')	1.534(3)	C(19)–C(20)	1.380(4)
C(3)–C(4)	1.386(3)	C(9')-C(10')	1.520(3)	O(1')–C(10')	1.254(2)
C(5)–C(13)	1.401(3)	C(11')–C(12')	1.511(3)	N(1')–C(5')	1.419(2)
C(6)–C(7)	1.513(3)	C(16')–C(21')	1.386(3)	N(2')-C(12')	1.487(3)
C(8)–C(9)	1.524(3)	C(17')–C(18')	1.389(4)	C(1')–C(13')	1.393(3)
C(8)–C(14)	1.541(3)	C(19')–C(20')	1.372(4)	C(3')–C(4')	1.383(3)
C(10)–C(11)	1.448(3)	N(1)–C(6)	1.368(2)	C(5')–C(13')	1.404(3)
C(12)–C(16)	1.531(3)	N(2)–C(13)	1.411(3)	C(6')–C(7')	1.512(3)
C(16)–C(21)	1.390(3)	C(1)–C(2)	1.386(3)	C(8')–C(15')	1.529(4)
C(18)–C(19)	1.378(4)	C(2)–C(3)	1.384(3)	C(8')-C(14')	1.534(3)
C(20)–C(21)	1.386(3)	C(4)–C(5)	1.393(3)	C(10')-C(11')	1.439(3)
N(1')–C(6')	1.365(2)	C(6)–C(11)	1.384(3)	C(12')-C(16')	1.531(3)
N(2')-C(13')	1.402(2)	C(7)–C(8)	1.535(3)	C(16')-C(17')	1.395(3)
C(1')–C(2')	1.384(3)	C(8)–C(15)	1.528(3)	C(18')–C(19')	1.375(4)
C(2')–C(3')	1.381(3)	C(9)–C(10)	1.514(3)	C(20')–C(21')	1.399(3)

Таблица 4

Валентные углы	(ω)в	структуре	4a
----------------	------	-----------	----

Угол	ω, град.	Угол	ω, град.
C(6)–N(1)–C(5)	133.4(2)	C(13)–N(2)–C(12)	119.6(2)
C(2)–C(1)–C(13)	122.0(2)	C(3)–C(2)–C(1)	119.9(2)
C(2)–C(3)–C(4)	118.7(2)	C(3)–C(4)–C(5)	122.0(2)
C(4)-C(5)-C(13)	119.4(2)	C(4)–C(5)–N(1)	116.4(2)
C(13)-C(5)-N(1)	124.2(2)	N(1)-C(6)-C(11)	126.9(2)
N(1)-C(6)-C(7)	111.3(2)	C(11)–C(6)–C(7)	121.8(2)
C(6)-C(7)-C(8)	115.7(2)	C(9)-C(8)-C(15)	110.7(2)
C(9)-C(8)-C(7)	107.5(2)	C(15)-C(8)-C(7)	110.4(2)
C(9)-C(8)-C(14)	110.0(2)	C(15)-C(8)-C(14)	109.4(2)
C(7)-C(8)-C(14)	108.8(2)	C(10)-C(9)-C(8)	114.4(2)
O(1)-C(10)-C(11)	121.4(2)	O(1)-C(10)-C(9)	119.1(2)
C(11)-C(10)-C(9)	119.4(2)	C(6)-C(11)-C(10)	119.3(2)
C(6)–C(11)–C(12)	126.1(2)	C(10)-C(11)-C(12)	114.6(2)
N(2)-C(12)-C(11)	113.0(2)	N(2)-C(12)-C(16)	110.8(2)
C(11)-C(12)-C(16)	115.5(2)	C(1)-C(13)-C(5)	118.0(2)
C(1)-C(13)-N(2)	120.7(2)	C(5)-C(13)-N(2)	121.2(2)
C(17)-C(16)-C(21)	118.0(2)	C(17)–C(16)–C(12)	118.8(2)
C(21)-C(16)-C(12)	123.1(2)	C(18)–C(17)–C(16)	120.9(3)
C(19)-C(18)-C(17)	120.4(2)	C(18)-C(19)-C(20)	119.2(2)
C(19)-C(20)-C(21)	120.6(3)	C(20)-C(21)-C(16)	120.8(2)
C(6')-N(1')-C(5')	132.9(2)	C(13')-N(2')-C(12')	115.3(2)
C(2')-C(1')-C(13')	121.6(2)	C(3')–C(2')–C(1')	119.7(2)
C(2')-C(3')-C(4')	119.7(2)	C(3')–C(4')–C(5')	121.2(2)
C(4')-C(5')-C(13')	119.2(2)	C(4')-C(5')-N(1')	117.1(2)
C(13')-C(5')-N(1')	123.6(2)	N(1')-C(6')-C(11')	125.9(2)
N(1')-C(6')-C(7')	113.4(2)	C(11')-C(6')-C(7')	120.7(2)
C(6')-C(7')-C(8')	113.7(2)	C(15')-C(8')-C(9')	110.3(2)
C(15')-C(8')-C(14')	110.5(2)	C(9')-C(8')-C(14')	109.7(2)
C(15')-C(8')-C(7')	110.3(2)	C(9')–C(8')–C(7')	106.9(2)
C(14')-C(8')-C(7')	109.0(2)	C(9')–C(8')–C(7')	114.9(2)
O(1')-C(10')-C(11')	121.9(2)	C(10')-C(9')-C(8')	118.2(2)
C(11')-C(10')-C(9')	119.9(2)	O(1')-C(10')-C(9')	119.8(2)
C(6')-C(11')-C(12')	122.6(2)	C(10')-C(11')-C(12')	117.3(2)
N(2')-C(12')-C(11')	111.2(2)	N(2')-C(12')-C(16')	110.9(2)
C(11')-C(12')-C(16')	115.9(2)	C(1')-C(13')-N(2')	121.0(2)
C(1')-C(13')-C(5')	118.6(2)	N(2')-C(13')-C(5')	120.4(2)
C(21')-C(16')-C(17')	117.6(2)	C(21')-C(16')-C(12')	123.2(2)
C(17')-C(16')-C(12')	119.0(2)	C(18')-C(17')-C(16')	121.4(2)
C(19')-C(18')-C(17')	119.7(2)	C(20')-C(19')-C(18')	120.3(3)
C(19')-C(20')-C(21')	119.8(3)	C(16')-C(21')-C(20')	121.1(2)

