Ю. А. Стреленко, Т. И. Годовикова, Е. Л. Игнатьева^а

СПЕКТРОСКОПИЯ ЯМР¹⁴N И¹⁵N 2-МЕТИЛ-4,5-ДИНИТРО-1,2,3-ТРИАЗОЛА И ЗАМЕЩЕННЫХ 2-МЕТИЛ-4(5)-НИТРО-1,2,3-ТРИАЗОЛ-1-ОКСИДОВ

Анализ данных спектроскопии ЯМР ¹⁴N и ¹⁵N 2-метил-4,5-динитро-1,2,3триазола и замещенных 2-метил-4(5)-нитро-1,2,3-триазол-1-оксидов показал возможность их применения для подтверждения структур изученных соединений.

Ключевые слова: 2-метил-4(5)-нитро-1,2,3-триазол-1-оксиды, нитрогруппа, N-оксидный фрагмент, триазольное кольцо, спектроскопия ЯМР, химические сдвиги сигналов $^{14}N/^{15}N$.

В природной смеси содержание изотопов азота ¹⁴N составляет более 99%. Его чувствительность в спектроскопии ЯМР чуть ниже, чем у изотопа ¹⁵N, но высокое природное содержание сполна компенсирует этот недостаток. Другой важной особенностью ядер ¹⁴N является то, что они имеют спин, равный единице (J = 1) и, следовательно, в отличие от ядер со спином J = 1/2 (¹⁵N, ¹H, ¹³C, ¹⁹F и др.), обладают квадрупольным моментом. Взаимодействие ядерного квадрупольного момента ¹⁴N с электронным окружением является самым эффективным механизмом ядерной релаксации. Из-за быстрой релаксации сигналы в спектрах ЯМР ¹⁴N, как правило, сильно уширены ($\Delta v_{1/2}$ – ширина сигнала на полувысоте достигает 1000 Гц и более) [1]. Эффективность квадрупольной релаксации в первую очередь зависит от симметрии электронного окружения (градиента электрического поля): чем выше симметрия, тем меньше градиент и тем меньше ширина сигнала атома ¹⁴N [2, 3].

Таким образом, в спектроскопии ЯМР ¹⁴N помимо химического сдвига имеется еще один параметр – ширина сигнала (время релаксации), который позволяет правильно относить сигналы в спектре и проливает свет на распределение зарядов в изучаемых молекулах. Настоящая работа посвящена выяснению основных закономерностей в изменении химических сдвигов и времени релаксации ядер ¹⁴N гетероцикла и нитрогрупп в 2-метил-4,5-динитро-1,2,3-триазоле (1) и замещенных 2-метил-4(5)-нитро-1,2,3-триазол-1-оксидах **2а**-к. Полученные данные спектроскопии ЯМР ¹⁴N соединений **1** и **2а**-к представлены в таблице. При их анализе, в первую очередь, следует отметить, что в спектре ЯМР ¹⁴N триазола **1** наблюдается только один узкий сигнал нитрогрупп, что однозначно свидетельствует о симметрии молекулы и нахождении метильной группы у второго атома азота гетероцикла. Симметрия молекулы подтверждается также совпадением сигналов атомов азота в положениях 1 и 3 в спектре ЯМР ¹⁵N и сигналов атомов углерода в положениях 4 и 5 в спектре ЯМР ¹³C.

Химические сдвиги (XC) атомов ^{14}N (б, м. д.) и ширина ($\Delta\nu_{1/2},\ \Gamma u)$ сигналов в спектрах ЯМР ^{14}N соединений 1 и 2а–к

