В. М. Кисель, Е. О. Костырко, О. В. Шишкин^а, С. В. Шишкина^а, В. А. Ковтуненко

конденсированные изохинолины

15*. СИНТЕЗ 5,10-ДИГИДРО[1,2,4]ТРИАЗОЛО[1,5-*b*]ИЗОХИНОЛИНОВ И РОДСТВЕННЫХ СПИРАНОВ

Конденсация о-бромметилфенилацетонитрила с арилкарбогидразидами приводит, в зависимости от условий реакции, к гидробромидам 2-арилкарбоксамидо-1,4-дигидроизохинолин-3(2Н)-иминов или к 2-арил-5,10-дигидро-[1,2,4]триазоло[1,5-b]изохинолинам. Аналогичной конденсацией 4-(2-бромметилфенил)тетрагидро-2Н-пиран-4-карбонитрила и 1-(2-бромметилфенил)-1циклопентанкарбонитрила с арилкарбогидразидами синтезированы, соответственно, 2-арил-2,3,5,6-тетрагидроспиро[4Н-пиран-4,10'(5'Н)-[1,2,4]триазоло[1,5-*b*]изохинолин]ы и 2-арилспиро[[1,2,4]триазоло[1,5-*b*]изохинолин-10(5Н),1'-циклопентан]ы, производные новых спирановых гетероциклических систем. Альтернативным методом их получения может служить взаимодействие с конденсирующими агентами гидробромидов 3-имино-2,2',3,3',5',6'-гексагидроспиро[изохинолин-4(1Н),4'-4Н-пиран]-2-амина и 3-имино-2,3-дигидроспиро[изохинолин-4(1Н),1'-циклопентан]-2-амина, синтезируемых из соответствующих бромнитрилов и гидразина. Строение полученных триазолоизохинолинов установлено на основании их ИК спектров и спектров ЯМР ¹Н и ¹³С. Проведено рентгеноструктурное исследование 2-фенилспиро{[1,2,4]триазоло[1,5-b]изохинолин-10(5H),1'-циклопентан }а.

Ключевые слова: конденсированные изохинолины, конденсированные триазолы, спироциклические соединения.

Конденсированные 1,2,4-триазолы представляют интерес как потенциальные биологически активные вещества [2, 3], а некоторые из них нашли применение в медицинской и ветеринарной практике в качестве транквилизаторов, противовоспалительных, антиаллергических препаратов [4]. В частности, производные [1,2,4]триазоло[1,5-*b*]изохинолинов запатентованы [5–7] в качестве инотропов. Поскольку разработка новых методов синтеза ранее не описанных [1,2,4]триазоло[1,5-*b*]изохинолинов представляется перспективной, в настоящей работе нами изучено взаимодействие *о*-бромметилфенилацетонитрила **1** и его циклоалкилированных аналогов с гидразином и с гидразидами карбоновых кислот.

Найдено, что конденсация бромнитрила 1 с гидразидами ряда бензойных кислот 2, осуществленная нагреванием смеси эквимолярных количеств исходных веществ в диоксане, приводит к гидробромидам 2-арилкарбоксамидо-1,4-дигидроизохинолин-3(2H)-иминов (3) с высокими выходами. В пользу такого строения продуктов взаимодействия свидетельствуют отсутствие в их ИК спектрах полос валентных колебаний группы

^{*} Сообщение 14 см. [1].

С=N и наличие полос поглощения группы C=O, а также характерных [8] для протонных солей 1,4-дигидроизохинолин-3(2H)-иминов полос поглощения симметричных и асимметричных валентных колебаний связи N⁺–H (см. табл. 1). В области 1600–1700 см⁻¹ наблюдается интенсивная полоса поглощения с несколькими максимумами, интерпретированная нами как наложение полос валентных колебаний амидной группы C=O [9] и экзоциклической связи C=N⁺ [8]. Спектры ЯМР ¹Н продуктов конденсации характеризуются наличием трех уширенных синглетов обменивающихся с D₂O протонов, два из которых относятся к резонансу протонов иминиевой группы (причины их неэквивалентности аналогичны обсуждавшимся ранее в работе [8]), а третий – к протону группы N–H амидного типа.

2–4 a, **b** $R^1 = H$; **c**, **d** $R^1 = OH$; **a**, **c** $R^2 = H$, **b** $R^2 = 3$ -Br, **d** $R^2 = 5$ -Br; **3e** $R^1 = OAc$, $R^2 = H$

С учетом известных (см. [2, 3] и цитированную там литературу) приемов аннелирования 1,2,4-триазольного цикла к азагетероциклам, мы изучили поведение изохинолинимина 3с при воздействии различных конденсирующих агентов. Оказалось, что кипячение этого соединения в уксусном ангидриде приводит только к ацетилированию фенольного гидроксила с образованием гидробромида 2-(2-ацетоксифенил)карбоксамидо-1,4-дигидроизохинолин-3(2H)-имина (3e). Лишь с низким выходом нам удалось получить ожидаемый 2-(2-гидроксифенил)-5,10-дигидро[1,2,4]триазоло[1,5-b]изохинолин (4c) при обработке имина 3c хлороксидом фосфора. Наилучшие же результаты были получены при длительном (15 ч) нагревании изохинолинимина Зс в ДМФА в присутствии ацетата натрия, что позволило синтезировать целевой продукт 4с с выходом 50%. В этих же условиях реализован синтез остальных 2-арил-5,10-дигидро-[1,2,4]триазоло[1,5-*b*]изохинолинов (4). Оптимальным способом их получения оказалась непосредственная конденсация бромнитрила 1 с бензгидразидами 2 в присутствии ацетата натрия.

