Ф. З. Галин, С. Н. Лакеев, И. З. Муллагалин, И. О. Майданова

НОВЫЙ СИНТЕЗ ДИГИДРОИНДОЛИЗИНОХИНОЛИНОВОЙ СИСТЕМЫ ВНУТРИМОЛЕКУЛЯРНОЙ ЦИКЛИЗАЦИЕЙ ИЛИДА СЕРЫ

Предложен эффективный метод получения дигидроиндолизинохинолиновой системы внутримолекулярной циклизацией кетостабилизированного сульфониевого илида, получен-ного из β-аланина и ангидрида хинолин-2,3-дикарбоновой кислоты.

Ключевые слова: кетостабилизированный илид серы, 6-метилтио-8,9-дигидроиндолизино[1,2-*b*]хинолин-7,11-дион, внутримолекулярная циклизация.

Индолизинохинолиновая система является структурным фрагментом некоторых природных соединений, например, алкалоида камптотецина и его ближайших аналогов, обладающих противораковой активностью [1–3]. Ранее нами была обнаружена новая внутримолекулярная циклизация илидов серы [4–6], синтезированных из защищенных α - и β -амино-кислот [7], которая открыла удобный путь к построению азотсодержащих конденсированных гетероциклических систем. В настоящей работе предложен метод синтеза 6-метилтио-8,9-дигидро- индолизино[1,2-*b*]хинолин-7,11-диона (1) циклизацией илида серы 2, содержащего хинолин-2,3-дикарбимидный фрагмент.

Сульфониевый илид 2 получали по схеме работы [7] из ангидрида хинолин-2,3-дикарбоновой кислоты (3) [8] и β -аланина. N-Защищенный β -аланин 4 превращали в диазокетон 5. Выход диазокетона 5, синтезированного взаимодействием CH₂N₂ с хлорангидридом кислоты 4 [7], составил 50%. При использовании смешанного ангидрида, образующегося при взаимодействии кислоты 4 с метилхлорформиатом, выход диазокетона 5 становится практически количественным, причем полученный диазокетон не требует дополнительной очистки. При последовательной обработке диазокетона 48% раствором HBr и Me₂S образуется сульфониевая соль 6, депротонирование которой смесью насыщенного раствора K₂CO₃ и 12.5 н. NaOH дает илид 2 с выходом 91%. Нагревание илида 2 в присутствии эквимолярного количества бензойной кислоты в растворе толуола приводит к 6-метилтио-8,9-дигидроиндолизино[1,2-*b*]-хинолин-7,11-диону (1) с выходом 90%.

Нами была исследована возможность получения соединения 1 методом "one-pot" непосредственно из диазокетона 5. При каталитическом разложении диазокетона 5 ацетатом родия в присутствии Me_2S при 40 °C образуется илид 2. Последний без выделения из реакционной массы вовлекается в реакцию внутримолекулярной циклизации, давая продукт 1 с выходом 60%.

Внутримолекулярная циклизация сульфониевого илида 2 протекает региоселективно с образованием одного изомера 1. Нуклеофильный характер илида серы позволяет предположить, что циклизация включает взаимодействие карбанионного центра с электронодефицитным карбимидным атомом углерода, находящимся в β-положении к атому азота пиридинового кольца. В спектре ЯМР ¹³С соединения 1, снятом в режиме модуляции по константе СН, однозначно определяются сигналы атомов С₍₈₎ и С₍₉₎, проявляющиеся в виде двух триплетов в области 36.90 и 35.95 м. д., соответственно, и синглеты карбонильных атомов углерода в области 190.78 и 162.92 м. д. Сигналы атомов С(5а) и С(6) проявляются в виде синглетов в области 146.18 и 116.02 м. д. Сравнение полученных химических сдвигов соединения 1 с рассчитанными, а также с химическими сдвигами атомов углерода изученного нами ранее производного дигидродиазафлуорендиона [9], строение которого идентично основному фрагменту молекулы 1, подтвердило наше предположение о структуре полученного продукта циклизации.

