Т. С. Сафонова, М. П. Немерюк, Н. А. Гринева, А. Ф. Керемов^а, О. С. Анисимова, Н. П. Соловьева

ИССЛЕДОВАНИЕ АЗОТ- И СЕРУСОДЕРЖАЩИХ ГЕТЕРОЦИКЛОВ

54*. СВОЙСТВА И ПРЕВРАЩЕНИЯ ПИРИМИДО[4,5-*b*]-1,4-БЕНЗТИАЗЕПИНОВ. СИНТЕЗ НОВОЙ ГЕТЕРОЦИКЛИЧЕСКОЙ СИСТЕМЫ – ПИРИМИДО[5,4-*c*]ИЗОХИНОЛИНА

Исследованы некоторые свойства и превращения пиримидо[4,5-*b*]-1,4-бензтиазепинов: восстановление, окисление, реакции с нуклеофильными реагентами – метанолом, гидразином, гидроксиламином, *о*-метилгидроксиламином и тиосемикарбазидом. Синтезированы производные новой гетероциклической системы – пиримидо[5,4-*c*]изохинолина.

Ключевые слова: пиримидиларилсульфиды, пиримидо[4,5-*b*]-1,4-бензтиазепин, пиримидо[5,4-*c*]изохинолин.

Синтез производных трициклических систем 1,4-тиазина, среди которых обнаружены вещества, обладающие противоопухолевой и психотропной активностью, описан в [2, 3]. В продолжение этих исследований был разработан метод получения 4-алкокси(амино)-8-нитропроизводных пиримидо[4,5-*b*]-1,4-бензтиазепинов **1а–d** [1]. Данная работа посвящена изучению свойств соединений **1а–d** и синтезу новых производных этой гетероциклической системы, представляющих интерес для биологических испытаний.

На первом этапе работы было изучено восстановление пиримидобензтиазепинов **1а–с**. Было установлено, что при обработке этих веществ боргидридом натрия в среде этанола при 18–20 °С гладко образуются дигидропиримидобензтиазепины **2а–с**. Их строение подтверждено наличием в ИК спектрах соединений **2а,b** полос поглощения группы NH в области 3280 и 3380 см⁻¹ соответственно.

На примере соединений 1b и 2b установлено, что их восстановление железными опилками в уксусной кислоте приводит к 8-аминопроизводным 2d и 2e. Соединение 2e образуется также при обработке пиримидобензтиазепина 2d боргидридом натрия в условиях синтеза производных 2a-c. Реакции соединения 2d с фенилизоцианатом и фенилизотиоцианатом дают производные 2f,g.

^{*} Сообщение 53 см. [1].

1a, 2a R = OMe, 1b, 2b,d–g R = NMe₂, 1c, 2c R = NHMe, 1d R = NH₂; 2f X = O; 2g X = S

В работе исследована также реакционная способность азометиновой группы в пиримидобензтиазепинах 1a-c по отношению к нуклеофильным реагентам. Обнаружено, что при нагревании соединения 1a в метаноле в присутствии КОН происходит присоединение молекулы этого спирта к азометиновой группе -N=CH-c образованием связи -NH-CH(OMe) -. В результате соединение 1a гладко превращается в соединение 2h (выход 89%).

Соединение **2h** (выход 90%) было получено также встречным синтезом из 5-амино-4-метокси-6-меркаптопиримидина и 3-нитро-6-хлорбензальдегида в метаноле в присутствии 2 моль КОН.

Строение соединения **2h** подтверждается наличием в ИК спектре полосы поглощения группы NH при 3350 см^{-1} . В спектре ЯМР ¹Н в пиридине-d₅, помимо сигналов двух групп ОМе при 3.75 и 3.37 м. д., наблюдаются два дублетных сигнала при 5.70 и 6.54 м. д., каждый интенсивностью в одну протонную единицу. Эти сигналы обусловлены взаимодействием протонов H-5,6, что подтверждается при регистрации спектра в присутствии дейтерометанола. В этом случае за счет замены протона H-5 на дейтерий в спектре обнаруживается лишь синглетный сигнал протона H-6 при 5.74 м. д.

