И. Ш. Чикваидзе, Ш. А. Самсония, Т. Г. Нариндошвили

ПРОИЗВОДНЫЕ ИНДОЛА

142*. НЕКОТОРЫЕ СВОЙСТВА 4-(ИНДОЛ-2-ИЛ)ДИФЕНИЛМЕТАНА И 4-(ИНДОЛ-2-ИЛ)(1,2-ДИФЕНИЛЭТАНА)

Реакции 2-арилиндолов с сильными электрофилами идут со значительным осмолением. Показано, что электрофильное замещение направляется в индольное ядро и в боковую цепь. В рассматриваемых системах наблюдаются 1,7-миграции заместителя.

Ключевые слова: арилиндолы, перегруппировка, реакции нитрования, N-алкилирования.

Ранее мы сообщали [1] о синтезе новых 2-арилиндолов и их взаимодействии со слабыми электрофилами (реакции азосочетания, формилирования и нитрозирования), в результате которого образуются соответствующие 3-замещенные производные.

В настоящем сообщении описаны реакции нитрования, бромирования, алкилирования, а также 1,7-миграции заместителя этих 2-арилиндолов.

Известно, что реакции нитрования простейших индолов проходят неоднозначно из-за осложнений, вызываемых сильными кислотами, используемыми в качестве компонентов обычных нитрующих смесей [2, 3].

Для нитрования 4-(индол-2-ил)дифенилметана (1) мы использовали смеси KNO_3/H_2SO_4 при 0 °C и $Ac_2O/50\%$ HNO₃ при 2–7 °C. В обоих случаях происходит значительное осмоление реакционной смеси. Из полученных многокомпонентных смесей нам удалось выделить и охарактеризовать по два соединения: 2, 3 и 4, 5 с выходами 18, 31, 19 и 39% соответственно.

В сильнокислой среде образование продукта расщепления боковой цепи соединения **2** можно объяснить протонированием ближнего 2-фенильного кольца, что, по-видимому, способствует отщеплению бензильной или *n*-нитробензильной группы. В слабокислой среде реакция характеризуется бо́льшей избирательностью. Замещение в 4-(индол-2-ил)дифенилметане проходит по обогащенным электронной плотностью положениям индольного кольца.

В спектре ЯМР ¹Н трех 5-нитропроизводных **2–4** имеются сигналы, характерные для протонов 4-, 6- и 7-Н 5-замещенного индола. Дублеты при 8.52 (соединение **2**), 8.51 (соединение **3**) и 8.27 м. д. (соединение **4**) с $J_m = 2$ Гц

^{*} Сообщение 141 см. [1].

мы отнесли к протонам 4-Н, а дублеты при 7.41 (соединение 2), 7.53 (соединение 3) и 7.68 м. д. (соединение 4) с $J_o = 8$ Гц – к протонам 7-Н. Сигналы протонов 6-Н проявляются в виде квадруплетов при 8.00 (2), 7.98 (3) и 7.89 м. д. (4), а сигналы протонов 3-Н в виде синглетов при 7.20 (2), 7.21 (3) и 7.06 м. д. (4). Аналогичный сигнал протона 3-Н отсутствует в спектре соединения 5. Наличие в спектре соединения 3 двух пар дублетов при 7.55; 8.16 и 7.40; 7.84 м. д. ($J_o = 8$ Гц), отнесенных нами к протонам 4,4'-дизамещенного дифенилметана, а также синглетных сигналов групп NH и CH₂ при 12.22 и 4.16 м. д., соответственно, однозначно подтверждает предложенную структуру. В спектрах соединений 2, 4, 5 имеются мультиплеты концевых однозамещенных фенильных ядер (табл. 1).

Реакция алкилирования индола 1 и 4-(индол-2-ил)(1,2-дифенилэтана) (6) проведена в условиях межфазного катализа по описанной методике [4]. При бензилировании индола 1 неожиданно был получен продукт 1,3-дибензилирования 7.