В ИК спектрах полученных триазолоизохинолинов отсутствуют полосы валентных колебаний группы С=О и связи N–H; в случае соединений **4с,d** поглощение фенольных гидроксилов наблюдается в виде сильно уширенных диффузных полос с несколькими максимумами, что обусловлено [9] участием групп ОН во внутримолекулярной водородной связи с атомами азота триазольного цикла. Полосы поглощения последнего в ИК спектрах соединений **4а,b** проявляются в области 1485–1495 см⁻¹, что 1422 характерно для сопряженной группы C=N в составе цикла [10]. В то же время в ИК спектрах фенолов **4c,d** эта полоса претерпевает низкочастотный сдвиг до 1450 см⁻¹ за счет участия атомов азота триазольного цикла в образовании водородной связи с группами ОН соединений **4c,d**. Сигналы протонов метиленовых групп в спектрах ЯМР ¹Н триазолоизохинолинов **4** проявляются в виде триплетов с гомоаллильной [11] КССВ равной 2.5 Гц.

Можно было ожидать, что в конденсациях с гидразидами 2 аналогичным образом будут вести себя и циклоалкилированные аналоги бромнитрила 1: 4-(2-бромметилфенил)тетрагидро-2Н-пиран-4-карбонитрила (5) и 1-(2-бромметилфенил)-1-циклопентанкарбонитрила (6). Однако оказалось, что остановить реакцию на стадии образования соответствующих изохинолин-3-иминов затруднительно. Лишь в случае конденсации бромнитрила 6 с гидразидом 5-бромсалициловой кислоты после кипячения их смеси в диоксане в течение 6 ч удалось получить гидробромид 2-(5-бром-2-гидроксифенил)карбоксамидоспиро[изохинолин-4(1H),1'-циклопентан]-3(2Н)-имина (7). В остальных случаях в указанных условиях образуются смеси солеобразных веществ, которые мы подробнее не исследовали. Однозначное протекание реакции отмечено при проведении конденсации в присутствии ацетата натрия. При этом из бромнитрила 5 с хорошими выходами получены 2-арил-2,3,5,6-тетрагидроспиро[4Н-пиран-4,10'(5'Н)-[1,2,4]триазоло[1,5-*b*]изохинолин]ы (8). Аналогичное превращение бромнитрила 6 приводит к 2-арилспиро[[1,2,4]триазоло[1,5-*b*]изохинолин-10(5Н),1'-циклопентан]ам (9).

5, **8**, **10** Y = O, *n* = 1; **6**, **9**, **11** Y = CH₂, *n* = 0; **8**, **9** a R = Ph; b R = 3-BrC₆H₄; c R = 2-HOC₆H₄, d R = 2-HO-5-BrC₆H₃, e R = Me; **8f** R = H

Характеристики соединений 3, 4, 8 и 9

Соеди-	Брутто-	<u>Найдено,%</u> Вычислено %				Т. пл.,	Выход,
нение	формула	С	Н	N	Br	°C	%
3a	C ₁₆ H ₁₅ N ₃ O•HBr	<u>55.67</u> 55.51	<u>4.72</u> 4.66	<u>12.19</u> 12.14	<u>23.06</u> 23.08	257	66
3b	$C_{16}H_{14}BrN_{3}O{\bullet}HBr$	<u>45.31</u> 45.20	<u>3.63</u> 3.56	<u>9.94</u> 9.88	<u>37.77</u> 37.59	235	70
3c	$C_{16}H_{15}N_3O_2{\bullet}HBr$	<u>53.15</u> 53.05	$\frac{4.50}{4.45}$	<u>11.86</u> 11.60	<u>22.31</u> 22.06	252	83
3d	$C_{16}H_{14}BrN_3O_2\bullet HBr$	<u>43.63</u> 43.57	$\frac{3.50}{3.43}$	<u>9.89</u> 9.53	<u>36.21</u> 36.23	245	75
3e	$C_{18}H_{17}N_3O_3\bullet HBr$	<u>53.55</u> 53.48	$\frac{4.55}{4.49}$	<u>10.52</u> 10.39	<u>20.90</u> 19.77	217	70
4a	$C_{16}H_{13}N_3$	<u>77.80</u> 77.71	$\frac{5.42}{5.30}$	<u>17.29</u> 16.99		241	45
4b	$C_{16}H_{12}BrN_3$	<u>59.10</u> 58.91	$\frac{3.82}{3.71}$	$\frac{13.11}{12.88}$	$\frac{24.72}{24.50}$	250	61
4c	$C_{16}H_{13}N_{3}O$	<u>73.05</u> 72.99	<u>5.07</u> 4.98	<u>16.15</u> 15.96		272	48
4d	$C_{16}H_{12}BrN_{3}O$	<u>56.24</u> 56.16	<u>3.62</u> 3.53	<u>12.43</u> 12.28	<u>23.60</u> 23.35	249	60
8a	$C_{20}H_{19}N_3O$	<u>75.78</u> 75.69	<u>6.12</u> 6.03	<u>13.33</u> 13.24		179	52
8b	C ₂₀ H ₁₈ BrN ₃ O	<u>60.73</u> 60.62	$\frac{4.63}{4.58}$	$\frac{10.88}{10.60}$	$\frac{20.20}{20.16}$	183	58
8c	$C_{20}H_{19}N_3O_2$	72.10 72.05	<u>5.82</u> 5.74	<u>12.83</u> 12.60	10.00	194	55
8d	$C_{20}H_{18}BrN_3O_2$	<u>58.32</u> 58.27	$\frac{4.49}{4.40}$	$\frac{10.22}{10.19}$	<u>19.62</u> 19.38	220	56
8e•HBr	$C_{15}H_{17}N_3O$ •HBr	<u>53.65</u> 53.58	<u>5.40</u> 6.33	$\frac{12.28}{12.50}$	$\frac{23.82}{23.76}$	220	48
9a	$C_{20}H_{19}N_3$	69.69 79.78	6.27 6.43	17.41 14.07		104	72
9b	$C_{20}H_{18}BrN_3$	79.70 <u>63.23</u>	6.35 <u>4.83</u>	13.94 <u>11.30</u>	<u>21.28</u>	90	70
9c	C ₂₀ H ₁₉ N ₃ O	63.17 <u>75.78</u> 75.69	4.77 <u>6.12</u> 6.03	11.05 13.41 13.24	21.01	128	55
9d	$C_{20}H_{18}BrN_3O$	<u>60.73</u> 60.62	<u>4.67</u> 4.58	15.24 10.70 10.60	$\frac{20.22}{20.16}$	151	73
9e ∙HBr	C ₁₅ H ₁₇ N ₃ ·HBr	<u>56.35</u> 56.26	<u>5.73</u> 5.67	<u>13.32</u> 13.12	<u>25.16</u> 24.95	237	54