Реакции тиазепинов **1а-с** с гидразингидратом **3а** протекают с раскры-1864 тием тиазепинового кольца, в результате чего образуются пиримидиларилсульфиды 4a-с. Соединение 4a, а также вещества с подобной структурой 4d-f были получены нами при взаимодействии дигидротиазепина 2h с гидразингидратом, гидроксиламином (3b), О-метилгидроксиламином (3c) и тиосемикарбазидом (3d) соответственно.

3 $\mathbf{a} \mathbf{R}^1 = \mathrm{NH}_2$, $\mathbf{b} \mathbf{R}^1 = \mathrm{OH}$, $\mathbf{c} \mathbf{R}^1 = \mathrm{OMe}$, $\mathbf{d} \mathbf{R}^1 = \mathrm{NHCSNH}_2$; **4** \mathbf{a} , \mathbf{d} - $\mathbf{f} \mathbf{R} = \mathrm{OMe}$; $\mathbf{b} \mathbf{R} = \mathrm{NMe}_2$, $\mathbf{c} \mathbf{R} = \mathrm{NHMe}$, \mathbf{a} - $\mathbf{c} \mathbf{R}^1 = \mathrm{NH}_2$, $\mathbf{d} \mathbf{R}^1 = \mathrm{OH}$, $\mathbf{e} \mathbf{R}^1 = \mathrm{OMe}$, $\mathbf{f} \mathbf{R}^1 = \mathrm{NHCSNH}_2$

Алкалоиды ряда дигидроизохинолина, содержащие азометиновую группу, при взаимодействии с фенилгидразином, гидроксиламином и рядом других подобных соединений образуют производные циклической формы, находящейся в равновесии с соответствующей открытой формой [4].

По аналогии с этими данными можно было полагать, что соединения 4a-f существуют как в открытой форме А, так и изомерной ей циклической форме Б или в виде равновесной смеси этих форм. Выбор между открытой и циклической структурами А и Б в пользу А был сделан нами на основании ИК, ЯМР ¹Н и масс-спектров соединений 4a-e. Так, в ИК спектре *о*-метилоксима 4e имеются полосы поглощения группы NH₂ при 3400–3500 см⁻¹. Данные ИК спектра оксима 3d в области валентных колебаний группы NH₂ трудно интерпретировать из-за наличия гидроксильной группы. Однако наличие в соединении 4d свободной аминогруппы подтверждается значительным уменьшением интенсивности полосы поглощения деформационных колебаний этой группы при 1610 см⁻¹, наблюдающихся при дейтерировании. Кроме того, при регистрации ИК спектров соединений 4d,e в CCl₄ не были обнаружены полосы поглощения группы NH, характерной для циклической формы Б.

Существование соединений **4a**–**d** преимущественно в открытой форме А подтверждается наличием в спектрах ЯМР ¹Н сигнала метинового протона при двойной связи с δ 8.24–8.44 м. д., характерного для формы А. Если бы соединения **4a**–**d** имели циклическое строение Б или существовали в виде смеси форм A и Б, то в их спектрах ЯМР ¹Н должен был наблюдаться дублетный сигнал протона H-6, расщепленный за счет взаимодействия с протоном H-5, как это наблюдалось в случае соединения **2h**.