7 R = R' = CH₂Ph; 8 R = CH₂Ph, R' = H; 9 R = CH₂CH₂Me, R' = H; 1, 7, 9 n = 1, 6, 8 n = 2; X = Cl, Br

В спектре ЯМР ¹Н соединения 7 отсутствует сигнал протона 3-Н, сигналы протонов групп N–CH₂ и 3-CH₂ проявляются в виде двух синглетов в области 5.23 и 3.99 м. д. соответственно (табл. 1).

В масс-спектре соединения 7 максимальная интенсивность наблюдается у пика молекулярного иона 464, фрагментация которого проходит с последовательным отрывом двух бензильных групп.*

$$M^{+} 464 (34) \xrightarrow{-PhMe} 372 (4.05) \xrightarrow{-PhCH_2Ph} 204 (3.85) \xrightarrow{-CH_2Ph} 113 (2.32)$$
$$\underbrace{-CN}_{-26} 178 (4.89)$$

При пропилировании того же арилиндола 1 пропилбромидом в аналогичных условиях был получен единственный продукт реакции – 4-(1-пропилиндол-2-ил)дифенилметан (9).

При алкилировании 2-арилиндолов 1 и 6 бензилхлоридом в условиях реакции Фриделя–Крафтса происходит полное осмоление реакционной среды.

При бромировании диоксандибромидом в диоксане в обоих случаях получены сложные смеси продуктов.

Ранее мы сообщали [5, 6], что при нагревании смеси N-бензилфенилгидразина и некоторых кетонов в ПФК вместо ожидаемых 2-замещенных N-бензилиндолов образуются соответствующие N-незамещенные индолы и их 7-бензилпроизводные. Аналогичный результат был зафиксирован нами при синтезе N-бензилпроизводных 8 и 12.

10, **12**, **13** $R = C_6H_4CH_2Ph$; **8**, **11**, **14** $R = C_6H_4(CH_2)_2Ph$

Соединения 6 и 14 были получены также при выдерживании N-бензил-4-(индол-2-ил)(1,2-дифенилэтана) в ПФК при 125 °C, что указывает на 1,7-миграцию заместителя.

В ИК спектре 7-бензилпроизводного **14** имеется полоса поглощения, характерная для индольной группы NH в области 3410–3430 см⁻¹, отсутствующая в спектре соответствующего N-бензилпроизводного **8**.

^{*} Приведены значения m/z, а в скобках – относительные интенсивности к максимальному ионному току.