Структуры всех полученных соединений подтверждены методами ИК и ЯМР спектроскопии, а также данными элементного анализа.

Таким образом, нами предложен простой и эффективный метод получения дигидроиндолизинохинолиновой структуры, который открывает новый путь к синтезу биологически активных соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на приборах UR-20 и Specord M-80 (в тонком слое или в вазелиновом масле). Спектры ЯМР ¹Н и ¹³С записывали на спектрометре Bruker AM-300 (300 и 75 МГц соответственно), внутренний стандарт ТМС. За ходом реакции следили с помощью ТСХ на пластинках Silufol UV-254 с обнаружением веществ в УФ свете или после опрыскивания пластинок раствором нингидринового проявителя и последующего нагревания при 100–120 °С. Продукты реакции выделяли колоночной хроматографией на силикагеле. Растворители очищали перегонкой. Толуол и диоксан кипятили и перегоняли над натрием.

3-(1,3-Диоксо-1,3-дигидро-2H-пирроло[3,4-*b*]хинолин-2-ил)пропановая кислота (4). Смесь 1 г (5 ммоль) ангидрида **3** [8] и 0.44 г (5 ммоль) β-аланина в 20 мл сухого диоксана кипятят при перемешивании в присутствии молекулярных сит 4А, контролируя ход реакции с помощью ТСХ. По окончании реакции горячий раствор фильтруют и охлаждают до комнатной температуры. Выпавшие кристаллы отфильтровывают. Выход 0.81 г (65%). Т. пл. 208–210 °C, R_f 0.5 (EtOH–H₂O, 7:3). ИК спектр (вазелиновое масло), v, см⁻¹: 1685 (CON), 1740 (CO), 3300 (OH). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 2.7 (2H, т, *J* = 7.4, CH₂N); 3.9 (2H, т, *J* = 7.3, CH₂CO); 7.6–8.9 (5H, м, С₉H₅N). Спектр ЯМР ¹³С, δ, м. д.: 31.11, 34.82, 123.0, 127.29, 128.36, 129.0, 130.34, 132.49, 132.71, 149.53, 150.80, 165.57, 165.9, 172.02. Найдено, %: C 61.95; H 3.45; N 10.25. C₁₄H₁₀N₂O₄. Вычислено, %: C 62.22; H 3.73; N 10.37.

2-(4-Диазо-3-оксобутил)пирроло[3,4-*b*]хинолин-1,3(2Н)-дион (5). К суспензии 0.27 г (1 ммоль) кислоты **4** в 60 мл CH₂Cl₂ при перемешивании добавляют по каплям 0.085 мл (1.1 ммоль) CICO₂Me и перемешивают 2 ч. Затем прибавляют 0.14 мл (1.1 ммоль) Et₃N двумя порциями с промежутком 1 ч. После прибавления второй порции образующуюся смесь перемешивают еще 1 ч. Затем к полученному раствору при перемешивании и 0 °C добавляют по каплям эфирный раствор диазометана, полученный из 0.2 г (2 ммоль) нитрозометилмочевины, и оставляют при этой температуре еще на 12 ч. Растворитель упаривают. Остаток хроматографируют через тонкий слой SiO₂ (хлороформ–ацетон, 15:1). Выход 0.29 г (99%). Т. пл. 148 °C (с разл.), R_f 0.47 (хлороформ–ацетон, 15:1). ИК спектр (вазелиновое масло), v, см⁻¹: 1700 (CON), 1750 (CO), 2130 (C=N₂). Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д. (J, Гц): 2.8 (2H, т, J = 7.7, CH₂N); 3.4 (1H, с, CH=N₂); 3.9 (2H, т, J = 7.4, CH₂CO); 7.5–8.9 (5H, м, C₉H₅N). Спектр ЯМР ¹³С, δ , м. д.: 32.24, 34.08, 62.79, 123.04, 128.46, 129.42, 129.77, 130.42, 132.64, 132.88, 149.67, 150.74, 165.68, 165.79, 182.11. Найдено, %: C 60.85; H 3.35; N 18.25. C₁₅H₁₀N₄O₃. Вычислено, %: C 61.22; H 3.43; N 19.04.

