Л. М. Потиха, Н. В. Школьная, В. М. Кисиль, В. А. Ковтуненко

КОНДЕНСИРОВАННЫЕ ИЗОХИНОЛИНЫ

18*. ЕНАМИННЫЕ СВОЙСТВА БЕНЗИМИДАЗО[1,2-*b*]ИЗОХИНОЛИН-11(5Н)-ОНА НА ПРИМЕРЕ РЕАКЦИИ МИХАЭЛЯ

Изучено взаимодействие бензимидазо[1,2-*b*]изохинолин-11(5H)-она с активированными олефинами. Показано, что при этом образуются производные 3,10-диоксо-3H,10Hбензимидазо[1,2,3-*ij*]бензо[*c*][1,8]нафтиридина, являющиеся результатом первоначального протекания реакции Михаэля по атому С₍₆₎ системы и последующей внутримолекулярной гетероциклизации.

Ключевые слова: гетероциклические енамины, производные системы 3,10-диоксо-3H,10H-бензимидазо[1,2,3-*ij*]бензо[*c*][1,8]нафтиридина, реакция Михаэля.

Изучение свойств и химических превращений енаминов является одним из активно развивающихся направлений органической химии. Среди факторов, обусловливающих интерес химиков к этой теме, особое место занимает возможность гетероциклизаций на их основе [2-4], но сопряженное присоединение активированных олефинов к гетероциклическим енаминам (реакция Михаэля) как метод гетероциклизации исследовано недостаточно [5, 6]. Ранее [1, 2] нами были исследованы реакции ацилирования и алкилирования алкилгалогенидами бензимид-азо[1,2-b]изохинолин-11(5Н)-она (1) и показано, что атака проходит по енаминному фрагменту структуры с образованием продуктов замещения по положениям 5 и 6 в зависимости от природы реагента и условий реакции. В настоящем исследовании показано, что енаминный фрагмент тетрацикла 1 вступает в сопряженное присоединение с активированными олефинами с достройкой пиридинового цикла к системе, и предлагается удобный одностадийный метод синтеза ранее недоступных 1-арилзамещенных производных бензимидазо[1,2,3-*ij*]бензо[*c*][1,8]нафтиридина из бензимидазо[1,2-*b*]изохинолин-11(5Н)-она 1. Первые представители бензимидазо[1,2,3-іј]бензо[с][1,8]нафтиридинов получены [7] путем конденсации 6-формилбензимидазо[1,2-*b*]изохинолин-11(5H)-она с метиленактивными сложными эфирами и кислотами.

При кипячении соединения 1 в 2-пропаноле в присутствии Et_3N с нитрилами и эфирами цианкоричных кислот получены соединения 4a-c и 7a-c (метод A). Они являются продуктами последовательных реакций: сопряженного присоединения по Михаэлю (атака по атому $C_{(6)}$ системы через интермедиаты типа 2 и 5) и последующего внутримолекулярного ацилирования в интермедиате по атому $N_{(5)}$ (соединения типа $3 \neq 4$ и 6).

^{*} Сообщение 17 см. [1].

