С. Н. Михайличенко, А. А. Чеснюк, Л. Д. Конюшкин^а, В. Н. Заплишный

ПРОИЗВОДНЫЕ сим-ТРИАЗИНА

6*. НЕКОТОРЫЕ ОСОБЕННОСТИ ПРИСОЕДИНЕНИЯ ЗАМЕЩЕННЫХ АЦЕТИЛЕНОВ К МОНОАЗИДАМ ТРИАЗИНОВОГО РЯДА

Исследованы особенности взаимодействия 2-азидо-4-R-6-R'-сим-триазинов с некоторыми ацетиленовыми соединениями. Синтезирован ряд новых производных сим-триа-зина, сочлененных в положениии 2 с 1,2,3-триазольным циклом.

Ключевые слова: 2-азидо-4-R-6-R'-сим-триазины, замещенные 2-(1,2,3-триазолил-1)сим-триазины.

Нами описаны синтез и некоторые превращения кислород- и азотсодержащих производных *сим*-триазиновогого ряда и показана перспективность их применения в качестве реакционноспособных и удобных полупродуктов синтеза азотсодержащих гетероциклических соединений [1, 2].

Известно, что азидоазолопиридазины, моноазидофуразаны и моноазидотриазины [2–4] с 1,3-дикарбонильными соединениями образуют сочлененные бигетероциклические системы, проявляющие высокую антибактериальную и антидотную активность, а 1,3-диполярные компоненты (например, азиды) присоединяются к ацетиленам с образованием пятичленных гетероциклов – триазолов [5]. Поскольку для моноазидов ряда *сим*-триазина эти реакции еще не изучены, представлялось интересным исследовать такие реакции и возможность получения С–N сочлененных гетероциклических систем триазолил-*сим*-триазинов.

С этой целью синтезированные нами ранее азиды 1 использовали в качестве исходных соединений в реакции циклоприсоединения с некоторыми замещенными ацетиленами, которую осуществляли согласно схеме:

1, 2 а,b,i R = OMe, $R^1 = 1$ -морфолил; **с** $R = R^1 = 1$ -пиперидил; **d,g,h** $R = R^1 = 4$ -морфолил; **e** R = OEt, $R^1 = 1$ -пиперидил; **f** $R = R^1 = OEt$; **2 а-f** $R^2 = H$, $R^3 = Ph$; **g** $R^2 = R^3 = CH_2OH$; **h,i** $R^2 = H$, $R^3 = CH_2OH$

^{*} Сообщение 5 см. [1].

Реакцию проводили в сухом толуоле или бензоле при температуре кипения растворителя. Оказалось, что скорость реакции существенно зависит как от типа, характера и строения заместителей в положениях 4, 6 триазинового цикла, так и от строения используемого ацетиленового соединения. Так, при взаимодействии моноазидов 1 со склонным к поляризации и более реакционноспособным пропаргиловым спиртом в бензоле при 80 °С продолжительность реакции не превышала 5 ч. Симметричные и неполярные молекулы 2-бутиндиола-1,4 уже столь малореакционноспособны, что требуют гораздо большей продолжительности нагревания в толуоле при 110 °C, а реакция при этом сопровождается осмолением. С пространственно затрудненными молекулами фенилацетилена реакция циклизации с содержащими алкоксизаместители в положениях 4, 6 триазинового цикла моноазидами 1 завершается за 48-72 ч. В случае же амидов 1с, d, g, h, содержащих объемные заместители – 4-морфолил и 1-пиперидил, продолжительность реакции с фенилацетиленом увеличивается.

Существенного влияния на скорость реакции циклоприсоединения не оказали применение катализаторов – комплексных соединений и солей ртути [6], а также УФ облучение реакционной смеси даже при проведении реакции в кварцевом реакторе. По-видимому, эта реакция протекает по типичному механизму диполярного циклоприсоединения согласно схеме:

При этом, ввиду меньшей стерической затрудненности, вероятность протекания процесса по схеме А, по-видимому, гораздо выше, чем по альтернативному пути В:

Действительно, анализ реакционной смеси методами ЯМР ¹Н высокого разрешения и ТСХ показал, что наряду с 4'-замещенными циклоаддуктами **2а–f** в процессе реакции образуется небольшое количество 5'-замещенных триазолилтриазинов **2'а–f**. Сравнение интегральных интенсивностей сигналов соответствующих протонов показывает, что соотношение изомеров 2 и 2' в реакционной смеси во всех случаях ~ 9:1. К сожалению, из-за неустойчивости жидких аддуктов 2' выделить и охарактеризовать их нам не удалось. Выходы же 4'-замещенных триазолов 2а-f составляют 59–84%.