Спектральные характеристики полученных таким образом спиранов (табл. 3), являющихся производными новых гетероциклических систем, согласуются с данными для триазолоизохинолинов **4** (табл. 2). Кроме того, более детальное исследование спектральных свойств нами проведено на модели соединения **9a**. Так, в спектре ЯМР ¹³С сигналы атомов углерода триазольного цикла проявляются при 160.4 и 159.8 м. д., а спироатома углерода — при 46.6 м. д. Строение этого соединения также подтверждено рентгеноструктурным исследованием (рисунок, табл. 4–6). Дигидропиридиновый цикл находится в конформации ванны (параметры складчатости [12] S = 0.15, $\theta = 71.7$, $\psi = 11.7$). Отклонения атомов С(5) и С(10) от среднеквадратичной плоскости остальных атомов цикла составляют 0.13 и 0.07 Å соответственно.

Таблица 2

Сооти	ИК спектр	Спектр ЯМР ¹ Н (ДМСО-d ₆), б, м. д., КССВ, <i>J</i> (Гц)				
нение	v, см ^{−1}	С–СН ₂ , 2Н	N–CH ₂ , 2H	Остальные сигналы		
3a	1675, 1650 (C=O, C=N); 3040, 3220 (NH)	4.25, c	4.9, c	7.3–8.1 (9Н, м, Н аром.); 9.51 (1Н, уш. с, N ⁺ H); 9.94 (1Н, уш. с, N ⁺ H); 11.73 (1Н, уш. с, CONH)		
3b	1680, 1650 (C=O, C=N); 3000, 3200 (NH)	4.3, c	4.9, c	7.3–7.5 (4H, м, C(5-8)-H); 7.58 (1H, д, $J_o = 8$, C(5')H); 7.90 (1H, д. д, $J_o = 8$, $J_m = 2.5$, C(4')H); 8.00 (1H, д. д, $J_o = 8$, $J_m = 2.5$, C(6')H); 8.20 (1H, т, $J_m = 2.5$, C(2')H); 9.51 (1H, уш. с, N ⁺ H); 9.94 (1H, уш. с, N ⁺ H); 11.82 (1H, уш. с, CONH)		
3c	1630, 1660 (C=O, C=N); 3000, 3060, 3200 (NH, OH)	4.25, c	4.9, c	7.0 (1H, τ , $J_o = 8$, C(5')H); 7.1 (1H, π , $J_o = 8$, C(3')H); 7.3–7.4 (4H, M , C(5-8)–H); 7.5 (1H, τ . π , $J_o = 8$, $J_m = 2.5$, C(4')H); 7.95 (1H, π . π , $J_o = 8$, $J_m = 2.5$, C(4')H); 9.4 (1H, yu. c, N ⁺ H); 9.9 (1H, yu. c, N ⁺ H); 11.3 (2H, yu. c, CONH, OH)		
3d	1630, 1650 (C=O, C=N); 3020, 3120, 3200 (NH, OH)	4.25, c	4.9, c	7.1 (1H, \exists , $J_o = 8$, C(3')H); 7.3—7.4 (4H, M, C(5-8)–H); 7.65 (1H, \exists , \exists , $J_o = 8$, $J_m = 2.5$, C(4')H); 8.05 (1H, \exists , $J_m = 2.5$, C(6')H); 9.4 (1H, ym. c, N ⁺ H); 9.95 (1H, ym. c, N ⁺ H); 11.4 (2H, ym. c, CONH, OH)		
3e	1650, 1680 (C=O, C=N); 1760 (C=O); 3040. 3220 (NH)	4.25, c	4.8, c	2.25 (3H, c, COCH ₃); 7.25–7.5 (6H, м, C(5-8)–H, C(3')-H, C(5')-H); 7.7 (1H, т. д, $J_o = 8, J_m = 2.5, C(4')H$); 8.02 (1H, д. д, $J_o = 8, J_m = 2.5, C(6')H$); 9.45 (1H, ym. c, N ⁺ H); 9.95 (1H, ym. c, N ⁺ H); 11.55 (1H, ym. c, CONH)		
4a	1495 (C=N)	5.3, т, J ₅ = 2.5	5.5, т	7.3–7.6 (7Н, м, Н аром.); 8.0–8.1 (2Н, м, С(2')Н, С(6')Н)		
4b	1485 (C=N)	4.3, т	5.45, т	7.3–7.5 (5H, м, H аром.); 7.6 (1H, т. т, $J_o = 8$, $J_m = 2.5$, C(4')H); 8.0 (1H, д. т, $J_o = 8$, $J_m = 2.5$, C(6')H); 8.15 (1H, т, $J_m = 2.5$, C(2')H)		
4c	1450 (C=N); 2900, 3030, 3160 (OH)	4.35, c	5.5, c	6.9–7.4 (7Н, м, Н аром.); 8.0 (1Н, д, <i>J</i> _o = 8, C(3')H); 8.8 (1H, с, OH)		
4d	1450 (C=N); 2880, 2900, 3010, 3100 (OH)	4.4, T	5.5, т	6.95 (1Н, д, <i>J</i> _o = 8, C(3')Н); 7.3–7.6 (5Н, м, Н аром.); 8.05 (1Н, д, <i>J</i> _m = 2.5, C(6')Н)		