a Ar = 4'-ClC₆H₄; **b** Ar = 4'-MeOC₆H₄; **c** Ar = 4'-Me₂NC₆H₄

1363

Таблица 1

Спектральные характеристики соединений 4а–с

	MV arrange at av ⁻¹			Спектр ЯМР ¹ Н (ДМСО-d ₆), б, м. д. (<i>J</i> , Гц)											
Со- еди-	PI	K CHERT	р, v, см		Сигналы	протонов	бензимидазо	[1,2,3 <i>-ij</i>]бе	нзо[<i>с</i>][1,8]на	афтиридинов	вого ядра	м. д. $(J, \Gamma \mathbf{u})$ го ядра H-12, т, J = 8.0 H-1, c NH 12 13 7.35 5.33 6. 5.17 6. 7.35 5.15 6.	(Сигналы заместителей	
нение	С=О	CN	Другие сигналы	H-8, д, J = 8.0	Н-11, д, <i>J</i> = 8.0	H-5, д, J = 8.0	H-13, т, <i>J</i> = 8.0	H-6, т, J = 8.0	H-14, д, J = 8.0	H-7, т, J = 8.0	H-12, т, <i>J</i> = 8.0	H-1, c	NH ₂ , c	Ar	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
4a	1698	2180	3440, 3300 (^{s,as} NH ₂)	8.60	8.32	7.94	7.59	7.47	7.41–7.38 (4H, м, H-7, H-14, H-3', H-5')		7.35	5.33	6.49	H-3', H-5'* 7.30 (2H, д, <i>J</i> = 8.0, H-2', H-6')	
4b	1695	2180	3440, 3300 (^{s,as} NH ₂), 1025 (C-O-C)	8.63	8.34	7.93	7.54	7.42	7.3	7.38–7.30 (3Н, м)		5.17	6.24	7.20 (2H, д, <i>J</i> = 8.0, H-2', H-6'), 6.76 (2H, д, <i>J</i> = 8.0, H-3', H-5'), 3.70 (3H, с, OC <u>H</u> ₃)	
4c	1695	2180	3440, 3300 (^{s,as} NH ₂)	8.62	8.33	7.94	7.59	7.47 (2Н, м)	7.	39	7.35	5.15	6.35	7.14 (2H, д, <i>J</i> = 8.0, H-2', H-6'), 6.58 (2H, д, <i>J</i> = 8.0, H-3', H-5'), 2.80 (6H, с, N(C <u>H</u> ₃) ₂)	

* Наложение сигналов бензимидазо[1,2,3-*ij*]бензо[*c*][1,8]нафтиридинового ядра и сигналов заместителя, см. колонки 10, 11.

Таблица 2

Спектральные характеристики соединений 7а-с и 8

Со- еди- нение	ИК спектр, v, см ⁻¹			Спектр ЯМР ¹ Н (ДМСО-d ₆), б, м. д. (<i>J</i> , Гц)									
					Сигнали	ы протонов б	0						
	C=O	CN	Другие сигналы	H-5, д, J = 8.0	H-8, д, J = 8.0	H-11, д, J = 8.0	H-7, т, J = 8.0	H-6, т, J = 8.0	H-13, т, <i>J</i> = 8.0	H-12, т, J = 8.0	H-14, д, J = 8.0	H-1, c	Сигналы заместителеи, Ar
1	2	3	4	5	6	7	8	9	10	11	12	13	14
7a	1697 1663	2227		8.79	8.75	8.52	7.84–7.76 (2Н, м)		7.58–7.49 (4Н, м, Н-12, Н-13, Н-3', Н-5')		6.86		7.73 (2H, д, <i>J</i> = 8.0, H-2', H-6'), H-3', H-5' *
7b	1700 1659	2220	1035 (C–O–C)	8.79	8.75	8.51	7.83–7.75 (2Н, м)		7.54	7.48	6.92		7.39 (2H, д, <i>J</i> = 8.0, H-2', H-6'), 7.21 (2H, д, <i>J</i> = 8.0, H-3', H-5'), 3.95 (3H, с, OC <u>H</u> ₃)
7c	1694 1659	2222		8.77	8.74	8.50	7.81–7.74 (2Н, м)		7.53	7.48	7.10		7.26 (2H, д, <i>J</i> = 8.0, H-2', H-6'), 6.91 (2H, д, <i>J</i> = 8.0, H-3', H-5'), 3.30 (6H, с, N(C <u>H</u> ₃) ₂)
8	1700 1668	2232		8.72	8.68	8.47 (2H, H-11, H- 14)	7.80- (2H	–7.72 І, м)	7.66	7.94	_**	9.39	

* Наложение сигналов бензимидазо[1,2,3-*ij*]бензо[*c*][1,8]нафтиридинового ядра и сигналов заместителя, см. колонки 10, 11.
** Наложение сигналов бензимидазо[1,2,3-*ij*]бензо[*c*][1,8]нафтиридинового ядра, см. колонку 7.

В случае эфиров цианкоричных кислот реакция на этом не останавливается, а происходит дальнейшее окисление интермедиата 6 до 7.