В спектрах ЯМР ¹Н соединений 7а,с,е, f при комнатной температуре

наблюдается удвоение сигналов метинового протона H-9 и гидроксильной группы, связанное, очевидно, с проявлением атропоизомерии, обусловленной заторможенностью вращения вокруг связи N–Ar и наличием в ароматическом ядре *орто*-заместителя. Соотношение ротамеров 7 оказывается близким 1:1. Удвоение сигналов не фиксируется в спектре соединения 7b, содержащего в положении 9 *n*-фторфенильный заместитель, а также соединения 6, имеющего в положениях 9, 10 *орто*-замещенные арильные радикалы.

Таблица 5

Атом	x	у	Z	Атом	x	у	Z
O(1)	5588(2)	5387(1)	2097(1)	C(7')	5712(2)	-1249(2)	1951(1)
N(1)	4202(2)	4022(1)	393(1)	C(8')	7004(2)	-1515(2)	1744(1)
N(2)	3707(2)	6126(1)	680(1)	C(9')	6766(2)	-2141(2)	1235(1)
C(1)	1864(2)	6052(2)	67(1)	C(10')	5824(2)	-1682(2)	829(1)
C(2)	1136(2)	5576(2)	-331(1)	C(11')	4883(2)	-992(2)	1001(1)
C(3)	1417(2)	4596(2)	-479(1)	C(12')	4056(2)	-487(2)	574(1)
C(4)	2430(2)	4113(2)	-223(1)	C(13')	3098(2)	956(1)	1005(1)
C(5)	3176(2)	4587(2)	174(1)	C(14')	7734(3)	-2151(2)	2166(1)
C(6)	4931(2)	4100(2)	855(1)	C(15')	7728(2)	-550(2)	1623(1)
C(7)	5912(2)	3272(2)	894(1)	C(16')	2735(2)	-930(2)	484(1)
C(8)	6429(2)	3018(2)	1460(1)	C(17')	2098(2)	-793(2)	-9(1)
C(9)	6743(2)	4016(2)	1741(1)	C(18')	854(3)	-1087(2)	-95(1)
C(10)	5687(2)	4783(2)	1717(1)	C(19')	233(3)	-1531(2)	312(1)
C(11)	4846(2)	4830(2)	1247(1)	C(20')	841(2)	-1696(2)	799(1)
C(12)	3965(2)	5728(2)	1229(1)	C(21')	2092(2)	-1394(2)	884(1)
C(13)	2906(2)	5584(2)	319(1)	C(1')	2201(2)	1674(2)	845(1)
C(14)	7627(2)	2377(2)	1420(1)	C(2')	1285(2)	1988(2)	1180(1)
C(15)	5460(2)	2424(2)	1761(1)	C(3')	1238(2)	1572(2)	1684(1)
C(16)	2741(2)	5582(2)	1514(1)	C(4')	2135(2)	873(2)	1855(1)
C(17)	2292(2)	6376(2)	1814(1)	C(5')	3083(2)	569(2)	1526(1)
C(18)	1136(3)	6311(2)	2044(1)	C(6')	4839(2)	-744(2)	1504(1)
C(19)	410(3)	5453(3)	1978(1)	O(1')	5910(2)	-1913(1)	348(1)
C(20)	859(2)	4651(2)	1692(1)	N(1')	4033(2)	-71(1)	1754(1)
C(21)	2011(2)	4713(2)	1461(1)	N(2')	4001(2)	626(1)	657(1)

Координаты (х-10⁴, у-10⁴, z-10⁴) неводородных атомов в структуре 4а

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры снимали на приборе Specord IR-75 для таблеток KBr и растворов в CHCl₃ (v_{OH} для соединений **7a–f**). Спектры ЯМР ¹Н получали на приборе Varian VXR-200 (200 МГц) в ДМСО-d₆ и CDCl₃, внутренний стандарт ТМС.

