В. В. Довлатян, К. А. Элиазян, В. А. Пивазян, Э. А. Казарян, А. П. Енгоян

ПРОИЗВОДНЫЕ ТИАЗОЛКАРБОНОВЫХ КИСЛОТ

1. N-ЗАМЕЩЕННЫЕ ПРОИЗВОДНЫЕ 2-АМИНО-4-МЕТИЛТИАЗОЛ-5-КАРБОНОВЫХ КИСЛОТ

Ацилированием этилового эфира и анилида 2-амино-4-метилтиазол-5-карбоновой кислоты получены 2-ацетил(арилсульфонил)аминопроизводные. Метилированием ацетиламинотиазола и последующим деацетилированием получена 2-метиламино-4-метилтиазол-5-карбоновая кислота, далее превращенная в эфиры. На основе исходных этилового эфира и анилида тиазол-2-карбоновой кислоты синтезированы 2-диметиламиноформимино- и 2-хлорбензолсульфонилуреидопроизводные.

Ключевые слова: амино-, ациламино-, диметиламиноформиминотиазолы, тиазол-5-карбоновая кислота и эфиры.

В продолжение исследований по синтезу и изучению производных тиазолин-5-карбоновой кислоты [1] нам показался перспективным поиск новых пестицидов и лекарственных средств среди продуктов, полученных на основе доступных этилового эфира и анилида 2-амино-4-метилтиазол-5-карбоновой кислоты (1, 2) [2].

В настоящей статье описаны некоторые превращения соединений **1**, **2** по аминогруппе. Ацилирование ароматических и гетероциклических аминов может привести как к проявлению, так и усилению биологической активности соединений [3]. В этой связи нами изучено ацилирование соединений **1**, **2**, которые способны к амино-иминной таутомерии, и поэтому могут реагировать как в аминной, так и в иминной форме, как это имеет место с их ближайшим аналогом – 2-аминотиазолом [4].

Показано, что в среде уксусного ангидрида или под действием арилсульфохлоридов в пиридине соединения 1 и 2 реагируют региоселективно с образованием исключительно ациламинотиазолов 3а-е, 4а-е и 5. Последний, будучи NH-кислотой, легко метилируется до соединения 6, деацетилирование которого приводит к 2-метиламино-4-метилтиазол-5-карбоновой кислоте (7) и далее некоторым ее эфирам 8а-с.

С целью получения N,N'-тионилди(аминотиазола), представляющегося в качестве возможного фунгицида, изучено действие хлористого тионила на соединения 1, 2. Было установлено, что вместо ожидаемых тионилди-(аминотиазолов) образуются 2-N-диметиламиноформиминопроизводные 9a,b — продукты конденсации соединений 1, 2 с растворителем (ДМФА).

Установлено также, что аминотиазолы **1**, **2** под действием 2-хлорбензолсульфонилизоцианата образуют соединения **10а**,**b**, которые являются родственными высокоактивному гербициду тиаметуронметилу (гармони) [6] и поэтому могут представлять определенный интерес.

 $\begin{array}{l} \textbf{1, 3a-e} \; X = OEt, \, \textbf{2, 4a-e} \; X = NHPh; \, \textbf{3, 4 a} \; \textbf{Ar} = Ph, \, \textbf{b} \; Ar = 4-MeC_6H_4, \, \textbf{c} \; Ar = 2-ClC_6H_4, \\ \textbf{d} \; Ar = 2,5-Me_2C_6H_3, \, \textbf{e} \; Ar = 4-AcNHC_6H_4; \, \textbf{8 a} \; R = CH_2Ph, \, \textbf{b} \; R = CH_2COOMe, \\ \textbf{c} \; R = (CH_2)_2OPh \end{array}$

9, 10 a X = OEt, b X = NHPh

Таблица 1 Физико-химические и спектральные характеристики синтезированных соединений 3a-e, 4a-e