Согласно данным масс-спектров соединений 4а-d, они находятся в газовой фазе в виде смеси циклической Б и открытой А форм со

преобладанием последней. Так, в масс-спектрах* значительным соединений 4а-d помимо пика молекулярных ионов 320, 333, 319 и 321, соответственно, наблюдались ионы, характерные для открытой формы. Наиболее интенсивным в спектрах гидразонов 4а-с является пик иона $[M-NH_2]^+$, соответственно, 304, 317 и 303. Аналогичный распад наблюдается и для оксима 4d, в результате которого образуются ионы $[M-OH]^+$ 304 и [M–H₂O]⁺ 303. Общим для фрагментации соединений 4а–d является элиминирование из молекулярного иона группы NR¹, присутствующей в структуре A, с образованием ионов с m/z 320 (для веществ 4a,d), 303 (для 4b) и 289 (для 4c). Правильность сделанного отнесения доказывает соответствующий сдвиг массового числа пика данного фрагмента при изменении заместителей R и R'. В масс-спектрах соединений 4a-d наиболее интенсивными являются также пики ионов с *m/z* 157 (для веществ 4a,d), 170 (для 4b) и 156 (для 4c). Этим ионам приписано строение A¹, что подтверждается изменением массового числа данных ионов в зависимости от заместителя R при атоме $C_{(4)}$. Фрагмент A^1 отсутствует в масс-спектрах пиримидобензтиазепина 1а-с, являющихся

в данном случае модельными соединениями. Следовательно, наличие в масс-спектрах соединений **4a**–**d** фрагмента A¹ может быть обусловлено распадом открытой формы A.

Кроме того, в масс-спектрах соединений **4***a*–**d** имеются пики ионов, отвечающих распаду циклической формы Б. Так, например, обнаруживаются малоинтенсивные пики ионов с m/z 288 (для веществ **4***a*,**d**), 301 (для **4***b*) и 287 (для **4***c*). Эти ионы соответствуют отрыву из молекулярного иона группы NH₂R¹, характерной для циклической формы Б. В случае оксима **4d** был получен масс-спектр его дейтеропроизводного аналога D-**4d**. Было отмечено, что массовое число фрагмента 288 сохранилось таким же, как и в масс-спектре недейтерированного соединения **4d**. Эти данные свидетельствуют о том, что элиминируемая частица ND₂OD содержит все три подвижных атома водорода, присутствующих в циклической форме соединения **4d**.

Аналогичный распад наблюдается и для 2,6-диметоксипиримидобензтиазепина **2h**, являющегося модельным соединением циклического строения.

^{*} Здесь и далее для пиков ионов даны значения *m/z*.

Фрагментация соединения **2h** с образованием иона $[M-MeOH]^+$ с m/z 288 является преобладающей. Дальнейший распад иона $[M-MeOH]^+$, а также соединения **4d** полностью совпадает с распадом 4-метоксипиримидобензтиазепина **1a**, имеющего азометиновую группу.

Приведенные данные служат подтверждением того, что пики ионов $[M-NH_2R^1]^+$, обнаруживаемые в масс-спектрах гидразонов **4а**-с и оксима **4d**, являются следствием фрагментации циклической формы Б для этих веществ.

Таким образом, с помощью спектральных данных было установлено, что соединения **4а–d** в кристаллах и растворах существуют преимущественно в открытой форме A, а в газовой фазе – в виде смеси циклической Б и открытой A форм с преобладанием последней.

Далее нами было исследовано окисление пиримидобензтиазепинов 1a-c пероксидом водорода. Обнаружено, что действие на 4-метоксипроизводное 1a пероксида водорода в уксусной кислоте при 60–65 °C приводит к образованию смеси соединений, из которой удалось выделить в индивидуальном состоянии сульфоксид 5a и сульфон 5b. Первичной стадией этой реакции является, вероятно, присоединение молекулы воды к азометиновой группе с образованием неустойчивого промежуточного соединения В. Окисление последнего протекает как по атому углерода в положении 6, так и по атому серы и приводит к образованию смеси соединений 5a и 5b.

1867

Неожиданные результаты были получены при окислении в указанных выше условиях (H_2O_2 + AcOH, 60–65 °C) 4-аминозамещенных 8-нитропиримидобензтиазепинов **1b**–**d**. В этом случае с удовлетворительными выходами были получены производные новой гетероароматической системы пиримидо[5,4-*c*]изохинолины **6а**–**c**.