Чистоту соединений контролировали с помощью TCX на пластинках Silufol UV-254, элюент хлороформ.

Рентгеноструктурное исследование соединения 4а. Кристаллы 4а моноклинные, $C_{21}H_{22}N_2O$, при 20 °C: a = 10.666(4), b = 13.214(6), c = 25.098(10) Å, $\beta = 92.82^{\circ}$, V = 3533(3) Å³, $M_r = 318.41$, Z = 8, пространственная группа $P2_1/c$, $d_{\rm выч} = 1.197$ г/см³, $\mu({\rm Mo}K_{\alpha}) = 0.074$ мм⁻¹, F(000) = 1360. Параметры элементарной ячейки и интенсивности 6531 отражения измерены на автоматическом 4-кружном дифрактометре Siemens P3/PC (MoK_a, графитовый монохроматор, 20/0-сканирование, $2\theta_{\rm max} = 50^{\circ}$). Структура расшифрована прямым методом по комплексу программ SHELXL-97 [10]. Положение атомов водорода рассчитано геометрически и уточнено по модели "наездника" с $U_{\rm H30} = nU_{\rm 3KB}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильных групп и 1.2 для остальных атомов). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении до $wR_2 = 0.139$ по 6183 отражениям ($R_1 = 0.050$ по 3608 отражениям с $F > 4\sigma$ (F), S = 0.976).

3,3-Диметил-11-фенил-2,3,4,5,10,11-гексагидродибензо[*b,e*]**-1,4-диазепин-1-он** (4а). А. Кипятят 1.84 г (5 ммоль) тетракетона 1а и 0.54 г (5 ммоль) *о*-фенилендиамина в 20 мл 2-пропанола в течение 5 ч. Реакционную смесь охлаждают, выпавший осадок отфильтровывают, кристаллизуют из 50% водного этанола.

Аналогично при кипячении в течение 1-10 ч (контроль TCX) из тетракетонов **1b–f,j** получают диазепины **4b–f,j**, из соединения **1i** – акридиндион **6**, из соединений **1g,h** – азометины **5a** (выход 40%) и **5b** (выход 45%). Соединение **5a** имеет т. пл. 101 °C (101–102 °C [9]), соединение **5b** имеет т. пл. 146 °C (147 °C [9]).

3,3-Диметил-11-(4-метоксифенил)-2,3,4,5,10,11-гексагидродибензо[*b,e*]**-1,4-диазепин-1-он (4g).** Б. Кипятят 0.54 г (5 ммоль) соединения **2** и 0.7 г (5 ммоль) димедона в 10 мл этанола с 2–3 каплями уксусной кислоты 40 мин, затем добавляют 5 ммоль анисового альдегида (**10g**) и кипятят еще 1 ч. После охлаждения выпавший продукт отфильтровывают и кристаллизуют из 50% водного этанола.

Соединения 4a-f,h-о получают аналогично из альдегидов 10a-f,h-о. Время кипячения после прибавления альдегида составляет от 20 мин до 1 ч (контроль TCX).

10-(2-Гидроксифенил)-3,3,6,6-тетраметил-9-фенил-2,4,5,7,9-декагидроакридин-1,8дион (7а). Раствор, содержащий 0.74 г (2 ммоль) соединения 1а и 0.22 г (2 ммоль) амина 3 в 10 мл ДМФА кипятят в течение 1 ч. После охлаждения в реакционную смесь добавляют 5 мл воды, осадок продукта отфильтровывают и получают 0.56 г соединения 7а.

Соединения 7b-f получают аналогично из тетракетонов 1b-d,g,h.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. М. Щекотихин, Т. Т. Николаева, Г. М. Шуб, А. П. Кривенько, *Хим.-фарм. журн.*, **35**, № 4, 29 (2001).
- 2. В. Е. Харченко, С. Н. Чала, 1,5-Дикетоны, Изд-во Сарат. гос. ун-та, 1977.
- 3. P. Margaretta, O. Polansky, Monatsh. Chem., 101, 824 (1970).
- 4. Я. К. Лемба, И. Э. Лиелбриедис, Изв. АН ЛатвССР, Сер. хим., 598 (1973).
- 5. В. Д. Орлов, Н. Н. Колос, М. Туэни, Е. Ю. Юрьева, С. М. Ивков, *XГС*, 947 (1992).
- 6. В. Д. Орлов, Н. Н. Колос, Е. В. Жидкова, И. З. Папиашвили, *XГС*, 250 (1991).
- 7. E. Cortes, A. Hernandez, O. Mellando, J. Heterocycl. Chem., 39, 55 (2002).
- 8. В. Д. Орлов, Н. Н. Колос, Б. М. Золотарев, *XГС*, 390 (1983).
- 9. A. G. Shering, Belg. Pat. 66733; Chem. Abstr., 65, 7185 (1965).
- G. M. Sheldrick, SHELXL PLUS PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.02, 1998.

Харьковский национальный университет им. В. Н. Каразина, Харьков 61077, Украина e-mail: orlov@univer.kharkov.ua Поступило в редакцию 05.11.2002 После доработки 05.02.2004