Таблица 1

Спектральные данные соединений

Соеди- нение	ИК спектр, v, см ⁻¹	УФ спектр, λ _{max} , нм (lg ε)	Спектр ЯМР ¹ Н, б, м. д	<i>Ј</i> , Гц
2	3400 (NH), 1520, 1335 (NO ₂)	207 (4.30), 230 (4.09) пл, 297 (4.40)	7.20 (1H, д, 3-H); 7.41 (1H, д, 7-H); 7.48–7.58 (3H, м, H _{Ph}); 7.98 (2H, д, A-H); 8.00 (1H, д. д, 6-H); 8.52 (1H, д, 4-H); 12.21 (1H, с, NH)	$J_{46} = 2.00;$ $J_{13} = 1.35;$ $J_{67} = 7.20$
3	3390 (NH), 1510, 1340 (NO ₂)	207 (4.50), 220 (4.00) пл, 300 (4.54)	4.16 (2H, c, CH ₂); 7.12 (1H, д, 3-H); 7.40 (2H, д, B-H); 7.53 (1H, д, 7-H); 7.55 (2H, д, A'-H); 7.84 (2H, д, A-H); 7.98 (1H, д.д, 6-H); 8.16 (2H, д, B'- H); 8.51 (1H, д, 4-H); 12.22 (1H, c, NH)	$J_{46} = 2.20;$ $J_{13} = 1.37;$ $J_{AB} = 7.84;$ $J_{A,B'} = 8.72$
4	3395 (NH), 1525, 1345 (NO ₂)	210 (4.61), 257 (4.41), 377 (4.21)	4.01 (2H, c, CH ₂); 7.06 (1H, д, 3-H); 7.24–7.31 (5H, м, H _{Ph}); 7.38 (1H, д, B-H); 7.68 (1H, д, 7-H); 7.84 (1H, д, A-H); 7.89 (1H, д, 6-H); 8.27 (1H, д, 4-H); 12.21 (1H, c, NH)	$J_{46} = 1.90;$ $J_{67} = 8.80;$ $J_{AB} = 8.22;$ $J_{13} = 1.48$
5	3400 (NH), 1515, 1337 (NO ₂)	209 (4.95), 261 (4.61), 333 (4.47)	12.66 (1H, c, NH); 8.21 (1H, д, 4-H); 4.05 (2H, c, CH ₂); 7.30–7.43 (10H, м, 5-, 7-, 13-H, H _{Ph}); 7.67 (2H, д, A-H); 8.21 (1H, д, 4-H); 12.66 (1H, c, NH)	$J_{\rm AB} = 8.20$
7	_	213 (4.51), 227 (4.52), 301 (4.16)	7.36 (1H, д, 4-H); 6.96 (1H, д. т, 5-H); 7.07 (1H, д. т, 6-H); 7.32 (1H, д, 7-H); 7.17 (2H, д, A-H); 6.83 (2H, д, B-H); 5.29 (2H, с, N–CH ₂); 7.08–7.33 (15H, м, H _{Ph} *, H _{Ph} *, H _{Ph} *); 3.99 (2H, с, C ₍₃₎ –CH ₂); 3.98 (2H, с, CH ₂)	$J_o = 7.96;$ $J_m = 0.88;$ $J_{AB} = 7.92$
8	_	214 (4.55), 218 (4.52) пл, 227 (4.64), 241 (4.51) пл, 300 (4.44)	3.05 (4H, c, CH ₂ CH ₂), 5.47 (2H, c, N– CH ₂); 6.74 (1H, c, 3-H); 7.14 (2H, д, B-H); 7.22–7.41 (13H, м, 5-, 7-H, H _{Ph'} , H _{Ph'}); 7.46 (2H, д, A-H); 7.77 (1H, д.д, 4-H)	$J_{AB} = 8.40;$ $J_{45} = 8.40;$ $J_{46} = 2.0$
9	_	209 (4.58), 222 (4.53) пл, 238 (4.37) пл, 297 (4.26)	0.64 (3H, т, CH ₃); 1.56 (2H, секст, CH ₂); 4.02 (2H, с, CH ₂); 4.13 (2H, т, N–CH ₂); 6.46 (1H, с, 3-H); 7.03 (1H, т, 5-H); 7.14 (1H, т, 6-H); 7.17–7.53 (5H, м, H _{Ph}); 7.36 (2H, д, B-H); 7.45 (2H, д, A-H); 7.50 (1H, д, 7-H); 7.53 (1H, д, 4-H)	$J_{67} = 7.92;$ $J_{AB} = 7.96;$ $J_{45} = 1.32$
14	3410 (NH)	210 (4.61), 249 (4.33), 311 (4.39)	2.93 (4H, c, CH ₂ CH ₂); 4.32 (2H, c, C ₍₇₎ -CH ₂); 6.80 (1H, д, 6-H); 6.84 (1H, д, 3-H); 6.91 (1H, т, 5-H); 7.15-7.33 (12H, м, B-H, H _{Ph} , H _{Ph} -); 7.36 (1H, д, 4-H); 7.83 (2H, д, A-H); 11.09 (1H, c, NH)	$J_{45} = 7.52;$ $J_{13} = 2.24;$ $J_{56} = 7.08;$ $J_{AB} = 8.40$

Место миграции бензильной группы установлено сравнением спектров ЯМР ¹Н N-бензилпроизводного **8** и продукта миграции бензильной группы **14** (табл. 1). В частности, в спектре 4-(1-бензилиндол-2-ил)(1,2-дифенилэтана) (**8**) отсутствует сигнал протона 1-Н. Сигнал в виде дублета дублетов при 7.77 м. д. можно отнести к протону 4-Н, а сигналы протонов 5-, 6и 7-Н включены в мультиплет при 7.22–7.41 м. д.