		<u>Найд</u>	ено, %			
Соеди- нение	Брутто-формула	Вычислено, %		Т. пл., °С	Спектр ЯМР ¹ Н, δ, м. д.	Выход, %
		N	S			
3a	$C_{13}H_{14}N_2O_4S_2$	8.80 8.59	19.27 19.63	157–158	1.38 (3H, т, <i>J</i> = 6.5, <u>CH</u> ₃ CH ₂); 2.43 (3H, c, CH ₃); 4.27 (2H, к, <i>J</i> = 6.5, CH ₂); 7.43–7.83 (5H, м, Ph); ≈12.50 (1H, о. ш. c, NH)	77
3b	$C_{14}H_{16}N_2O_4S_2$	8.41 8.24	19.12 18.82	198–200	1.36 (3H, т, <i>J</i> = 6.5, <u>CH</u> ₃ CH ₂); 2.00 (3H, с, <u>CH</u> ₃ –Ar); 2.42 (3H, с, CH ₃); 4.17 (2H, к, <i>J</i> = 6.5, CH ₂); 7.22–7.75 (4H, м, Ar); 12.20 (1H, ш. с, NH)	76
3c	$C_{13}H_{13}CIN_2O_4S_2$	7.93 7.77	17.31 17.75	192–194	1.30 (3H, т, J = 6.5, <u>CH</u> ₃ CH ₂); 2.50 (3H, c, CH ₃); 4.25 (2H, к, J = 6.5, <u>CH</u> ₂ CH ₃); 7.60–8.20 (4H, м, Ar); 12.30 (1H, ш. c, NH)	80
3d	$C_{15}H_{18}N_2O_4S_2$	7.76 7.91	18.40 18.08	174–175	1.35 (3H, т, J = 6.5, $\underline{\text{CH}}_3\text{CH}_2$); 2.08 (3H, c, CH ₃); 2.20 (3H, c, CH ₃); 2.45 (3H, c, CH ₃); 4.22 (2H, к, J = 6.5, CH ₂); 7.70–8.10 (3H, м, Ar); 12.20 (1H, ш. c, NH)	86
3e	$C_{15}H_{17}N_3O_5S_2$	11.22 10.97	17.09 16.71	136–137	1.38 (3H, τ, <i>J</i> = 6.5, <u>CH</u> ₃ CH ₂); 2.08 (3H, c, C(=O)CH ₃); 2.40 (3H, c, CH ₃); 4.25 (2H, κ, <i>J</i> = 6.5, CH ₂); 7.70 (4H, c, Ar); 10.02 (1H, c, NHC=O); 12.90 (1H, o. ш. c, NHSO ₂)	79
4a	$C_{17}H_{15}N_3O_3S_2$	11.45 11.26	17.59 17.16	222–224	2.45 (3H, c, CH ₃); 7.10–7.80 (10H, м, 2Ph); 10.10 (1H, с, NH); 12.40 (1H, ш. с, NHSO ₂)	80
4b	$C_{18}H_{17}N_3O_3S_2$	10.61 10.85	16.07 16.54	230–231	2.05 (3H, c, <u>CH</u> ₃ –Ar); 2.45 (3H, c, CH ₃); 6.90–7.80 (9H, м, Ar); 10.20 (1H, с, NH); 12.30 (1H, ш. c, NHSO ₂)	94
4c	$C_{17}H_{14}CIN_3O_3S_2$	10.57 10.31	16.09 15.71	140–141	2.50 (3H, c, CH ₃); 7.05–8.20 (9H, м, Ar); 10.15 (1H, с, NH); 12.30 (1H, ш. с, NHSO ₂)	95
4d	$C_{19}H_{19}N_3O_3S_2$	10.70 10.47	16.32 15.96	142–143	2.10 (3H, c, CH ₃); 2.25 (3H, c, CH ₃); 2.45 (3H, c, CH ₃); 6.90–8.00 (8H, м, Ar); 10.10 (1H, c, NH); 12.25 (1H, ш. c, NHSO ₂)	96
4 e	$C_{19}H_{18}N_4O_4S_2$	12.83 13.02	15.21 14.88	213–214	2.07 (3H, c, C(=O)CH ₃); 2.43 (3H, c, CH ₃); 6.95–7.80 (9H, м, Ar); 9.70 (1H, c, <u>NH</u> Ph); 10.05 (1H, c, <u>NH</u> Ph); 12.80 (1H, ш. c, NHSO ₂)	55

Таблица 2

Характеристики соединений 8а-с

Соеди-	Брутто-формула	<u>Найдено, %</u> Вычислено, % N H		Т. пл., °С*	Спектр ЯМР ¹ Н, δ, м. д.	Выход, %
8a	$C_{13}H_{14}N_2O_2S$	11.00 10.69	12.52 12.21	125–127	2.43 (3H, c, CH ₃); 2.90 (3H, д, $J = 5.5$, N–CH ₃); 5.20 (2H, c, CH ₂); 7.23–7.38 (H, м, Ph); 7.96 (1H, ш. c, NH)	61
8b	$C_9H_{12}N_2O_4S$	11.71 11.48	13.43 13.11	160–162	2.45 (3H, c, CH ₃); 2.90 (3H, д, $J = 5.5$, N–CH ₃); 3.75 (3H, c, OCH ₃); 4.65 (2H, c, CH ₂); 8.20 (1H, ш. c, NH)	62
8c	$C_{14}H_{16}N_2O_3S\\$	9.47 9.59	11.21 10.96	118–120	2.45 (3H, c, CH ₃); 2.90 (3H, д, $J = 5.5$, N–CH ₃); 4.25 (2H, т, $J = 6.2$, OCH ₂); 4.56 (2H, т, $J = 6.2$, CH ₂ OPh); 6.90–7.30 (5H, м, Ph); 8.00 (1H, ш. c, NH)	55

^{*} Гептан-бензол, 1:1 (соединения **8а,b**), гептан (соединение **8с**).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н снимали в ДМСО- d_{6} на спектрометре Mercury-300 (300 МГц). ТСХ проводили на пластинках Silufol UV-254 в системе ацетон–гептан, 1:1 (или 1:2), проявление 2% AgNO $_{3}$ + 0.4% бромфенолового синего + 4% лимонной кислоты.