Ранее были описаны производные изомерной системы – пиримидо[4,5-*c*]изохинолина, полученные нагреванием 5-арил-4-аминопиримидинов с избытком муравьиной кислоты в присутствии треххлористого фосфора [5].

Соединения **ба**–с не содержат атома серы, в их масс-спектрах имеются интенсивные пики молекулярных ионов с m/z 269, 255 и 241, отвечающие их структурам. В спектрах ЯМР ¹Н обнаруживается набор сигналов ароматических протонов в области 8.58–9.53 м. д., соответствующих по интегральной интенсивности пяти протонным единицам. Это свидетельствует о трициклическом строении соединений **ба**–с и исключает альтернативную структуру шиффовых оснований Г, в спектрах ЯМР ¹Н которых должны присутствовать сигналы шести ароматических протонов.

Образование пиримидоизохинолинов **6а-с** при окислении соединений **1b-d** является, очевидно, следствием элиминирования атома серы в тиазепиновом ядре с образованием связи С-С между пиримидиновым и бензольным кольцами с одновременным сужением семичленного цикла до шестичленного.

На примере 8-нитропиримидоизохинолина **6a** было изучено его восстановление железными опилками в уксусной кислоте до соответствующего амина **6d**, ацилированием которого хлорацетилхлоридом получено хлорацетильное производное **6e**.

6 a $R = NMe_2$, b R = NHMe, c $R = NH_2$

Xa	ракте	ристики	синтези	рованных	соелинений

Coe-	Брутто-	Найдено, %					Выход
дине- ние	формула	C H N S		S	Т. пл., °С*	%	
2a	$C_{12}H_{10}N_4O_3S$	<u>49.86</u> 49.66	$\frac{3.39}{3.45}$	<u>19.73</u> 19.31	$\frac{11.04}{11.03}$	216–218	89
2b	$C_{13}H_{13}N_5O_2S$	<u>51.52</u> 51.48	<u>4.33</u> 4.29	$\frac{23.20}{23.10}$	<u>10.64</u> 10.56	190–192	93
2c	$C_{12}H_{11}N_5O_2S$	<u>49.93</u> 49.90	<u>3.65</u> 3.81	$\frac{24.17}{24.20}$	<u>11.20</u> 11.10	262–264	92
2d	$C_{13}H_{13}N_5S$	<u>57.29</u> 57.56	<u>4.79</u> 4.79	<u>25.67</u> 25.83	<u>11.72</u> 11.80	179–181	43
2e	$C_{13}H_{15}N_5S$	<u>57.20</u> 57.14	<u>5.51</u> 5.49	<u>25.68</u> 25.64	-	169–171	66–83
2f	$C_{20}H_{18}N_6OS$	<u>61.46</u> 61.54	<u>4.39</u> 4.82	<u>21.64</u> 51.54	$\frac{8.44}{8.20}$	215–216	54
2g	$C_{20}H_{18}N_6S_2$	<u>58.96</u> 59.11	<u>4.62</u> 4.43	$\frac{20.45}{20.68}$	<u>15.37</u> 15.76	167–170	52
2h	$C_{13}H_{12}N_4O_4S$	<u>49.01</u> 48.70	<u>3.87</u> 3.76	<u>17.56</u> 17.50	$\frac{10.14}{10.00}$	195–200	89–90
4 a	$C_{12}H_{12}N_6O_3S$	<u>44.85</u> 45.00	<u>3.60</u> 3.75	<u>26.42</u> 26.25	_	199–201	76–90
4b	$C_{13}H_{15}N_7O_2S$	<u>47.01</u> 46.84	$\frac{4.46}{4.50}$	<u>29.79</u> 29.42	_	190–192	76
4c	$C_{12}H_{13}N_7O_2S$	<u>44.96</u> 45.14	<u>4.02</u> 4.07	<u>31.01</u> 30.72	-	213–214	87
4d	$C_{12}H_{11}N_5O_4S$	<u>44.89</u> 44.86	<u>3.44</u> 3.43	<u>22.00</u> 21.81	-	177–179	80
4e	$C_{13}H_{13}N_5O_4S$	<u>46.86</u> 46.57	<u>3.96</u> 3.88	<u>21.00</u> 20.89	_	170–172	96
4f	$C_{13}H_{13}N_7O_3S_2$	<u>41.73</u> 41.16	<u>3.12</u> 3.43	_	<u>16.80</u> 16.88	329–331 (разл.)	91
5a	$C_{12}H_8N_4O_5S$	<u>44.72</u> 45.00	$\frac{2.57}{2.50}$	<u>17.57</u> 17.50	<u>10.19</u> 10.00	140–142	36
5b	$C_{12}H_8N_4O_6S$	<u>43.09</u> 42.85	$\frac{2.55}{2.37}$	<u>16.61</u> 16.67	<u>9.84</u> 9.52	250–252	52
6a	$C_{13}H_{11}N_5O_2$	<u>58.00</u> 58.00	$\frac{4.01}{4.08}$	<u>26.36</u> 26.10	-	246–248	63
6b	$C_{12}H_9N_5O_2$	<u>56.30</u> 56.47	$\frac{3.48}{3.52}$	<u>27.42</u> 27.45	_	251–253	67
6c	$C_{11}H_7N_5O_2$	<u>54.60</u> 54.77	<u>2.74</u> 2.90	<u>28.89</u> 29.00	_	>300	66
6d	C ₁₃ H ₁₃ N ₅	<u>65.18</u> 65.40	<u>5.78</u> 5.45	<u>29.70</u> 29.40	-	219–221	25
6e	C ₁₅ H ₁₄ ClN ₅ O	<u>57.61</u> 57.05	$\frac{4.00}{4.43}$	<u>22.21</u> 22.18	_**	199–201	58