Гидробромид 2-(4-бром-3-оксобутил)пирроло[3,4-b]хинолин-1,3(2H)-диона (7). К перемешиваемому раствору 0.45 г (1.53 ммоль) диазокетона 5 в 100 мл CH₂Cl₂ добавляют по каплям 0.51 мл 48% раствора HBг. Раствор перемешивают 1 ч. Сушат над MgSO₄. Растворитель упаривают. Выход 0.46 г (71%). Т. пл. 181–182 °C. ИК спектр (вазелиновое масло), v, см⁻¹: 1710 (CON), 1730 (CO). Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д. (*J*, Гц): 2.6 (2H, м, CH₂N); 3.9 (2H, м, CH₂CO); 4.1 (2H, с, CH₂Br); 7.7–9.0 (5H, м, C₉H₅N). Спектр ЯМР ¹³С, δ , м. д.: 32.11, 33.74, 60.13, 122.87, 128.3, 129.25, 130.3, 132.46, 132.52, 132.95, 149.53, 150.57, 165.5, 165.71, 197.9. Найдено, %: C 41.83; H 2.45; Br 36.85; N 6.18. C₁₅H₁₂Br₂N₂O₃. Вычислено, %: C 42.09; H 2.83; Br 37.33; N 6.54.

Гидробромид [4-(1,3-диоксо-1,3-дигидро-2Н-пирроло]3,4-*b***]хинолин-2-ил)-2-оксобутил]диметилсульфонийбромида (6).** К раствору 0.42 г (0.9 ммоль) бромкетона 7 в 40 мл CH₂Cl₂ при перемешивании прибавляют 0.186 г (3 ммоль) Me₂S. Раствор оставляют на 12 ч. Выпавшие кристаллы отфильтровывают. Выход 0.29 г (66%). Т. пл. 146–148 °C. ИК спектр (вазелиновое масло), v, см⁻¹: 1700, 1720 (CON), 1790 (CO). Спектр ЯМР ¹Н (CF₃COOH), δ, м. д. (*J*, Гц): 2.8 (6H, с, S(CH₃)₂); 3.2 (2H, с, CH₂N); 4.1 (2H, с, CH₂CO); 4.6 (2H, c, CH₂S); 7.9–9.4 (5H, м, C₉H₅N). Спектр ЯМР ¹³С, δ, м. д.: 25.28, 34.02, 39.21, 54.61, 122.85, 123.88, 131.85, 132.29, 133.27, 139.64, 140.03, 144.47, 144.81, 160.79, 163.81, 198.75.

Диметилсульфонио[4-(1,3-диоксо-1,3-дигидро-2H-пирроло[3,4-*b*]хинолил)-2-оксобутил]илид (2). К перемешиваемой суспензии 0.243 г (0.5 ммоль) сульфониевой соли 6 в 10 мл CHCl₃ при температуре 10 °C в один прием прибавляют смесь 0.125 мл 12.5 н. NaOH и 0.71 мл насыщенного раствора K₂CO₃. Затем реакционную смесь перемешивают при этой температуре еще 20 мин. Органический слой отделяют, высушивают над K₂CO₃, растворитель упаривают. Выход 0.15 г (91%). ИК спектр (вазелиновое масло), v, см⁻¹: 1710, 1720 (CON), 1555 (CO). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 2.5 (2H, т, *J* = 6.93, CH₂N); 2.8 (6H, с, S(CH₃)₂); 3.6–3.8 (1H, ш. с, CH); 4.1 (2H, т, *J* = 6.87, CH₂CO); 7.7–8.6 (5H, м, C₉H₅N). Спектр ЯМР ¹³C, δ , м. д.: 28.28, 36.79, 39.07, 51.91, 123.11, 128.78, 129.4, 129.94, 131.38, 132.44, 132.61, 150.7, 150.76, 165.86, 166.17, 186.86. Найдено, %: C 61.91; H 4.55; N 8.78; S 9.85. C₁₇H₁₆N₂O₃S. Вычислено, %: C 62.18; H 4.91; N 8.53; S 9.76.