В случае пропаргилового спирта реакция циклоприсоединения также протекает по двум альтернативным путям A и B с образованием соединений **2'h,i** в качестве минорных продуктов.

Синтезированные таким образом соединения 2a-i представляют собой относительно высокоплавкие белые мелкокристаллические порошки, хорошо растворимые во многих полярных органических растворителях, не растворимые в углеводородах и воде (табл. 1, 2). Состав и строение триазолилтриазинов 2a-i подтверждены данными элементного анализа, ИК, ЯМР ¹Н и масс-спектров. Индивидуальность всех соединений подтверждена TCX.

Таблица 1

Со-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т пп ⁰С	Мол. ион	Вы- хол
ние		С	Н	Ν	1. 1	m/z *	%
2a	$C_{16}H_{17}N_7O_2$	<u>56.40</u> 56.62	<u>5.13</u> 5.05	$\frac{28.93}{28.89}$	176–177	339	80
2b	$C_{17}H_{19}N_7O$	<u>60.39</u> 60.52	<u>5.73</u> 5.68	<u>29.12</u> 29.06	174–175	337	78
2c	$C_{21}H_{26}N_8$	<u>64.43</u> 64.59	<u>6.80</u> 6.71	<u>28.79</u> 28.70	189–190	390	82
2d	$C_{19}H_{22}N_8O_2$	<u>57.63</u> 57.85	<u>5.80</u> 5.62	<u>28.55</u> 28.41	309–310	394	84
2e	$C_{18}H_{21}N_7O$	<u>61.70</u> 61.52	<u>6.29</u> 6.02	<u>28.12</u> 27.90	172–173	351	59
2f	$C_{15}H_{16}N_6O_2$	<u>57.39</u> 57.68	<u>4.98</u> 5.16	<u>26.94</u> 26.88	138–139	312	63
2g	$C_{15}H_{22}N_8O_4$	<u>47.49</u> 47.61	<u>6.03</u> 5.89	<u>29.80</u> 29.62	232–233	378	62
2h	$C_{14}H_{20}N_8O_3$	<u>48.04</u> 48.26	<u>5.93</u> 5.79	<u>32.30</u> 32.17	235–236	348	65
2i	$C_{11}H_{15}N_7O_3$	<u>44.95</u> 45.09	<u>5.32</u> 5.16	<u>33.59</u> 33.43	184–185	293	55

Характеристики синтезированных соединений

* Данные масс-спектров можно получить у авторов.

В ИК спектрах триазолилтриазинов **2** в отличие исходных азидов **1** исчезает интенсивная полоса поглощения валентных колебаний азидной группы при 2110–2100 см⁻¹, но сохраняются сильные полосы валентных колебаний C=C-, C=N- и N=N-сопряженных при 1630–1500 см⁻¹ (табл. 2).

В спектрах ЯМР ¹Н соединений **2а–і** обнаружены характерные сигналы всех протонов заместителей, находящихся в положениях 4 и 6 триазинового цикла. В спектрах соединений **2а–f** обнаружены мультиплеты протонов фенильного кольца в области 7.30–8.05 м. д. и синглеты протона в положении 5 триазольного цикла при 8.98–9.28 м. д. Протоны симметричных заместителей НОСН₂ в положениях 4, 5 триазольного цикла (соединение **2g**) проявляются в виде мультиплетов при 4.60–5.00 м. д.,