^{*} Растворители для кристаллизации: метанол (соединения 2a,d-f,h, 4b,e), этанол (соединения 2b,c,g, 4a,d, 5a,b, 6a,b,d), ДМФА-вода, 1:1 (соединения 4c,f) и ДМФА (соединения **6с,е**). ** Найдено, %: Cl 11.19; вычислено, %: Cl 11. 30.

Таблица 2

Соеди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, б, м. д.*	Масс-спектр, М ⁺ , <i>m/z</i>	
2a	3380	7.48 (1Н, д, NН), 7.61 (2Н, д, CH ₂)		
2b	3280			
2c	3340			
2h	3350	5.76 (1H, д, NH), 6.55 (2H, д, CH ₂ -6), 3.75 (3H, с, OCH ₃ -4), 3.37 (3H, с, OCH ₃ -6)	320, 288, 157	
4 a	3400, 3300,	8.24 (1H, c, CH=NR ¹), 8.12 (1H, c, H-2),	320, 304, 288, 157	
4b	1630	 8.74–7.74 (протоны бензольного ядра) 8.24 (1H, c, CH=NR¹), 7.24 (1H, c, H-2), 8.82–7.74 (протоны бензольного ядра) 	333, 317, 303, 301, 170	
4c		8.42 (1H, c, CH=NR ¹), 8.29 (1H, c, H-2), 8.72–7.74 (протоны бензольного ядра)	319, 303, 289, 287, 156	
4d	3310, 3230, 1610	8.34 (1H, c, CH=NR ¹), 7.92 (1H, c, H-2), 8.50–8.00 (протоны бензольного ядра)	379, 320, 304, 303, 288, 157	
4 e	3500, 400, 1600	8.44 (1H, c, CH=NR ¹), 7.90 (1H, c, H-2), 8.08–8.05 (протоны бензольного ялра)	,	
5a	3200, 1650,			
5b	1065 3170, 1660, 1160			
6a		8.58–9.36 (аром. протоны)		
6b	3360	8.60-9.42 (аром. протоны)		
6c	3470, 3400	8.70-9.53 (аром. протоны)		

Спектральные характеристики синтезированных соединений

* Спектры ЯМР ¹Н снимали в пиридине- d_5 (соединения 2a,h и 4a–d) и в ДМСО- d_6 (соединения 6a–c).