Спектральные характеристики соединений 3 и 4

Фенильный заместитель несколько повернут относительно плоскости триазольного кольца (торсионный угол N(3)–C(2)–C(1")–C(6") 7.8(4)°). Циклопентановый фрагмент находится в конформации конверт. Атом C(3') отклоняется от плоскости остальных атомов цикла на 0.35 Å. Этот спироаннелированный цикл несколько наклонен по отношению к средней плоскости трициклической системы так, что атом C(5') занимает псевдоаксиальное положение, а атом C(2') – псевдоэкваториальное (торсионные углы N(4)–C(10a)–C(10)–C(5') 113.1(3)°, N(4)–C(10a)–C(10)–C(2') –134.6(3)°). В молекуле обнаружен укороченный внутримолекулярный контакт H(2'b)...C(9) 2.69 Å (при сумме ван-дер-ваальсовых радиусов 2.87 Å [13]). В кристалле также найден укороченный межмолекулярный контакт H(5a)...C(2') 2.73 Å (2.87 Å) (1–*x*, 2–*y*, –*z*). Молекулы соединения **9a** образуют 1425

Строение молекулы соединения 9а по данным рентгеноструктурного исследования

в кристалле взаимно перпендикулярные стопки вдоль кристаллографических осей (1 0 0) и (0 1 0). При этом расстояние между π -системами соседних молекул в стопке (0 1 0) составляет около 3.5 Å, что позволяет предположить наличие стэкинг взаимодействий.

Альтернативным способом аннелирования триазольного цикла к азагетероциклам может служить конденсация 1,2-диамино- (или 1-амино-2имино-)азагетероциклов с карбоновыми кислотами или их производными [2], поэтому мы изучили также взаимодействие бромнитрилов 1, 5 и 6 с гидразином. При этом оказалось, что взаимодействие бромнитрила 1 с гидразингидратом протекает неоднозначно с образованием сложной смеси неидентифицированных нами продуктов. В то же время непродолжительное нагревание избытка гидразингидрата с бромнитрилами 5, 6 приводит к гидробромидам, соответственно, 3-имино-2,2',3,3',5',6'-гексагидроспиро-[изохинолин-4(1Н),4'-4Н-пиран]-2-амина (10), 3-имино-2,3-дигидроспиро-[изохинолин-4(1Н),1'-циклопентан]-2-амина (11). В ИК спектрах этих соединений отсутствуют полосы поглощения группы CN и наблюдаются сильные полосы валентных колебаний связей N-H и C=N. В спектрах ЯМР ¹Н протоны группы NH₂ и иминиевой группы проявляются в виде отдельно стоящих двухпротонных синглетов. Ацилирование гидробромидов 10, 11 бензоилхлоридом в присутствии ацетата натрия в диоксановом растворе приводит к упоминавшимся выше спироциклическим триазолоизохинолинам 8а и 9а. Впрочем, этот путь их синтеза не имеет преимуществ по сравнению со способом на основе бензгидразида, тем более, что замещенные бензгидразиды зачастую доступнее соответствующих хлорангидридов (например, в случае салициловых кислот). Тем не менее, применение этого пути вполне оправдано при синтезе спироциклических триазолоизохинолинов с алкильным заместителем в положении 2 или со свободным этим положением. Так, нагревание солей 10, 11 в уксусном ангидриде приводит к гидробромидам 2-метил-2,3,5,6-тетрагидроспиро[4H-пиран-4,10'(5'H)-[1,2,4]триазоло[1,5-*b*]изохинолин]а (**8е**•HBr) и 2-метилспиро[[1,2,4]триазоло[1,5-b]изохинолин-10(5H),1'-циклопентан]а (**9е**•HBr). Конденсацией гидробромида **10** с триэтилортоформиатом с последующей обработкой сырого продукта N-метилморфолином синтезирован 2,3,5,6-тетрагидроспиро[4H-пиран-4,10'(5'H)-[1,2,4]триазоло[1,5-*b*]изохинолин] (**8f**).