Таблица 2

Со- ели-	ИК спектр, v, cm^{-1}		Спектр ЯМР ¹ Н. б. м. д. (КССВ. <i>J.</i> Ги)	
нение	С=С-, С=N- и N=N- сопр.	Другие группы	1 , , , , , , , , , , ,	
2a	1630, 1610, 1510	1020, 1140 (C–O–C)	3.65–3.90 (8Н, м, 2NCH ₂ , 2OCH ₂); 4.03 (3Н, с, OCH ₃); 7.32–8.00 (5Н, м, H _{Ph}); 9.28 (1Н, с, =CH)	
2b	1600, 1620, 1515	1060, 1095 (C–O–C)	1.60–1.75 (6H, м, 3CH _{2 пиперил}); 3.85–4.00 (4H, м, 2NCH ₂); 4.02 (3H, с, OCH ₃); 7.35–8.05 (5H, м, H _{Ph}); 9.28 (1H, с, =CH)	
2c	1595, 1500, 1485	_	1.50–1.70 (12H, м, 6CH _{2 пиперид}); 3.70–3.92 (8H, м, 4NCH ₂); 7.35–8.05 (5H, м, H _{Ph}); 9.30 (1H, с, =CH)	
2d	1605, 1550, 1510	-	3.67–4.00 (16Н, м, 4NCH ₂ , 4OCH ₂); 7.30–7.97 (5Н, м, Н _{Ph}); 8.98 (1Н, с, =CH)	
2e	1610, 1590, 1530	1030, 1055 (C–O–C)	1.43 (3H, т, <i>J</i> = 5.5, OCH ₂ <u>CH₃</u>); 1.60–1.80 (6H, м, 3CH _{2 пиперид}); 3.85–4.03 (4H, м, 2NCH ₂); 4.49 (2H, кв, <i>J</i> = 5.5, O <u>CH₂</u> CH ₃); 7.30–8.00 (5H, м, H _{Ph}); 9.02 (1H, с, =CH)	
2f	1600, 1580, 1540	1130, 1050 (C–O–C)	1.49 (6H, т, <i>J</i> = 7.0, 2ОСН <u>2СН</u> 3); 4.60 (4H, кв, <i>J</i> = 7.0, 2О <u>СН</u> 2СН3); 7.30–8.05 (5H, м, H _{Ph}); 9.12 (1H, c, =СН)	
2g	1600, 1550, 1505	3470–3300 (уш. с, ОН)	3.65–3.85 (16H, м, 4NCH ₂ , 4OCH ₂); 4.60–5.00 (6H, м, 2 <u>CH₂</u> O, 2O <u>H</u>)	
2h	1615, 1575, 1515	3400–3250 (уш. с, ОН)	3.65–3.85 (16H, м, 4NCH ₂ , 4OCH ₂); 4.89 (2H, д, <i>J</i> = 5.7, <u>CH</u> ₂ O); 5.19 (1H, уш. с, O <u>H</u>); 7.62 (1H, с, =CH)	
2i	1600, 1530, 1500	3420–3280 (ym. c, OH), 1110, 1050 (C–O–C)	3.65–3.85 (8Н, м, 2NCH ₂ , 2OCH ₂); 4.03 (3Н, с, O <u>CH₃</u>); 4.89 (2Н, д, <i>J</i> = 5.5, <u>CH₂</u> O); 5.19 (1Н, уш. с, O <u>H</u>); 7.62 (1Н, с, =CH)	

Спектральные характеристики синтезированных соединений

а несимметричных С–Н и CH₂OH заместителей в этих же положениях триазольного цикла (соединения **2h,i**) – в виде дублетов в интервале 4.60–4.93 м. д. (<u>CH₂OH</u>) и уширенных сигналов при 5.15–5.23 м. д. (CH₂<u>OH</u>), а также синглета при 7.62 м. д. (С–Н в положении 5).

Подтверждают индивидуальность и строение синтезированных триазолилтриазинов и данные масс-спектрометрии.