Соеди- нение	Заместители R и R'	Атомы азота гетероцикла		Нитрогруппа (положение в цикле)	
		XC ¹⁴ N*	$\Delta v_{1/2}$	XC ¹⁴ N	$\Delta v_{1/2}$
1**	4-NO ₂ 5-NO ₂	N ₍₂₎ -149.1	350	(4) -32.93 (5) -32.93	11 11
2a***	4-NO ₂ 5-NO ₂	N ₍₁₎ -78.3	135	(4) -34.33 (5) -40.18	14 7
2b	4-NH ₂ 5-NO ₂	N ₍₁₎ -83.9	120	(5) -30.42	37
2c	4-NO ₂ 5-NH ₂	N ₍₁₎ -97	>300	(4) –25.33	30
2d	4-NHCH ₃ 5-NO ₂	N ₍₁₎ -85	>300	(5) -30.73	25
2e	4-NO ₂ 5-NHCH ₃	$N_{(1)} - 95 \\ N_{(2)} - 150$	400 500	(4) -25.6	45
2f	4-NHC ₂ H ₅ 5-NO ₂	N ₍₁₎ -83.7	120	(5) -30.55	20
2g	4-NO ₂ 5-NHC ₂ H ₅	$N_{(1)} - 100 N_{(2)} - 155$	350 600	(4) -25.44	37
2h	4-OCH ₃ 5-NO ₂	N ₍₁₎ -80.3	110	(5) -34.07	14
2i	4-NO ₂ 5-OCH ₃	N ₍₁₎ -83	150	(4) -29.02	23
2 j* **	4-NO 5-NO ₂	N ₍₁₎ -78.5	100	(5) -37.49	7
2k* ⁴	4-R 5-NO ₂	$N_{(1)}$ и $N_{(1')}$ –80	>300	(5) –39.33 (5') –34.69	9 20

* Для указанных атомов N сигнал не наблюдается.

** Спектр ЯМР ¹³С: 143.57 (С₍₄₎, С₍₅₎), 44.53 м. д. (СН₃). Спектр ЯМР ¹⁵N: –48.84 (N₍₁₎, N₍₃₎), –139.04 м. д. (N₍₂₎).

 $N_{(3)}$, -159.04 м. д. $(N_{(2)})$. *** В смеси с соединением **2a**. Спектр ЯМР ¹⁵N: -75.10 (N₍₁₎), -142.85 (N₍₂₎), -97.07 м. д. (N₍₃₎); ³ $J_{N_{(1)CH3}} = 1.92$, ² $J_{N_{(2)CH3}} = 2.36$, ³ $J_{N_{(3)CH3}} = 2.30$ Гц.

Ранее для пиридинов, S-триазинов, алкил- и фенилпиразинов, их оксипроизводных [4, 5], а также для фуразанов [6] было показано, что введение в молекулу этих азотсодержащих гетероциклов N-оксидного фрагмента приводит к перераспределению электронной плотности в кольце, что проявляется в сильнопольном сдвиге сигналов соседних с N-оксидной группой атомов ¹³C. Увеличение π -электронной плотности на последних подтверждено квантово-механическими расчетами. Значение сильнопольного сдвига составляет приблизительно 100 м. д. на один электрон [5]. Можно было предположить, что аналогичные закономерности будут проявляться также в спектрах ЯМР ¹³C и ¹⁵N 1,2,3-триазол-1-оксидов **2а**–к.

Действительно, наличие N-оксидного фрагмента приводит к сильнопольному сдвигу в спектре ЯМР ¹⁵N сигнала соседнего с ним атома N₍₂₎ на 3.8 м. д. (ср. в таблице данные ЯМР ¹⁵N соединений **1** и **2a**), т. е. π -электронная плотность повышается не только на соседних атомах углерода, но и на соседних атомах азота. Таким образом, отмеченное явление носит более общий характер.

Гораздо большее сильнопольное изменение химического сдвига происходит у сигнала атома N₍₃₎ (от –48 до –97 м. д., см. таблицу, соединения **1** и **2a**), что является принципиальным отличием передачи влияния N-оксидного атома кислорода через две связи по цепи О \leftarrow N–С–С в N-оксидах пиридинов и пиразинов от передачи по цепи О \leftarrow N–N–N в N-оксидах 1,2,3-триазола. В случае углеродной цепи эффект не только уменьшается в 3–4 раза, но изменяется и его знак: наблюдается слабопольный сдвиг сигнала атома ¹³С, отдаленного на две связи от N-оксидного фрагмента в пиридин-N-оксиде [5].

Влияние N-оксидного атома кислорода в 4,5-динитрозамещенном N-оксиде **2a** передается на нитрогруппы в положениях 4 и 5, причем приблизительно вдвое больший эффект наблюдается у ближайшей к фрагменту N— \rightarrow O группы 5-NO₂. Сигналы атомов ¹⁴N обеих нитрогрупп сдвигаются в сильное поле и одновременно становятся более узкими, причем в большей степени – сигналы группы 5-NO₂. Отнесение сигналов нитрогрупп в соединении **2a** сделано по аналогии с нитрофуроксанами [7] и подтверждается анализом данных таблицы.