Таблица З

	ИК (v,	спектр, см ⁻¹	Спектр	д., КССВ, <i>J</i> (Гц)*	
Соеди- нение	C=N	Прочие полосы	-СH ₂ - пиранового (циклопентанового) циклов, м	N–CH ₂ (c, 2H)	Прочие сигналы
8a	1480		1.75–2.0 (2H); 2.5–2.7 (2H); 3.8–4.0 (2H); 4.25–4.6 (2H)	5.45	7.25–7.5 (6Н, м, Н аром.); 7.7 (1Н, д. д, <i>J</i> _o = 8, <i>J</i> _m = 2.5, C(4")Н); 8.1–8.2 (2Н, м, C(2")H, C(6")Н)
8b	1450		1.75–1.95 (2H); 2.1–2.5 (2H); 3.75–3.95 (2H); 4.25–4.55 (2H)	5.5	7.3–7.8 (6Н, м, Н аром.); 8.05 (1Н, д. т, <i>J</i> _o = 8, <i>J</i> _m = 2.5, С(6")Н); 8.2 (1Н, т, <i>J</i> _m = 2.5, С(2")Н)
8c	1460	3150 (OH)	1.8–2.0 (2H); 2.15–2.5 (2H); 3.8–4.0 (2H); 4.1–4.4 (2H)	5.6	6.95 (1H, т, <i>J</i> _o = 8, C(5")H); 7.0 (1H, д, <i>J</i> _o = 8, C(3")H); 7.25–7.55 (4H, м, H аром.); 7.7–7.8 (1H, м, C(4")H); 8.0 (1H, д. д, <i>J</i> _o = 8, <i>J</i> _m = 2.5, C(6")H); 10.9 (1H, с, OH)
8d	1450	3070 (OH)	1.8–2.0 (2H); 2.25–2.6 (2H); 3.8–4.1 (2H); 4.3–4.55 (2H)	5.45	6.9 (1H, \exists , $J_o = 8$, C(3")H); 7.3–7.55 (4H, \exists , H apom.); 7.7 (1H, \exists . \exists , $J_o = 8$, $J_m = 2.5$, C(4")H); 8.2 (1H, \exists , $J_m = 2.5$, C(6")H); 10.85 (1H, c, OH)
8e•HBr	1585	2740 (N ⁺ H)	2.2–2.6 (4H); 4.2–4.4 (4H)	5.6	2.75 (3H, с, CH ₃); 7.5–7.8 (4H, м, Н аром.)
8f	1490		1.7–1.9 (2H); 2.05–2.4 (2H); 3.7–3.9 (2H); 4.15–4.45 (2H)	5.45	7.3–7.8 (4Н, м, Н аром.); 8.03 (1Н, с, С(2')Н)
9a	1480		1.9–2.5 (8H)	5.5	7.3–7.6 (7Н, м, Н аром.); 8.0–8.1 (2Н, м, С(2")Н, С(6")Н)
9b	1475		1.9–2.5 (8H)	5.45	7.3–7.5 (5H, м, H аром.); 7.55 (1H, т. т, $J_o = 8$, $J_m = 2.5$, C(4")H); 8.05 (1H, д. т, $J_o = 8$, $J_m = 2.5$, C(6")H); 8.15 (1H, т, $J_m = 2.5$, C(2")H)
9c	1460	3200 (OH)	1.9–2.5 (8H)	5.55	6.9 (1H, τ , $J_o = 8$, C(5")H); 7.0 (1H, μ , $J_o = 8$, C(3")H); 7.35–7.6 (5H, μ , H apom.); 7.95 (1H, μ . μ , $J_o = 8$, $J_m = 2.5$, C(6")H)
9d	1485	3150 (OH)	2.0–2.5 (8H)	5.4	6.9 (1Н, д, <i>J</i> _o = 8, C(3")H); 7.2–7.5 (5Н, м, Н аром.); 8.2 (1Н, д, <i>J</i> _m = 2.5, C(6")H); 11.25 (1Н, с, OH)
9e∙HBr	1580	2460 (N ⁺ H)	2.0–2.7 (8H)	5.45	2.8 (3H, с, CH ₃); 7.3–7.5 (4H, м, Н аром.)

Спектральные характеристики соединений 8 и 9

* Спектры соединений **8а,d** и **9d,e** зарегистрированы в CDCl₃, соединения **8е** – в CF₃CO₂D, остальных – в ДМСО-d₆.

Таблица 4

Атом	x	у	z	$U_{ m _{3KB}}$
N(3)	3252(2)	9092(3)	331(1)	62(1)
N(1)	4775(2)	9040(3)	1404(1)	63(1)
N(4)	4436(2)	8271(2)	283(1)	59(1)
C(2)	3508(3)	9542(3)	1020(1)	58(1)
C(10A)	5315(3)	8247(3)	921(1)	57(1)
C(10)	6715(3)	7445(3)	1037(1)	59(1)
C(9A)	6842(3)	6499(3)	373(2)	62(1)
C(9)	7984(4)	5519(4)	399(2)	82(1)
C(8)	8183(4)	4688(4)	-189(2)	92(1)
C(7)	7255(4)	4819(4)	-836(2)	92(1)
C(6)	6135(4)	5767(4)	-876(2)	79(1)
C(5A)	5902(3)	6597(3)	-284(2)	62(1)
C(5)	4614(3)	7572(3)	-388(1)	67(1)
C(1")	2532(3)	10511(3)	1320(2)	62(1)
C(6")	1196(3)	10872(4)	921(2)	78(1)
C(5")	300(4)	11815(4)	1200(2)	92(1)
C(4")	722(4)	12462(4)	1869(2)	91(1)
C(3")	2016(4)	12125(4)	2264(2)	92(1)
C(2")	2916(4)	11155(4)	1998(2)	77(1)
C(2')	6875(3)	6551(3)	1766(2)	72(1)
C(3')	7964(4)	7367(5)	2309(2)	114(2)
C(4')	8797(5)	8244(5)	1897(2)	144(2)
C(5')	7979(3)	8566(4)	1190(2)	75(1)