В спектре ЯМР ¹Н 4-(7-бензилиндол-2-ил)(1,2-дифенилэтана) (14) появляется сигнал 1-Н при 11.09 м. д., а сигнал протона 7-Н исчезает, сигнал 6-Н проявляется при 6.80 м. д. в виде дублета, сигнал 5-Н – при 6.91 м. д. в виде триплета, а 4-Н – при 7.36 м. д. в виде дублета. Кроме этого, для соединений 8 и 14 наблюдаются сигналы в виде двух дублетов, характерных для протонов А-Н и В-Н *n*-дизамещенных бензолов, синглеты мостиковой группы (CH₂CH₂), а также сигналы протонов бензильной группы. В масс-спектре соединения 14 максимальная интенсивность наблюдается у пика молекулярного иона с массой 387.

Таблица 2

Со- еди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			M,	D¥	Т. пл.,	Вы-
		С	Н	Ν	<u>Наидено</u> Вычислено	K_{f}^{*}	°C	ход, %
2	$C_{14}H_{10}N_2O_2$	<u>70.71</u> 70.59	$\frac{4.38}{4.20}$	<u>11.61</u> 11.76	<u>238</u> 238	0.46	194–195	19
3	$C_{21}H_{15}N_3O_4$	<u>67.68</u> 67.56	$\frac{4.21}{4.02}$	<u>11.22</u> 11.26	<u>373</u> 373	0.41	218–219	31
4	$C_{21}H_{16}N_2O_2$	<u>76.91</u> 76.83	$\frac{4.72}{4.88}$	<u>8.32</u> 8.54	$\frac{328}{328}$	0.64	157–158	19
5	$C_{21}H_{16}N_2O_2$	<u>76.95</u> 76.83	$\frac{4.69}{4.88}$	<u>8.65</u> 8.54	<u>328</u> 328	0.35	167–168	39
7	C35H29N	<u>90.08</u> 90.71	<u>6.12</u> 6.26	<u>3.18</u> 3.02	<u>463</u> 463	0.58	129–130	45
8	$C_{29}H_{25}N$	<u>89.72</u> 89.92	<u>6.22</u> 6.46	<u>3.45</u> 3.62	$\frac{387}{387}$	0.50	114–115	47
9	$C_{24}H_{23}N$	<u>88.41</u> <u>88.62</u>	<u>7.23</u> 7.08	<u>4.22</u> 4.31	$\frac{-}{325}$	0.50	97–98	49
14	$C_{29}H_{25}N$	<u>89.95</u> 89.92	<u>6.37</u> 6.46	<u>3.48</u> 3.62	<u>387</u> 387	0.56	139–140	**

Характеристики соединений

* Система для хроматографии: гексан-эфир, 1:1 (соединения **2–5**); бензол-гексан, 1:3 (соединения **7**, **8**); гептан (соединение **9**); гексан-эфир, 6:1 (соединение **14**).

** Выход 6 (по методу Б) и 18% (по методу А).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на приборе UR-20 в вазелиновом масле, УФ спектры – на спектрофотометре Specord в этаноле, спектры $\text{ЯМР}^{-1}\text{H}$ – на спектрометре Bruker AM-400 (400 МГц), внутренний стандарт ТМС. Масс спектры получали на спектрометре MS-Varian Mat-311, EL-MS (70 эВ).

Контроль за ходом реакций и чистотой соединений, а также определение значений R_f проводили на пластинках Silufol UV-254.

5-Нитро-2-фенилиндол (2) и 4-(5-нитроиндол-2-ил)-4'-нитродифенилметан (3). К охлажденной до -2 °C суспензии 0.2 г (0.7 ммоль) 4-(индол-2-ил)дифенилметана в 10 мл серной кислоты медленно прибавляют по каплям раствор 0.44 г (5.2 ммоль) KNO₃ в 5 мл H₂SO₄, поддерживая температуру 0 °C. Реакционную смесь перемешивают 5 мин и выливают на 100 г измельченного льда, экстрагируют этилацетатом, экстракт промывают водным раствором Na₂CO₃, водой и сушат Na₂SO₄. Смесь разделяют на колонке с силикагелем (гексан–эфир, 6:1). Выделяют 0.03 г соединения **2** и 0.082 г соединения **3**, желтые кристаллы.