Учитывая опыт изучения ацилирования и алкилирования бензимидазоизохинолина 1 [1, 2], мы не исключали возможность присоединения олефина и по положению N₍₅₎. Для доказательства строения 3-амино-1арил-10-оксо-1Н,10Н-бензимидазо[1,2,3-*ij*]бензо[*c*][1,8]нафтиридин-2-карбонитрилов (4а-с) и 1-арил-3,10-диоксо-3Н,10Н-бензимидазо[1,2,3-*ij*]бензо[с][1,8]нафтиридин-2-карбонитрилов (7а-с) было использовано модельное соединение 3,10-диоксо-3H,10H-бензимидазо[1,2,3-*ij*]бензо[*c*]-[1,8]нафтиридин-2-карбонитрил (8) [7]. При этом в ИК спектрах (табл.2) обнаружена высокая степень подобия картины поглощения карбонитрила 8 и соединений 7а-с. Для них характерно присутствие двух полос валентных колебаний карбонильных групп (1700, 1660 см⁻¹), а также полосы v_{CN} средней интенсивности (2222–2237 см⁻¹). В спектрах ЯМР ¹Н соединений 7а-с отсутствует сигнал протона С₍₁₎<u>Н</u> (в области 9.3 м. д.), характерный для структуры 8, а сигналы ароматических протонов С₍₁₂₎<u>Н</u> и С₍₁₄₎<u>Н</u> у соединений 7а-с наблюдаются в более сильных полях (7.48 и 6.90 м. д., соответственно, см. табл. 2), чем у соединения 8 (7.94 и 8.47 м. д.). Последний факт вполне объясним как электронным влиянием арильного заместителя при C₍₁₎ на C₍₁₂₎<u>H</u> и C₍₁₄₎<u>H</u>, так и дополнительным воздействием магнитной анизотропии 1-арильного заместителя на резонанс $C_{(14)}H$.

В спектрах ЯМР ¹Н соединений **4а**–с аминогруппа проявляется в области 6.2–6.4 м. д. в виде двухпротонных уширенных синглетов, а в ИК спектрах – как две полосы $v_{\rm NH2}^s$ (3440 см⁻¹) и $v_{\rm NH2}^{as}$ (3300 см⁻¹). В области валентных колебаний карбонильной группы у них наблюдается одна полоса (1695 см⁻¹), а низкочастотный сдвиг полосы колебаний нитрильной группы (2180 см⁻¹, относительно таковой для **7а–с**) согласуется с уменьшением электроноакцепторных свойств заместителя при C₍₃₎. Однопротонный синглет в области 5.1–5.3 м. д. (табл. 1) в спектрах ЯМР ¹Н **4а–с** нами отнесен к резонансу протона C₍₁₎<u>Н</u>. По данным спектральных исследований, таутомерная иминоформа **3** отсутствует. При продолжительном кипячении 3-аминопроизводных **4а–с** в уксусной кислоте с хорошим выходом (50–60%) получены 3,10-диоксопроизводные **7а–с** (метод Б), что доказывает связь полученных систем между собой и со структурой **8**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления синтезированных соединений определены на нагревательном приборе типа Boetius и не подвергались коррекции. ИК спектры таблеток соединений КВг зарегистрированы на приборе Руе-Unicam SP3-300. Спектры ЯМР ¹Н растворов соединений в ДМСО-d₆ получены на приборе Mercury 400 (Varian) (400 МГц), внутренний стандарт ТМС. Отнесение сигналов ароматических протонов подтверждено данными спектров COSY НН соединений **4c**, **8**. Контроль за ходом реакций и чистотой полученных соединений осуществляли с помощью TCX на пластинках Silufol UV-254.

5,11-Дигидробензимидазо[1,2-*b*]изохинолин-11-он **1** получен по методике [8], 2-арилиденмалононитрилы и этил-3-арил-2-циано-2-пропеноаты – [9], 3,10-диоксо-3H,10H-бензимидазо[1,2,3-*ij*]бензо[*c*][1,8]нафтиридин-2-карбонитрил **8** – [7], константы соответствуют описанным.

З-Амино-1-арил-10-оксо-1H,10H-бензимидазо[1, 2, 3-*ij*]бензо[*c*][1, 8]нафтиридин-2карбонитрилы (4а-с). Смесь 2.34 г (10 ммоль) бензимидазоизохинолина 1, 15 ммоль 2-арилиденмалононитрила и 2 мл Et₃N в 20 мл 2-пропанола кипятят 6 ч. Охлаждают, желтый осадок отфильтровывают и тщательно промывают спиртом. Перекристаллизовывают из ДМФА.