Координаты ($\times 10^4$) и эквивалентные изотропные тепловые параметры (Å² $\times 10^3$) неводородных атомов в структуре спироциклического триазолоизохинолина 9а

Таблица 5

Длины связей (d) в структуре спироциклического триазолоизохинолина 9a

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
N(3)–C(2)	1.349(3)	C(1")–C(2")	1.403(4)	C(10)–C(5')	1.586(4)
N(1)–C(10a)	1.343(3)	C(6")–C(5")	1.392(5)	C(9a)–C(5a)	1.409(4)
N(4)–C(10a)	1.349(3)	C(4")–C(3")	1.374(5)	C(9)–C(8)	1.390(5)
C(2)–C(1")	1.479(4)	C(2')–C(3')	1.534(5)	C(7)–C(6)	1.381(5)
C(10)–C(9a)	1.552(4)	C(4')–C(5')	1.462(4)	C(5a)–C(5)	1.518(4)
C(10)–C(2')	1.591(4)	N(3)–N(4)	1.385(3)	C(1")–C(6")	1.416(4)
C(9a)–C(9)	1.418(4)	N(1)–C(2)	1.388(3)	C(5")–C(4")	1.395(5)
C(8)–C(7)	1.391(5)	N(4)–C(5)	1.460(3)	C(3")–C(2")	1.398(4)
C(6)–C(5a)	1.406(4)	C(10a)–C(10)	1.520(4)	C(3')–C(4')	1.457(5)

Таблица б

Валентные углы (ω) в молекуле соединения 9а

Угол	ω, град.	Угол	ω, град.
C(2)–N(3)–N(4)	102.4(2)	C(10a)-N(1)-C(2)	103.6(2)
C(10a)-N(4)-N(3)	110.4(2)	C(10a)–N(4)–C(5)	128.3(3)
N(3)-N(4)-C(5)	121.3(2)	N(3)–C(2)–N(1)	113.7(3)
N(3)-C(2)-C(1")	122.2(2)	N(1)-C(2)-C(1")	124.1(2)
N(1)-C(10a)-N(4)	110.0(2)	N(1)-C(10a)-C(10)	127.1(2)
N(4)-C(10a)-C(10)	122.9(3)	C(10a)–C(10)–C(9a)	110.3(2)
C(10a)-C(10)-C(5')	110.1(2)	C(9a)-C(10)-C(5')	110.5(2)
C(10a)-C(10)-C(2')	109.3(2)	C(9a)-C(10)-C(2')	113.6(2)
C(5')-C(10)-C(2')	102.9(2)	C(5a)-C(9a)-C(9)	116.7(3)
C(5a)-C(9a)-C(10)	123.3(3)	C(9)-C(9a)-C(10)	119.9(3)
C(8)–C(9)–C(9a)	122.4(3)	C(9)–C(8)–C(7)	120.0(4)
C(6)–C(7)–C(8)	118.8(3)	C(7)–C(6)–C(5a)	122.1(3)
C(6)-C(5a)-C(9a)	120.1(3)	C(6)–C(5a)–C(5)	117.2(3)
C(9a)–C(5a)–C(5)	122.7(3)	N(4)-C(5)-C(5a)	111.3(2)
C(2")-C(1")-C(6")	117.4(3)	C(2")-C(1")-C(2)	121.4(3)
C(6")-C(1")-C(2)	121.1(3)	C(5")-C(6")-C(1")	120.7(3)
C(6")-C(5")-C(4")	120.6(3)	C(3")-C(4")-C(5")	119.5(4)
C(4")-C(3")-C(2")	120.7(3)	C(3")-C(2")-C(1")	121.1(3)
C(3')-C(2')-C(10)	106.2(2)	C(4')–C(3')–C(2')	106.9(3)
C(3')-C(4')-C(5')	110.0(3)	C(4')-C(5')-C(10)	108.1(3)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры соединений в таблетках КВг зарегистрированы на приборе SP3-300 Руе-Unicam. Спектры ЯМР ¹Н и ¹³С получены на приборах Varian VXR-300 (300 МГц) и Bruker WP-100 SY (100 МГц), внутренний стандарт ТМС. Соединения **3b–e**, **4a**, **7**, **8a–c,e**, **9a–c**, **10**, **11** перекристаллизованы из этанола, **4c** – из ДМФА, **3a**, **4d**, **8d**, **9c,d** – из уксусной кислоты, **4b** – из диоксана, **8f**, **9e** – из пропанола-2.

Рентгеноструктурный анализ соединения **9a** проведен на автоматическом дифрактометре Siemens P3/PC (λ Mo K_{α} , графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{\text{max}} = 50^{\circ}$) с измерением интенсивностей 2685 независимых отражений (R_{int} 0.04). Кристаллы **9a** моноклинные, $C_{20}H_{19}N_3$, при 20 °C: a = 9.631(4), b = 9.228(3), c = 18.910(8) Å, $\beta = 99.86(3)^{\circ}$, V = 1656(1) Å³, $M_r = 301.38$, Z = 4, пространственная группа P2(1)/n, $d_{\text{выч}} = 1.209 \text{ г/см}^3$, μ (Mo K_{α}) = 0.073 мм⁻¹, F(000) = 640. Структура расшифрована прямым методом с использованием комплекса программ SHELX97 [14]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{изo} = 1.2U_{3KB}$ неводородного атома, связанного с данным водородным. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до w $R_2 = 0.184$ по 2685 отражениям ($R_1 = 0.062$ по 1405 отражениям с $F>4\sigma(F)$, S = 0.91).