6-(Метилтио)-8,9-дигидроиндолизино[1,2-*b*]хинолин-7,11-дион (1). В 30 мл горячего толуола растворяют 0.1 г (0.304 ммоль) илида **2**. Затем к горячему раствору прибавляют 0.037 г (0.304 ммоль) бензойной кислоты и смесь кипятят с обратным холодильником 1 ч. Ход реакции контролируют методом TCX (хлороформ–ацетон, 9:1). По окончании реакции растворитель упаривают. Продукт выделяют колоночной хроматографией (хлороформ–ацетон, 9:1). Выход 0.08 г (90%). Т. пл. 175–177 °С. ИК спектр (вазелиновое масло), v, см⁻¹: 1710, (CON), 1725 (CO). Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 2.6 (3H, с, SCH₃); 2.9 (2H, т, *J* = 7.35, CH₂N); 4.3 (2H, т, *J* = 8.07, CH₂CO); 7.7–8.7 (5H, м, C₉H₅N). Спектр ЯМР ¹³С, δ, м. д.: 18.42, 35.95, 36.9, 116.02, 121.5, 127.12, 128.72, 129.55, 131.0, 132.08, 132.66, 146.18, 150.4, 152.45, 162.92, 190.78. Найдено, %: C 64.61; H 3.85; N 9.18; S 10.55. C₁₆H₁₂N₂O₂S. Вычислено, %: C 64.85; H 4.08; N 9.45; S 10.82.

Получение соединения 1 из диазокетона 5 без выделения илида 2. К раствору 0.07 г (0.016 ммоль) $Rh_2(OAc)_4$ и 0.5 г (15.6 ммоль) Me_2S в 20 мл толуола при перемешивании и 40 °C добавляют по каплям в течение 15 мин раствор 0.05 г (0.165 ммоль) диазокетона **5** в 6 мл CH_2Cl_2 и перемешивают при 40 °C в течение 1 ч. Ход реакции контролируют методом TCX (хлороформ–ацетон, 9:1) по исчезновению пятна диазокетона. После этого прибавляют 0.02 г (0.165 ммоль) бензойной кислоты и кипятят с обратным холодильником в течение 1 ч. Растворитель упаривают. Остаток хроматографируют через тонкий слой SiO₂ (хлороформ–ацетон, 9:1). Выход 0.029 г (60%).

Работа выполнена при финансовой поддержке ФЦП "Интеграция", Госконтракт № 53 (1.5/2000).

СПИСОК ЛИТЕРАТУРЫ

- 1. Camptothecins: New Anticancer Agents, M. Potsmeil, H. Pinedo (Eds.), CRC Press, Boca Raton, 1995.
- 2. D. P. Curran, J. Sisko, P. E. Yeske, H. Liu, Pure Appl. Chem., 65, 1153 (1993).
- 3. C. R. Hutchinson, Tetrahedron, 37, 1047 (1981).
- 4. Г. А. Толстиков, Ф. З. Галин, С. Н. Лакеев, Изв. АН СССР, Сер. хим., 1209 (1989).
- 5. Ф. З. Галин, С. Н. Лакеев, Г. А. Толстиков, *XГС*, 1693 (1989).
- 6. Ф. З. Галин, С. Н. Лакеев, Г. А. Толстиков, Изв. АН, Сер. хим., 165 (1996).
- Г. А. Толстиков, Ф. З. Галин, С. Н. Лакеев, Л. М. Халилов, В. С. Султанова, Изв. АН СССР, Сер. хим., 612 (1990).
- 8. J. Moriconi, F. A. Spano, J. Am. Chem. Soc., 86, 38 (1964).
- 9. Ф. З. Галин, С. Н. Лакеев, Л. Ф. Чертанова, Г. А. Толстиков, *Изв. АН, Сер. хим.*, 2376 (1998).

Институт органической химии Уфимского научного центра РАН, Уфа 450054 e-mail: galin@anrb.ru, e-mail: irina_m@anrb.ru Поступило в редакцию 11.02.2002

1816