Таким образом, исследованы реакции моноазидов *сим*-триазинового ряда с ацетиленовыми соединениями. Реакцией циклоприсоединения впервые получены сочлененные в положении 2 триазинового цикла и в положении 1 триазольного цикла новые триазолилтриазины, перспективные в качестве биологически активных соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны для суспензий образцов в вазелиновом масле на спектрофотометре Specord IR-75. Спектры ЯМР ¹Н сняты на спектрометре Bruker WM-500 (500 МГц) в ДМСО-d₆. Масс-спектры записаны на приборе Finnigan MAT INCOS50 (энергия ионизирующего излучения 70 эВ). Элементный анализ синтезированных соединений выполнен на анализаторе Carlo-Erba модели 1106. Контроль за ходом реакции и чистотой получаемых продуктов осуществлялся методом TCX на пластинках Silufol UV-250 в системе ацетон–гексан, 1:1.

4,6-Дизамещенные 2-хлор-*сим*-триазина и 2-триметиламмонийхлорид-*сим*-триазина (ТАДТ) получали по известным методикам [7, 8]. Азиды 1 синтезировали реакцией ТАДТ с азидом натрия согласно [1]. Использованные растворители непосредственно перед употреблением очищали и высушивали согласно методикам [9].

2-Метокси-4-морфолино-6-(4-Н-5-фенил-1,2,3-триазол-1-ил)-сим-триазин (2а). К раствору 5.1 ммоль азида 1а в 10 мл сухого толуола быстро прибавляют по каплям 10.2 ммоль фенилацетилена и кипятят с обратным холодильником в течение 48 ч. Реакционную смесь упаривают в вакууме водоструйного насоса досуха, тщательно промывают водой и высушивают. После очистки кристаллизацией из спирта получают 1.39 г (80%) триазолилтриазина 2а.

Соединения 2b-f получают аналогично.

2,4-Диморфолино-6-(4-гидроксиметил-5-Н-1,2,3-триазол-1-ил)-сим-триазин **2h**. К раствору 2.4 ммоль азида **1h** в 10 мл сухого бензола прибавляют при перемешивании 4.8 ммоль пропаргилового спирта в 5 мл сухого бензола и кипятят реакционную смесь с обратным холодильником в течение 5 ч. Отгоняют 1/2 объема бензола, смесь охлаждают, выпавший осадок быстро отфильтровывают, промывают последовательно холодным бензолом (2 × 2 мл), хлористым метиленом (2 × 2 мл) и 15 мл холодной воды. После очистки кристаллизацией из спирта получают 0.54 г (65%) триазолилтриазина **2h**.

Соединение 2i получают аналогично, а в случае соединения 2g реакционную смесь кипятят 72 ч.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. Н. Михайличенко, А. А. Чеснюк, В. И. Суслов, А. И. Шкребец, М. М. Юхоменко, В. Н. Заплишный, Изв. вузов. Химия и хим. технология, **45**, вып. 4, 136 (2002).
- С. Н. Михайличенко, А. А. Чеснюк, В. Е. Заводник, С. И. Фирганг, Л. Д. Конюшкин, В. Н. Заплишный, XTC, 326 (2002).
- 3. Л. В. Батог, В. Ю. Рожков, Ю. В. Хронов, Н. В. Пятакова, О. Г. Бусыгина, И. С. Северина, Н. Н. Махова, Пат. РФ 2158265; *Б. И.*, № 30, 187 (2000).

- 4. Е. Б. Николаенкова, В. П. Кривопалов, О. П. Шкурко, в кн. *Азотистые гетероциклы и алкалоиды*, Иридиум-пресс, Москва, 2001, **2**, 300.
- 5. *Общая органическая химия*, под ред. Д. Бартона и У. Д. Оллиса, Химия, Москва, 1981, **1**, 268.
- 6. С. Г. Григорян, К. Г. Аветисян, А. А. Матнишян, ЖОрХ, 48 (1984).
- 7. Г. М. Погосян, В. А. Панкратов, В. Н. Заплишный, С. Г. Мацоян, в кн. *Политриазины*, Изд-во АН АрмССР, Ереван, 1987, 615.
- 8. А. А. Чеснюк, С. Н. Михайличенко, В. С. Заводнов, В. Н. Заплишный, ХГС, 197 (2002).
- 9. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976.

Кубанский государственный аграрный университет, Краснодар 350044, Россия e-mail: vlad_zpl@mail.ru Поступило в редакцию 04.07.2002

^аИнститут органической химии им. Н. Д. Зелинского РАН, Москва 117913