Обращает на себя внимание параллелизм изменений химического сдвига сигналов ядер ¹⁴N нитрогрупп и их ширины (см. рис. 1) независимо от того, в каком из положений (4 или 5) находится нитрогруппа, что прослеживается для всех оксидов 2, изученных в настоящей работе. Из этого факта следует, что смещение сигналов нитрогрупп в сильное поле и уменьшение их ширины вызываются одной причиной – увеличением электронной плотности на несущем нитрогруппу атоме углерода. При этом происходит выравнивание асимметрии электронного окружения ядер ¹⁴N нитрогруппы и уменьшение ширины ее сигнала.

Сравнение данных ЯМР ¹⁴N для соединений **1** и **2а** показывает, что N-оксидный атом кислорода вызывает сильнопольный сдвиг сигналов атомов ¹⁴N нитрогруппы в положении 4 на 1.4, а в положении 5 на 7.3 м. д. Можно предположить, что вклады N-оксидного кислорода в химические сдвиги сигналов нитрогрупп в указанных положениях не зависят от наличия и природы других заместителей R, т. е. вклады заместителей R и N-оксидного атома кислорода можно суммировать. Ранее такое свойство аддитивности вкладов заместителей было продемонстрировано в спектроскопии ЯМР на ядрах ¹H [8] и ¹³C [9] для алканов и замещенных бензолов.

Рис. 1. Корреляция химических сдвигов (δ , м. д.) и ширины ($\Delta v_{1/2}$) сигналов атомов ¹⁴N групп NO₂ для соединения **1** и **2а–k** (в скобках указано положение нитрогруппы)

Для проверки высказанного предположения необходимо было бы сравнить химические сдвиги сигналов нитрогрупп замещенных 2-метил-4(5)-нитротриазолов и соответствующих N-оксидных производных, как это было сделано в случае соединений **1** и **2a**. Такое сравнение будет проведено в дальнейшем после получения данных ЯМР ¹⁴N для замещенных 2-метил-4(5)-нитротриазолов. Однако уже при сравнении пар изомеров с одинаковыми заместителями R (**2b,c**; **2d,e**; **2f,g**; **2h,i**) обращает на себя внимание тот факт, что разность значений химических сдвигов атомов ¹⁴N нитрогрупп в положениях 4 и 5 составляет приблизительно 5 м. д., как и для нитрогрупп в положениях 4 и 5 в соединении **2a**. Это свидетельствует о том, что независимо от природы заместителей R влияние N-оксидного атома кислорода на химические сдвиги нитрогрупп остается постоянным, т. е. вклады заместителей R и N-оксидного атома кислорода аддитивны.

Если отложить на графике по оси абсцисс химические сдвиги ¹⁴N нитрогрупп 5-нитроизомеров, а по оси ординат – 4-нитроизомеров, то точки ложатся на прямую $\delta(4-NO_2) = \delta(5-NO_2) + B$ (рис. 2). Пересечение этой прямой с осью ординат (B) дает значение 5.4 м. д., т. е. усредненную

Puc. 2. Корреляция химических сдвигов (δ, м. д.) сигналов атомов ¹⁴N 4- и 5-нитрогрупп для пар изомеров **2b,c, 2d,e, 2f,g,** и **2h,i**

Puc. 3. Корреляция химических сдвигов сигналов атомов ¹⁴N нитрогрупп с индуктивными константами заместителей (σ₁) для соединений **2a,b,c,h,i**

разность вкладов N-оксидного атома кислорода в химические сдвиги сигналов 14 N нитрогрупп в положении 5 и 4. Значения вкладов заместителей R можно будет получить в дальнейшем из данных для незамещенных 2-метил-4(5)-нитро-1,2,3-триазол-1-оксидов.

Тесное расположение на графике точек, относящихся к аминопроизводным, свидетельствует об отсутствии влияния заместителей в аминогруппе на распределение электронной плотности в молекуле.

Нами была также замечена корреляция химических сдвигов нитрогрупп с известными индуктивными константами заместителей [10]. На рис. 3 показано, что в изученных соединениях влияние заместителя передается по индуктивному механизму. Несмотря на минимальное число точек, отложенных на графике, можно предположить, что химические сдвиги атомов ¹⁴N нитрогрупп в незамещенных нитропроизводных будут находиться около –24 для 4-нитроизомера и –29 м. д. для 5-нитроизомера. В случае заместителей NH₂, NHCH₃, NHCH₂CH₃ в положении 5 цикла (соединения **2с,е,g**) наблюдается заметный сдвиг сигнала атома ¹⁴N оксидной группы в сильное поле на 10–20 м. д. и увеличение его ширины по сравнению с аналогичным сигналом соответствующих 4-изомеров (соединения **2b,d,f**). Можно предположить, что это связано с образованием внутримолекулярной водородной связи, как показано для соединения **2d**:

Полное подтверждение такого предположения можно будет получить в дальнейшем на основании спектров диалкиламинопроизводных, для которых образование подобной водородной связи исключается.