Гидробромиды 2-арилкарбоксамидо-1,4-дигидроизохинолин-3(2H)-иминов (3). Смесь 0.63 г (3 ммоль) бромнитрила 1 и (3 ммоль) арилкарбогидразида 2 в 10 мл диоксана кипятят 6 ч, охлаждают, выпавшее кристаллическое вещество отфильтровывают, промывают диоксаном и перекристаллизовывают из подходящего растворителя.

При синтезе соединения **3d** отфильтрованный сырой продукт реакции дополнительно кипятят в 15 мл ацетона 8 ч, нерастворившийся осадок отфильтровывают, промывают ацетоном и перекристаллизовывают из EtOH.

Гидробромид 2-(2-ацетоксифенил)карбоксамидо-1,4-дигидроизохинолин-3(2H)имина (3e). Гидробромид 3с кипятят 0.5 ч в 7 мл Ac₂O. Выпавший из охлажденной реакционной смеси осадок отфильтровывают и перекристаллизовывают из EtOH. **2-Арил-5,10-дигидро[1,2,4]триазоло[1,5-***b***]изохинолины (4)**. Смесь 0.63 г (3 ммоль) бромнитрила **1**, 3 ммоль гидразида **2** и 0.99 г (12 ммоль) NaOAc в 10 мл диоксана кипятят 13 ч, охлаждают, разбавляют реакционную смесь вдвое водой, выпавший осадок отфильтровывают, промывают водой и перекристаллизовывают из подходящего растворителя.

Кипятят 1.5 ммоль гидробромидов **3** в 7 мл ДМФА в присутствии 0.49 г (6 ммоль) NaOAc в течение 6 ч, далее обрабатывают реакционную смесь водой, отфильтровывают образующийся осадок и получают те же соединения **4a**–**d** с выходами 45 (**4a**), 48 (**4b**), 50 (**4c**) и 45% (**4d**).

Кроме того, соединение **4d** получают с выходом 20% нагреванием 1.5 ммоль гидробромида **3d** в 2 мл POCl₃ в течение 8 ч. Охлажденную реакционную смесь упаривают, обрабатывают водой и нейтрализуют раствором NH₄OH. Выпавший осадок отфильтровывают, промывают водой и перекристаллизовывают из уксусной кислоты.

Гидробромид 2-(5-бром-2-гидроксифенил)карбоксамидоспиро[изохинолин-4(1H),1'циклопентан]-3(2H)-имина (7). Смесь 0.79 г (3 ммоль) бромнитрила 6 и 0.69 г (3 ммоль) гидразида 5-бромсалициловой кислоты в 10 мл диоксана кипятят 6 ч, охлаждают, выпавшее кристаллическое вещество отфильтровывают, промывают диоксаном и перекристаллизовывают из EtOH. Выход 0.95 г (66%). Т. пл. 232 °C (EtOH). ИК спектр, v, см⁻¹: 1640, перегиб 1660 (С=N, С=O); перегиб 3030, 3070, 3240 (NH, OH). Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д., J (Гц): 1.7–2.5 (8H, м, –(CH₂)₄–); 4.9 (2H, с, CH₂N); 6.1 (1H, д, $J_o = 8$, C(3")H); 6.35–6.4 (4H, м, H аром.); 6.65 (1H, д. д. $J_o = 8$, $J_m = 2.5$, C(4")H); 7.0 (1H, д, $J_m = 2.5$, C(6")H); 9.28 (1H, с, N⁺H); 9.35 (1H, с, N⁺H); 11.42 (2H, с, NH, OH). Найдено, %: C 48.59; H 4.35; Br 33.45; N 9.66. C₂₀H₂₀BrN₃O₂·HBr. Вычислено, %: C 48.51; H 4.27; Br 32.27; N 8.49.

2-Арил-2,3,5,6-тетрагидроспиро[4Н-пиран-4,10'(5'Н)-[1,2,4]триазоло[1,5-*b*]изохинолин]ы (8). Смесь 0.84 г (3 ммоль) бромнитрила 5, 3 ммоль гидразида 2 и 0.99 г (12 ммоль) NaOAc в 10 мл диоксана кипятят 12 ч, охлаждают, разбавляют реакционную смесь вдвое водой, выпавший осадок отфильтровывают промывают водой и перекристаллизовывают из EtOH.

2-Арилспиро[[1,2,4]**триазоло**[1,5-*b*]изохинолин-10(5Н),1'-циклопентан]ы (9) получают саналогично из бромнитрила 6. Кроме того, соединения **8а**, **9а** получают с выходами 48 и 50%, нагревая смесь 2 ммоль, соответственно, соединений 10 или 11 и 0.26 мл (22 ммоль) бензоилхлорида в 7 мл ДМФА в присутствии 1 мл триэтиламина в течение 2 ч. Растворитель удаляют в вакууме, остаток обрабатывают водой, потом раствором K₂CO₃, твердое вещество отфильтровывают, промывают водой и перекристаллизовывают.

Соединение 9а. Спектр ЯМР ¹³С (ДМСО-d₆), δ , м. д.: 26.4 (С(3')H₂, С(4')H₂), 42.1 (С(2')H₂, С(5')H₂); 46.6 (С_{*spiro*}), 48.6 (С(5')H₂); 125.7 (С(3")H, С(5")H); 128.6 (С(2")H, С(6")H); 126.1, 126.2, 126.5, 126.1, 128.9 (остальные С_{Ar}H); 129.0, 131.2, 140.3 (не связанные с H С(1"), С(5а) и С(9а)); 159.8, 160.4 (атомы С в триазольном цикле).

