А. В. Машкина

КАТАЛИТИЧЕСКИЙ СИНТЕЗ НЕКОТОРЫХ СЕРОСОДЕРЖАЩИХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ

(ОБЗОР)

Обобщены выполненные в Институте катализа им. Г. К. Борескова СО РАН исследования по синтезу тиолана рециклизацией ТГФ в среде H₂S; тиациклоалканов – гидрированием тиофенов; 4-метилтиазола – взаимодействием SO₂ с метилизопропилиденимином; тиофенов – путем гетероциклизации алифатических соединений серы и дегидрирования тиациклоалканов; тиолан-1,1-диоксида – гидрированием 2- и 3-тиолен-1,1-диоксидов и 3-алкокситиолан-1,1-диоксидов; сульфоксидов – окислением тиациклоалканов кислородом воздуха.

Ключевые слова: 3-алкокситиолан-1,1-диоксиды, катализаторы, 4-метилтиазол, сероводород, сульфоксиды, тиациклоалканы, тиолан, тиолан-1,1диоксид, тиофены, синтез.

Серосодержащие гетероциклы являются важной группой соединений серы, перспективных для практического использования. Например, тиациклоалканы – экстрагенты благородных металлов – исходные для синтеза физиологически активных веществ [1]; незамещенный тиолан используется в качестве одоранта газа [2]; тиофены могут быть использованы как физиологически активные вещества, красители, присадки к маслам, полиорганилсилоксаны [3]; полученные на основе содержащихся в нефтепродуктах сернистых соединений так называемые "нефтяные сульфоксиды" могут применяться в гидро- и цветной металлургии в качестве экстрагентов и флотореагентов [4]; тиолан-1,1диоксид используется для экстракции ароматических углеводородов из реформированных нефтепродуктов и как растворитель в различных процессах, в том числе при газоочистке от кислых примесей [5].

Известны различные некаталитические способы синтеза серосодержащих гетероциклов, но они в ряде случаев многостадийны и основаны на труднодоступном и дорогом сырье. Более эффективны каталитические методы, которые являются высокопроизводительными и технологичными. В Институте катализа СО РАН проведены систематические исследования по разработке катализаторов и процессов каталитического синтеза серосодержащих гетероциклических соединений. В настоящем обзоре обобщены основные результаты этих исследований.

1. СИНТЕЗ ТИАЦИКЛОАЛКАНОВ

Синтез тиолана из тетрагидрофурана и сероводорода

Тиациклоалканы можно получать по реакции Юрьева обменом атома кислорода в цикле на серу под действием H₂S в присутствии твердых катализаторов. Так, рециклизацией тетрагидрофурана 1 получается тиолан 2а. В работах Ю. К. Юрьева [6] эту реакцию осуществляли при температуре ≤400 °С в присутствии оксида алюминия. В результате детального исследования [7-13] нами выяснено, что на твердых катализаторах с протонными центрами (ПЦ) – SiO₂, H₃PO₄/SiO₂, фосфорновольфрамовой кислоте (HSiW), нанесенной на SiO₂, алюмосиликате (AlSi), цеолитах HZSM-5 и HNaY - образование тиолана из ТГФ становится заметным выше 300 °C. В продуктах реакции содержатся вода, тиолан и С₃-С₄-углеводороды. Выход продукта 2а в расчете на пропущенный ТГФ составляет 1-25 мол.%, а селективность его образования (s) не превышает 30% (на HNaY s = 50%) и остается постоянной при варьировании степени превращения от 1 до 95%. С повышением температуры возрастают конверсия (x) $T\Gamma \Phi$ и выход углеводородов, а выход тиолана **2a** мало изменяется. Реакция протекает по схеме:

Скорость превращения ТГФ зависит от силы ПЦ на поверхности. Так, на SiO₂, имеющем только слабые ПЦ, скорость образования продукта 2а низкая. Введение в SiO₂ кислот (фосфорной или кремневольфрамовой), а также использование алюмосиликата или цеолита в Н-форме, содержащих сильные ПЦ, приводит к увеличению скорости реакции (табл. 1). На поверхности катализаторов с ПЦ конденсируются смолы, образующиеся при разложении ТГФ, в результате чего начальная активность катализаторов с течением времени снижается. На алюмооксидных катализаторах (у- и n-Al₂O₃ без добавок и с добавками HF или оксидов Mo, Cr, B) при 200-400 °C и избытке H₂S по отношению к ТГФ практически единственными продуктами являются тиолан 2а и вода, причем скорость реакции значительно выше, чем на катализаторах с ПЦ (табл. 1) [7, 10]. На алюмооксидных катализаторах увеличение времени контакта приводит к росту выхода соединения **2a**, который при x = 100% достигает 95–100 мол.%, т. е. реализуется главным образом маршрут **1**→**2** приведенной выше схемы при протекании реакции на ПЦ. Выше 400 °С селективность процесса с увеличением конверсии ТГФ снижается, вероятно, из-за разложения образовавшегося продукта 2а. В этом температурном режиме