Биологические исследования синтезированных соединений показали, что пиримидобензтиазепины **1**а,**b** и **2**d обладают нейролептическим действием. Тиосемикарбазон пиримидобензальдегида **4f** и пиримидоизохинолин **6b** в опытах *in vitro* подавляют рост туберкулезной палочки, а соединение **4f**, кроме того, угнетает рост молочнокислых бактерий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на спектрометре Perkin–Elmer 457 в вазелиновом масле и в растворе CCl₄. Спектры ЯМР ¹Н записаны на приборе Varian XL-200 (200 МГц), внутренний стандарт ТМС. Масс-спектры получены на масс-спектрометре MX-1303 с вводом вещества непосредственно в ионный источник при энергии ионизирующих электронов 30 эВ и температуре 125 °C.

Контроль за ходом реакций и индивидуальностью соединений осуществлялся методом TCX на пластинках Silufol UV-254 в системе бензол–этилацетат–этанол, 5:5:1.5. Проявление в УФ свете.

Физико-химические и спектральные характеристики полученных соединений приведены в табл. 1 и 2.

4-Метокси(диметиламино, метиламино, амино)-8-нитропиримидо[4,5-*b*]-**1,4-бензтиазепины 1а–d** получают по методу [1].

4-Метокси-8-нитро-5,6-дигидропиримидо[**4,5**-*b*]-**1,4-бензтиазепин** (**2a**). К суспензии 0.57 г (2 ммоль) 4-метокси-8-нитропиримидо[4,5-*b*]-1,4-бензтиазепина (**1a**) в 10 мл безводного этанола добавляют при энергичном перемешивании 0.19 г (5 ммоль) NaBH₄. Смесь перемешивают 3 ч при 20 °C и упаривают в вакууме досуха. К остатку добавляют 5 мл воды, подкисляют 10% HCl до pH 5–6, выделившийся осадок отфильтровывают, промывают водой, сушат. Получают 0.52 г соединения **2a**.

Соединения 2b,с получают аналогично.

8-Амино-4-диметиламинопиримидо[4,5-b]-1,4-бензтиазепин (2d). К суспензии 0.8 г (2.7 ммоль) 4-диметиламино-8-нитропиримидо[4,5-b]-1,4-бензтиазепина (1b) в 65 мл метанола добавляют 1.6 г железных опилок и 2 мл ледяной уксусной кислоты. Смесь кипятят 8 ч, фильтруют, раствор упаривают в вакууме досуха. К остатку добавляют 20 мл воды, подщелачивают водным NaOH до pH 6–7 и экстрагируют этилацетатом. Раствор сушат Na₂SO₄, фильтруют, упаривают в вакууме досуха. Получают 0.31 г соединения 2d.

8-Амино-4-диметиламино-5,6-дигидропиримидо[4,5-*b*]-1,4-бензтиазепин (2е). А. К суспензии 1.0 г (3.3 ммоль) 4-диметиламино-8-нитро-5,6-дигидропиримидо[4,5-*b*]-1,4-бензтиазепина (2b) добавляют 2 г железных опилок и 2 мл ледяной уксусной кислоты. Смесь кипятят 12 ч и далее поступают как указано при синтезе соединения 2d. Получают 0.6 г (66%) соединения 2e.