Этиловые эфиры (или анилиды) 2-арилсульфамидо-4-метилтиазол-5-карбоновых кислот (3а-е, 4а-е). К раствору 1.86 г (10 ммоль) этилового эфира 2-амино-4-метилтиазол-5-карбоновой кислоты 1 или 2.33 г (10 ммоль) соответствующего анилида 2 в 5 мл пиридина порциями добавляют 10 ммоль арилсульфохлорида. Смесь выдерживают 48 ч при 20 °C, затем прибавляют 20 мл ледяной воды. Выпавший осадок соединений 3а-е и 4а-е отфильтровывают, промывают водой и сушат на воздухе. Очищают растворением в щелочи и подкислением CH₃COOH.

Физико-химические и спектральные характеристики приведены в табл. 1.

Этиловый эфир 2-ацетиламино-4-метилтиазол-5-карбоновой кислоты (5). Суспензию 1.86 г (10 ммоль) соединения 1 в 5 мл уксусного ангидрида нагревают 5 ч при 105–110 °С, отгоняют избыток уксусного ангидрида и остаток обрабатывают 10–15 мл воды. Осадок соединения 5 отфильтровывают, промывают водой и сушат. Выход 2.1 г (92%). Т. пл. 215–217 °С. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.47 (3H, т, J = 6.5, $\underline{\text{CH}}_{3}\text{CH}_{2}$); 2.40 (3H, c, CH₃); 3.55 (3H, c, C(=O)CH₃); 4.25 (2H, к, J = 6.5, CH₂); 8.10 (1H, ш. c, NH). Найдено, %: N 12.45; S 13.69. $\text{C}_{9}\text{H}_{12}\text{N}_{2}\text{O}_{3}\text{S}$. Вычислено, %: N 12.28; S 14.04.

Этиловый эфир 2-N-ацетиламино-N-метил-4-метилтиазол-5-карбоновой кислоты (6). К раствору 0.7 г (10 ммоль) 84% порошка КОН в 10 мл ДМФА при перемешивании добавляют 2.3 г (10 ммоль) соединения 5, через 30 мин при 0 °C добавляют по каплям 1 мл (10 ммоль) свежеперегнанного диметилсульфата (р 1.26 г/см³). Смесь выдерживают 24 ч при 20 °C, упаривают ДМФА, остаток обрабатывают водой и отфильтровывают осадок соединения 6. Выход 1.86 г (83%). Т. пл. 102–104 °C (октан). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.38 (3H, τ , J = 6.5, CH₃CH₂); 2.40 (3H, τ , CH₃); 2.57 (3H, τ , CC=O)CH₃); 3.67 (3H, τ , CH₃); 4.25 (2H, τ , CH₃). Найдено, %: N 11.39; S 13.56. CH₁4N₂O₃S. Вычислено, %: N 11.57; S 13.22.

2-Метиламино-4-метилтиазол-5-карбоновая кислота (7). К раствору 1.4 г (20 ммоль) 84% КОН в 20 мл этанола прибавляют 2.42 г (10 ммоль) соединения **6** и смесь кипятят с обратным холодильником 2 ч. Отгоняют этанол, остаток растворяют в 10 мл воды, подкисляют CH₃COOH и отфильтровывают осадок. Получают 1.1 г (64%) соединения **7**. Т. пл. 159–160 °C. R_f 0.41. Спектр ЯМР 1 Н, δ , м. д.: 2.40 (3H, c, CH₃); 2.85 (3H, c, N–CH₃); 7.83 (1H, ш. c, NH); ~11.0 (1H, о. ш. c, OH). Найдено, %: N 16.47; S 18.97. $C_6H_8N_2O_2S$. Вычислено, %: N 16.28; S 18.60.

Эфиры 2-метиламино-4-метилтиазол-5-карбоновой кислоты (8а-с). К раствору $2.1\,\mathrm{r}$ (10 ммоль) калиевой соли соединения 7 в 10 мл ДМФА порциями добавляют $1.52\,\mathrm{r}$ (12 ммоль) хлористого бензила или $1.30\,\mathrm{r}$ (12 ммоль) метилхлорацетата, или $2.00\,\mathrm{r}$ (12 ммоль) феноксиэтилбромида, и смесь нагревают $3\,\mathrm{u}$ при 50– $60\,\mathrm{o}$ С. Суспензию переносят в чашку Петри, упаривают ДМФА, остаток обрабатывают $15\,\mathrm{m}$ воды и отфильтровывают осадок соединений 8a–c (табл. 2).