Гидробромид **3-имино-2,2',3,3',5',6'-гексагидроспиро[изохинолин-4(1H),4'-4H-пи**ран]-2-амина (10). К раствору 0.84 г (3 ммоль) бромнитрила **5** в 10 мл диоксана добавляют 0.83 мл (17 ммоль) 85% N₂H₄·H₂O, реакционную смесь кипятят 3 ч, затем выливают на лед. Выпавший осадок отфильтровывают и перекристаллизовывают из EtOH. Выход гидробромида **10** 0.68 г (73%). Т. пл. 312 °C (EtOH). ИК спектр, v, см⁻¹: 1680 (C=N); 3120, 3170, 3220, 3280 (NH). Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д.: 2.0–2.45 (4H, м, –C(CH₂)₂–); 3.6–4.0 (4H, м, O(CH₂)₂); 4.95 (2H, с, CH₂N); 5.4 (2H, уш. с, N–NH₂); 7.4–7.7 (4H, м, H аром.); 8.9 (2H, уш. с, N⁺H₂). Найдено, %: С 50.10; H 5.90; Br 26.06; N 13.26. C₁₃H₁₇N₃O·HBr. Вычислено, %: С 50.01; H 5.81; Br 25.59; N 13.46.

Гидробромид 3-имино-2,3-дигидроспиро[изохинолин-4(1H),1'-циклопентан]-2-амина (11) получают аналогично из бромнитрила **6** с выходом 0.63 г (71%). Т. пл. 268 °C (ЕtOH). ИК спектр, v, см⁻¹: 1660 (С=N); 3120, 3240, 3280 (NH). Спектр ЯМР ¹Н (рабочая частота 300 МГц, ДМСО-d₆), δ, м. д.: 1.75–1.95 (4H, м, C(3')H₂, C(4')H₂); 2.0–2.15 (2H, м, C(2')H, C(5')H); 2.20–2.40 (2H, м, C(2')H, C(5')H); 4.89 (2H, с, CH₂N); 5.78 (2H, с, N–NH₂); 7.34 (2H, с, H аром.); 7.39 (2H, с, H аром.); 8.83 (2H, с, N⁺H₂). Найдено, %: C 52.82; H 6.20; Br 27.36; N 13.99. C₁₃H₁₇N₃·HBr. Вычислено, %: C 52.71; H 6.12; Br 26.98; N 14.19.

Гидробромид 2-метил-2,3,5,6-тетрагидроспиро[4H-пиран-4,10'(5'H)-[1,2,4]триазоло-[1,5-*b*]изохинолин]а (8е). Смесь 0.62 г (2 ммоль) гидробромида 10 кипятят 12 ч в 7 мл Ac₂O. Выпавший из реакционной смеси осадок отфильтровывают и перекристаллизовывают из пропанола-2.

Гидробромид 2-метилспиро[[1,2,4]триазоло[1,5-*b*]изохинолин-10(5H),1'-циклопентан]а (9е) получают аналогично из гидробромида 11.

2,3,5,6-Тетрагидроспиро[4Н-пиран-4',10(5Н)-[1,2,4]триазоло[1,5-*b***]изохинолин] (8f)**. Смесь 0.62 г (2 ммоль) гидробромида **10** и 0.33 мл (2 ммоль) триэтилортоформиата в 7 мл ДМФА кипятят 6 ч, затем к полученной суспензии добавляют 1 мл N-метилморфолина и нагревают дополнительно 1 ч. Охлажденную реакционную смесь разбавляют водой, выпавший осадок отфильтровывают, промывают водой, пропанолом-2.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. М. Кисель, Е. О. Костырко, В. А. Ковтуненко, *XГС*, 1289 (2002).
- 2. Ф. С. Бабичев, В. А. Ковтуненко, *XГС*, 147 (1977).
- 3. Э. М. Гизатуллина, В. Г. Карцев. XГС, 1587 (1993).
- 4. M. Negwer, Organic-Chemical Drugs and their Synonyms. Akademie-Verlag, Berlin, 1987.
- 5. P. Koeckritz, A. Folger, J. Liebscher, D. Huebler, Ger. (East) DD 280.108; *Chem. Abstr.*, **114**, 102013 (1991).
- 6. P. Koeckritz, J. Liebscher, D. Huebler, Ger. (East) DD 280.109; *Chem. Abstr.*, **114**, 102014 (1991).
- 7. P. Koeckritz, J. Liebscher, D. Huebler, Ger. (East) DD 280.110; *Chem. Abstr.*, **114**, 81850 (1991).
- В. М. Кисель, В. А. Ковтуненко, А. К. Тылтин, Ф. С. Бабичев, *Укр. хим. журн.*, 56, 749 (1990).
- 9. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976, 200-234.
- Л. Беллами, Инфракрасные спектры сложных молекул, Изд-во иностр. лит., Москва, 1963, 385.
- 11. M. Barfield, B. Chakrabarti, Chem. Rev., 69, 757 (1969).
- 12. N. S. Zefirov, V. A. Palyulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 147 (1990).
- 13. Ю. В. Зефиров, П. М. Зоркий, *Успехи химии*, **58**, 713 (1989).
- 14. G. M. Sheldrick, SHELX-97. PC Version. A System of Computer Programs for the Crystal Structure Solution and Refinement. Rev. 2 (1998).

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: kysil@sbet.com e-mail: v-kysil@mail.univ.kiev.ua

^аНПО "Институт монокристаллов" НАН Украины, Харьков 610001 e-mail: shishkin@xray.isc.kharkov.com Поступило в редакцию 06.06.2001