Б. К суспензии 0.6 г (2.2 ммоль) соединения **2d** в 10 мл безводного этанола добавляют при энергичном перемешивании 0.19 г (5 ммоль) NaBH₄. Смесь перемешивают 4 ч при 20 °C и далее поступают как описано при синтезе соединения **2a**. Получают 0.5 г (83%) соединения **2e**, идентичного по температуре плавления и спектральным характеристикам соединению, синтезированному по методу А.

4-Диметиламино-8-(3-фенилуреидо)пиримидо[4,5-*b***]-1,4-бензтиазепин (2f)**. К суспензии 0.5 г (1.8 ммоль) соединения **2d** в 20 мл этилацетата добавляют 0.22 г (1.8 ммоль) фенилизоцианата. Смесь кипятят 3 ч, охлаждают, выделившийся осадок отфильтровывают, сушат. Получают 0.39 г соединения **2f**.

4-Диметиламино-8-(3-фенилтиоуреидо)пиримидо[4,5-*b***]-1,4-бензтиазепин (2g**). К суспензии 0.22 г (0.81 ммоль) соединения **2d** в 10 мл этанола добавляют 0.22 г (1.6 ммоль) фенилизотиоцианата. Смесь кипятят 20 мин, охлаждают, выделившийся осадок отфильтровывают, сушат. Получают 0.17 г соединения **2g**.

4,6-Диметокси-8-нитро-5,6-дигидропиримидо[**4,5-***b*]**-1,4-бензтиазепин** (**2h**). А. Суспензию 0.5 г (1.73 ммоль) соединения **1а** в 23 мл МеОН, содержащего 0.12 г (2.14 ммоль) КОН, нагревают 2 ч при 65 °С, охлаждают, выделившийся осадок отфильтровывают, сушат. Получают 0.5 г (89%) соединения **2h**.

Б. К раствору 0.5 г (3.18 ммоль) 5-амино-4-метокси-6-меркаптопиримидина в 25 мл МеОН, содержащего 0.3 г (5.37 ммоль) КОН, добавляют раствор 0.59 г (3.18 ммоль) 3нитро-6-хлорбензальдегида в 20 мл МеОН. Смесь нагревают 2 ч при 65 °С, охлаждают, выделившийся осадок отфильтровывают, сушат. Получают 0.9 г (90%) соединения **2h**, идентичного по температуре плавления и спектральным характеристикам соединению, синтезированному по методу А.

Гидразон 6-(5-амино-4-метоксипиримидил-6)-3-нитромеркаптобензальдегида (4а). А. Смесь 0.5 г (1.73 ммоль) соединения 1а, 40 мл МеОН и 1 мл гидразингидрата нагревают 4 ч при 60–63 °C, охлаждают, осадок отфильтровывают, сушат. Получают 0.42 г (76%) соединения 4а.

Гидразоны 4b,с получают аналогично из соединений 1b,с.

Б. Смесь 0.5 г (1.57 ммоль) соединения **2h**, 60 мл МеОН и 1 мл гидразингидрата нагревают и обрабатывают, как описано выше. Получают 0.42 г соединения **4a**. Упариванием маточного раствора выделяют дополнительно 0.1 г этого вещества. Общий выход 0.45 г (90%). Соединение **4a** идентично по температуре плавления и спектральным характеристикам веществу, синтезированному по методу А.

Оксим 6-(5-амино-4-метоксипиримидил-6)-3-нитромеркаптобензальдегида (4d).

1871

К смеси 0.2 г (2.88 ммоль) солянокислого гидроксиламина, 10 мл этанола и 1 мл пиридина добавляют 0.5 г (1.57 ммоль) соединения **2h**. Раствор кипятят 4 ч, упаривают в вакууме досуха, остаток растирают с 5 мл воды. Нерастворившийся осадок отфильтровывают, промывают водой, сушат. Получают 0.4 г соединения **4d**.

Соединения 4е, f синтезируют аналогично.