Соединение 4а. Выход 3.08 г (73%), т. пл. 335–337 °С (из ДМФА). Найдено, %: С 70.93; Н 3.60; Сl 8.30; N 13.26. С₂₅H₁₅ClN₄O. Вычислено, %: С 71.01; Н 3.58; Cl 8.38; N 13.25.

Соединение 4b. Выход 3.09 г (74%), т. пл. 283–285 °С (из ДМФА). Найдено, %: С 74.60; Н 4.28; N 13.41. С₂₆Н₁₈N₄O₂. Вычислено, %: С 74.63; Н 4.34; N 13.39.

Соединение 4с. Выход 2.50 г (58%), т. пл. 270–272 °С (из ДМФА). Найдено, %: С 75.06; Н 4.83; N 16.29. С₂₇Н₂₁N₅O. Вычислено, %: С 75.16; Н 4.91; N 16.23.

1-Арил-3,10-диоксо-3H,10H-бензимидазо[1,2,3-*ij*]**бензо**[*c*][**1,8**]нафтиридин-2-карбонитрилы (7а-с) (общая методика). А. Смесь 2.34 г (10 ммоль) бензимидазоизохинолина 1, 15 ммоль этил-3-арил-2-циано-2-пропеноата и 2 мл Et₃N в 20 мл 2-пропанола кипятят 3 ч. Охлаждают, осадок желтого цвета отфильтровывают и тщательно промывают спиртом. Перекристаллизовывают из ДМФА.

Соединение 7а. Выход 2.15 г (51%), т. пл. >340 °С (из ДМФА). Найдено, %: С 71.10; Н 2.77; СІ 8.32; N 10.00. С₂₅H₁₂ClN₃O₂. Вычислено, %: С 71.18; Н 2.87; СІ 8.40; N 9.96.

Соединение 7b. Выход 2.21 г (53%), т. пл. 326–328 °С (из ДМФА). Найдено, %: С 74.72; Н 3.59; N 10.10. С₂₆Н₁₅N₃O₃. Вычислено, %: С 74.81; Н 3.62; N 10.07.

Соединение 7с. Выход 2.02 г (47%), т. пл. 325–326 °С (из ДМФА). Найдено, %: С 75.35; Н 4.11; N 13.03. С₂₇Н₁₈N₄O₂. Вычислено, %: С 75.34; Н 4.21; N 13.02.

Б. Суспензию 4.31 г (10 ммоль) 3-амино-1-(4-диметиламинофенил)нафтиридина 4с в 25 мл AcOH кипятят в течение 10 ч. Охлаждают, осадок отфильтровывают, промывают AcOH и спиртом, перекристаллизовывают из ДМФА. Получают 1-(4-диметиламинофенил)-3,10-диоксонафтиридин 7с.

Аналогично получают 3,10-диоксонафтиридины 7а,b.

Соединение 7а. Выход 2.44 г (58%).

Соединение 7b. Выход 2.09 г (50%).

Соединение 7с. Выход 2.37 г (55%).

СПИСОК ЛИТЕРАТУРЫ

- 1. Л. М. Потиха, Н. В. Данилейко, В. М. Кисиль, В. А. Ковтуненко, ХГС, 1214 (2004)
- 2. Л. М. Потиха, Н. В. Школьная, В. М. Кисиль, В. А. Ковтуненко, ХГС, 715 (2004).
- 3. V. G. Granik, V. A. Makarov, C. Parkanyi, Adv. Heterocycl. Chem., 72, 283 (1999).
- 4. В. П. Литвинов, Я. Ю. Якунин, В. Д. Дяченко, ХГС, 41 (2001).
- K. Nagarajan, V. R. Rao, R. K. Shah, S. J. Shenoy, H. Fritz, W. J. Richter, D. Muller, *Helv. Chim. Acta*, **71**, 77 (1988).
- А. А. Краузе, Э. Э. Лиепиньш, З. А. Калме, Ю. Э. Пелчер, Г. Я. Дубур, XTC, 1504 (1984).
- 7. E. Schefczik, Liebigs Ann. Chem., 729, 97 (1969).
- 8. E. Schefczik, Liebigs Ann. Chem., 729, 83 (1969).
- 9. J. Zabicky, J. Chem. Soc., 683 (1961).

Национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: vkovtunenko@hotmail.com Поступило в редакцию 03.12.2002

1367