Этиловый эфир (анилид) 2-диметиламиноформимино-4-метилтиазол-5-карбоновой кислоты (9а,b). При перемешивании и охлаждении до 0 °С к 1.86 г (10 ммоль) соединения 1 или 2.33 г (10 ммоль) соединения 2 медленно порциями добавляют 4 мл ДМФА, затем 0.8 мл (11 ммоль) хлористого тионила. Смесь выдерживают 24 ч при 20 °С, прибавляют 20 мл ледяной воды, отфильтровывают от мути и фильтрат нейтрализуют NaHCO₃. Отфильтровывают осадок соединения.

Соединение 9а. Выход 2.1 г (87%). Т. пл. 60–62 °С (гептан). R_f 0.51. Спектр ЯМР 1 Н, δ , м. д.: 2.50 (3H, c, CH₃); 3.07 (3H, c, N(CH₃)₂); 3.20 (3H, c, N(CH₃)₂); 6.95–7.70 (5H, м, Ph); 8.40 (1H, c, CH=N); 9.35 (1H, c, NH). Найдено, %: N 17.63; S 13.58. $C_{10}H_{15}N_3O_2S$. Вычислено, %: N 17.43; S 13.28.

Соединение 9b. Выход 2.48 г (86%). Т. пл. 93–95 °С (гептан–бензол, 1:1). R_f 0.45. Спектр ЯМР 1 Н, δ , м. д.: 2.50 (3H, c, CH₃); 3.10 (3H, c, N(CH₃)₂); 3.20 (3H, c, N(CH₃)₂); 6.95–7.70 (5H, м, Ph); 8.42 (1H, c, N=CH); 9.35 (1H, c, NH). Найдено, %: N 19.62; S 11.48. $C_{14}H_{16}N_4OS$. Вычислено, %: N 19.44; S 11.11.

N-Тиазолил-N'-(2-хлорбензолсульфонил)мочевины (10а,b). К раствору 1.86 г (10 ммоль) соединения **1** или 2.33 г (10 ммоль) соединения **2** в 10 мл абсолютного толуола прибавляют 2.2 г (10 ммоль) 2-хлорбензолсульфонилизоцианата и 5 капель пиридина. Смесь кипятят 2 ч и отфильтровывают соединения **10a,b**.

Соединение 10а. Выход 3.75 г (93%). Т. пл. 246–247 °С (разл.) (кипячение в 50% этаноле). R_f 0.35. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.30 (3H, т, J = 6.5, $\underline{\text{CH}}_3\text{CH}_2$); 2.50 (3H, c, CH₃); 4.20 (2H, к, J = 6.5, $\underline{\text{CH}}_2\text{CH}_3$); 7.55–8.15 (4H, м, Ar). Найдено, %: Cl 8.80; N 10.12; S 16.17. $\text{C}_{14}\text{H}_{14}\text{ClN}_3\text{O}_5\text{S}_2$. Вычислено, %: Cl 8.80; N 10.41; S 15.86.

Соединение 10b. Выход 4.3 г (95%). Т. пл. 292–293 °C (разл.). R_f 0.44. Спектр ЯМР 1 H, δ , м. д.: 2.45 (3H, c, CH₃); 6.90–8.20 (9H, м, Ar); 9.70 (1H, c, NH); 10.20 (1H, c, NH); 12.80 (1H, ш. c, NH–SO₂Ar). Найдено, %: Cl 8.17; N 12.64; S 14.65. $C_{18}H_{15}ClN_4O_4S_2$. Вычислено, %: Cl 7.88; N 12.43; S 14.21.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. В. Довлатян, К. А. Элиазян, В. А. Пивазян, Э. А. Казарян, А. П. Енгоян, Р. Т. Григорян, Р. Г. Мирзоян, *ХГС*, 677 (2000).
- 2. Y. Sawa, R. Maeda, J. Pharm. Soc. Jpn., 76, 301 (1956); Chem. Abstr., 13875 (1956).
- 3. W. Schäfer, K. Sasse, L. Eue, H. Hack, BRD Pat. 1277241 (1969); РЖХим, 5Н905П (1970).
- H. Martin, O. Rohr, St. Janiak, L. Edrer, Switz. Pat. 479247 (1969); PЖХим, 11H976 (1970).
- 5. Г. А. Мелентьева, Фармацевтическая химия, Медицина, Москва, 1968, 300.
- 6. Ю. А. Баскаков, *ЖВХО им. Д. И. Менделеева*, **33**, 634 (1988).

Армянская сельскохозяйственная академия, Ереван 375009 e-mail: artak@dolphin.am Поступило в редакцию 06.07.2001