Выявленные в настоящей работе основные закономерности позволяют однозначно относить сигналы атомов 14 N и 15 N при анализе соответствующих спектров ЯМР изомерных 4- и 5-нитрозамещенных триазолоксидов.

Однако они не всегда позволяют определить положение нитрогруппы (4 или 5) в этих соединениях. Например, на основании только данных ЯМР ¹⁴N нельзя с полной уверенностью сказать, в каком положении находятся нитрогруппы по отношению к N-оксидному фрагменту в соединении 2к (таблица). Однозначный ответ может дать спектроскопия ЯМР ¹³С и, конечно, рентгеноструктурный анализ. Таким образом, в результате проведенного исследования показана возможность применения метода спектроскопии ЯМР¹⁴N и ¹⁵N для подтверждения структуры замещенных 2-метил-4(5)-нитро-1,2,3-триазол-1-оксидов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР регистрировали на спектрометре AM-300 Bruker на частотах 21.67 (¹⁴N), 30.42 (¹⁵N), 75.47 МГц (¹³C), растворитель ацетон-d₆. Измерения проводили при комнатной температуре. Химические сдвиги ¹⁴N, ¹⁵N приведены в δ-шкале относительно нитрометана в качестве внешнего стандарта. Спектры ЯМР ¹³С получены в условиях широкополосного подавления ССВ с протонами. Спектры ЯМР ¹⁵N получены с помощью стандартных импульсных последовательностей INVGATE и INEPT. Методики синтеза исследованных замещенных 2-метил-4(5)-нитро-1,2,3-триазол-1-оксидов описаны ранее [11-14].

СПИСОК ЛИТЕРАТУРЫ

- 1. M. Witanovski, L. Stefaniak, G. A. Webb, Annu. Rep. NMR Spectrosc., 7, 117 (1977).
- 2. J. W. Akitt, W. S. McDonald, J. Magn. Reson., 58, 401 (1984).
- J. Magon, *Chem. Britain*, 654 (1985).
 M. Matsuo, S. Matsumoto, T. Kurihara, Y. Akita, T. Watanabe, A. Ohta, *Org. Magn. Reson.*, 13, 172 (1980).
- 5. F. A. L. Anet, I. Yavari, J. Org. Chem., 41, 3589 (1976).
- 6. Л. И. Хмельницкий, С. С. Новиков, Т. И. Годовикова, Химия фуроксанов. Строение и синтез, Наука, Москва, 1981.
- 7. О. А. Ракитин, В. А. Огурцов, Ю. А. Стреленко, Т. И. Годовикова, Л. И. Хмельницкий, Изв. АН СССР, Сер. хим., 1020 (1990).
- 8. Дж. Эмсли, Дж. Финей, Л. Сатклиф, Спектроскопия ЯМР высокого разрешения, Мир, Москва, 1, 1968; 2, 1969.
- D. F. Ewing, Org. Magn. Reson., 12, 499 (1979). 9
- 10. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976.
- 11. T. I. Godovikova, S. P. Golova, S. A. Vozchikova, E. L. Ignat'eva, M. V. Povorin, V. S. Kuz'min, L. I. Khmelnitskii, Mendeleev Commun., 194 (1995).
- 12. Т. И. Годовикова, С. П. Голова, С. А. Возчикова, Е. Л. Игнатьева, М. В. Поворин, Л. И. Хмельницкий, *ХГС*, 675 (1996).
- 13. Т. И. Годовикова, Е. Л. Игнатьева, С. П. Голова, В. С. Кузьмин, Л. И. Хмельницкий, ЖОрХ, 33, 1209 (1997).
- 14. Т. И. Годовикова, С. А. Возчикова, Е. Л. Игнатьева, Л. И. Хмельницкий, Б. Л. Корсунский, *ХГС*, 1356 (1999).

Институт органической химии им. Н. Д. Зелинского РАН. Москва 117913, Россия e-mail: ogv@cacr.ioc.ac.ru

Поступило в редакцию 16.12.99 После переработки 29.09.2000

^аИнститут проблем химической физики РАН, Черноголовка 124432, Россия