Сульфоксид 4-метокси-8-нитро-6-оксо-5,6-дигидропиримидо[4,5-b]-1,4-бензтиазепина (5а) и сульфон 4-метокси-8-нитро-6-оксо-5,6-дигидропиримидо[4,5-b]-1,4-бензтиазепина (5b). К суспензии 0.2 г (0.695 ммоль) 1а в 20 мл ледяной уксусной кислоты добавляют 1 мл 30% водного раствора H₂O₂. Смесь нагревают при перемешивании 4 ч при 63-65 °C, охлаждают, выделившийся осадок отфильтровывают. Получают 0.12 г сульфона 5b. Фильтрат упаривают в вакууме досуха, твердый остаток растирают с 5 мл этанола, осадок отфильтровывают, промывают 3 мл этанола, сушат. Получают 0.08 г сульфоксида 5а.

4-Диметиламино-8-нитропиримидо[**5,4**-*с*]изохинолин (**6**a). К суспензии 0.52 г (1.8 ммоль) соединения **1b** в 40 мл ледяной уксусной кислоты добавляют 2 мл 30% водного раствора H₂O₂. Смесь нагревают 3 ч при 60–63 °C, упаривают в вакууме досуха, остаток растирают с водой, нерастворившийся осадок отфильтровывают, промывают водой, сушат. Получают 0.30 г соединения **6**а.

Соединения 6b,с получают аналогично.

8-Амино-4-диметиламнопиримидо[5,4-*с***]изохинолин** (**6d**). К суспензии 0.9 г (3.35 ммоль) нитросоединения **6a** в 50 мл МеОН добавляют 0.9 г железных опилок и 2 мл ледяной уксусной кислоты. Смесь кипятят 12 ч, фильтруют от шлама, фильтрат упаривают в вакууме досуха, остаток растворяют в 10 мл воды, раствор подщелачивают водным раствором NaOH до рН 6–7 и экстрагируют этилацетатом. Экстракт сушат Na₂SO₄, фильтруют, фильтрат упаривают в вакууме досуха. Получают 0.2 г соединения **6d**.

4-Диметиламино-8-хлорацетиламинопиримидо[5,4-*с*]изохинолин (6е). К суспензии 0.2 г (0.83 ммоль) соединения 6d в 20 мл ацетона добавляют по каплям раствор 0.12 г (1.23 ммоль) хлорацетилхлорида. Смесь перемешивают 6 ч при 18–20 °С, упаривают в вакууме досуха, остаток растирают с 5 мл воды, осадок отфильтровывают, промывают водой, сушат. Получают 0.15 г соединения 6е.

СПИСОК ЛИТЕРАТУРЫ

- Т. С. Сафонова, М. П. Немерюк, Н. А. Гринева, М. А. Керемов, М. М. Лиховидова, XГС, 270 (2001).
- 2. Т. С. Сафонова, в кн. Целенаправленный поиск новых противораковых и противовирусных препаратов, Зинатне, Рига, 1978, с. 51.
- 3. А. М. Полежаева, Л. Ф. Рощина, А. С. Соколова, М. П. Немерюк, М. В. Пыхова, Т. С. Сафонова, М. Д. Машковский, *Хим.-фарм. журн.*, **15**, № 11, 45 (1981).
- 4. D. Beke, in *Advances in Heterocyclic Chemistry*, A. R. Katritzky (Ed.), Acad. Press, New York, London, 1963, **6**, p. 167.
- 5. T. Koyama, T. Hirota, I. Shinohara, S. Fukuoka, M. Yamato, S. Ohmori, *Chem. Pharm. Bull.*, **23**, 494 (1975).

Центр по химии лекарственных средств – Всероссийский научно-исследовательский химико-фармацевтический институт, Москва 119815 e-mail: sedov@drug.org.ru Поступило в редакцию 25.03.2002

^аДагестанский государственный университет, Махачкала 367010, Россия