4-(5-Нитроиндол-2-ил)дифенилметан (4) и 4-(3-нитроиндол-2-ил)дифенилметан (5). К 25 мл охлажденного до 0 °C уксусного ангидрида последовательно прибавляют по каплям 0.07 мл (1.4 ммоль) 50% HNO₃, затем раствор 0.19 г (0.67 ммоль) 4-(индол-2-ил)дифенилметана (1) в 5–7 мл Ac₂O, поддерживая температуру 0 °C. Реакционную смесь перемешивают 30 мин при 5–7 °C, выливают на 100 г измельченного льда, экстрагируют эфиром, экстракт промывают водным раствором Na₂CO₃, водой и сушат Na₂SO₄. Смесь разделяют на колонке с силикагелем (гексан–эфир, 4:1). Выделяют 0.04 г соединения **4** и 0.085 г соединения **5**, желтые кристаллы.

4-(1,3-Дибензилиндол-2-ил)дифенилметан (7). К раствору 0.28 г (1 ммоль) индола **1** в 30 мл бензола добавляют 5 мл 50% водного раствора КОН, 0.035 г бромида тетрабутиламмония и 0.63 г (5 ммоль) бензилхлорида, перемешивают 4 ч при 60 °C. Охлаждают, разбавляют водой и экстрагируют бензолом. Экстракт промывают водой и сушат Na₂SO₄. Смесь разделяют на колонке с силикагелем (гептан). Выделяют 0.21 г соединения **7**, бесцветные кристаллы.

4-(1-Бензилиндол-2-ил)(1,2-дифенилэтан) (8) получают по методике, описанной для соединения **7**, из 0.30 г (1 ммоль) **4-**(индол-2-ил)(1,2-дифенилэтана) **(6)** и 0.63 г (5 ммоль) бензилхлорида. Выделяют 0.18 г соединения **8**, бесцветные кристаллы.

4-(1-Пропилиндол-2-ил)дифенилметан (9) получают по методике, описанной для соединения **7**, из 0.28 г (1 ммоль) индола **1** и 0.62 г (5 ммоль) пропилбромида. Выделяют 0.16 г соединения **9**, бесцветные кристаллы.

4-(Индол-2-ил)(1,2-дифенилэтан) (6) и **4-(7-бензилиндол-2-ил)(1,2-дифенилэтан) (14).** А. Смесь 2.24 г (10 ммоль) 4-ацетилдифенилметана (11), 2.57 г (10 ммоль) гидрохлорида N-бензилфенилгидразина и 50 г ПФК перемешивают 45 мин при 100–110 °C. Охлаждают и тонкой струей вливают в 200 мл воды. Экстрагируют эфиром, экстракт промывают водой и сушат. Смесь разделяют на колонке с силикагелем (гептан-эфир, 50:1). Выделяют 0.7 г (18%) соединения 14 и 1.18 г (40%) соединения **6**, бесцветные кристаллы.

Б. Смесь 0.15 г (0.3 ммоль) соединения 8 и 7 мл ПФК перемешивают 30 мин при 125 °С. Охлаждают и вливают в 30 мл воды. Выпавший осадок отфильтровывают, промывают водой и сушат. Смесь разделяют на колонке с силикагелем (гептан-эфир, 20:1). Выделяют 0.16 г соединения 14 (6%), бесцветные кристаллы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ш. А. Самсония, И. Ш. Чикваидзе, Т. Г. Нариндошвили, Н. Н. Суворов, *XГС*, 899 (2001).
- 2. A. D. Settimo, M. F. Saettone, *Tetrahedron*, **21**, 823 (1965).
- 3. E. N. Wayland, R. R. Kent, R. S. Lowell, J. Org. Chem., 31, 65 (1966).
- 4. Н. Н. Суворов, Ю. И. Смушкевич, В. С. Вележева, В. С. Рожков, С. В. Симаков, *XTC*, 191 (1976).
- 5. Ш. А. Самсония, И. Ш. Чикваидзе, Э. О. Гогричиани, ХГС, 1146 (1994).
- 6. Ш. А. Самсония, И. Ш. Чикваидзе, Э. О. Гогричиани, Н. Н. Мачаидзе, З. Е. Салия, *XГС*, 611 (1997).

Тбилисский государственный университет им. Ив. Джавахишвили, Тбилиси 0128, Грузия e-mail: shsam@wanex.net Поступило в редакцию 24.02.2003

-