Катализатор	Сила ПЦ РА ^к **, кДж/моль	Сила L-центров, $Q_{\rm CO}^{***}$, кДж/моль	Скорость образования тиолана 2а , ммоль/ч•г Кт	Селективность образования 2а, %
SiO ₂	1390	_	0.14	20
H ₃ PO ₄ /SiO ₂	1390	_	0.10	8
HSiW/SiO ₂	<1180	-	0.4	26
AlSi	<1300	53	3.3	22
HNaY	<1200	45-55	10.5	47
γ -Al ₂ O ₃	1420	34-41	500	100
Cr/Al ₂ O ₃	<1300	36	569	96
B/Al ₂ O ₃	<1400	34-41	730	100
η -Al ₂ O ₃	1420	34–56	853	100
HF/Al ₂ O ₃	1310	42	683	100
0.03% Na /Al ₂ O ₃	-	29	500	100
0.6% Na /Al ₂ O ₃	-	28	128	100

Скорость образования тиолана 2а и селективность при рециклизации ТГФ в среде H₂S в присутствии кислотных катализаторов*

* T = 360 °C, H₂S:1, 5:1, *x* 50% [7, 9, 10].

** РА^к – сродство к протону (по адсорбции пиридина).

*** $Q_{\rm CO}$ – теплота адсорбции СО.

алюмооксидные катализаторы работают достаточно устойчиво, но вследствие накопления на поверхности углеродных отложений и смол, образующихся при разложении в основном $T\Gamma\Phi$, их начальная активность снижается.

В реакции рециклизации ТГФ 1 в тиолан 2а активность алюмооксидных катализаторов и цеолита NaX связана главным образом с присутствием на их поверхности льюисовских кислотных центров (L-центры), которые участвуют в комплексообразовании с ТГФ. Методом ИКС (по частоте связи CO) установлено, что адсорбция соединения 1 на Al₂O₃ приводит к уменьшению концентрации L-центров и при большом покрытии поверхности происходит полная их блокировка [9]. При исследовании этой адсорбции методом ЯМР высокого разрешения в твердом теле найдено, что в спектре ЯМР ¹Н имеются сигналы, принадлежащие структуре 1 с раскрытой связью С-О ($\delta = 0.6$ м. д.), прочно связанной с поверхностью, и сигнал с $\delta = 4.0-4.5$ м. д. более реакционноспособной структуры (вероятно, алкоксисодержащих фрагментов, ассоциативно связанных с L-кислотными центрами умеренной силы). В присутствии H₂S интенсивность последнего сигнала уменьшается, появляются сигналы, принадлежащие адсорбированному H_2S ($\delta = 1.60$ и 2.13 м. д.). По спектрам ЯМР ¹³С обнаруживается сигнал (б = 29.90 м. д.), относящийся к связанному с поверхностью продукту 2а [9].

При введении в γ -Al₂O₃ оксида натрия происходит снижение силы L-центров, что влияет на активность катализатора [11], при этом скорость образования продукта **2a**, отнесенная к одному L-центру, тем выше, чем больше сила последнего. Но для образования указанного продукта благоприятно наличие на поверхности L-центров умеренной силы, так как на очень сильных центрах протекает разложение ТГФ. По адсорбции азота

581

методом ЯМР ¹⁵N в γ -Al₂O₃ найдены очень сильные L-центры (δ = 71.5 м. д.) [12]. По данным ИК спектров их сила, оцененная по теплоте адсорбции CO, $Q_{CO} = 39 \pm 2$ кДж/моль, а концентрация 10–15 мкмоль/г Кт. Они подавляются при введении в γ -Al₂O₃ оксида натрия до 0.03 мас.%, считая на Na, но скорость образования тиолана **2a** на этом катализаторе такая же, как и на чистом Al₂O₃ (табл. 1). Подавление очень сильных кислотных центров, ускоряющих разложение ТГФ с образованием смол и кокса, стабилизирует катализатор и он работает более устойчиво. При увеличении концентрации Na в Al₂O₃ затрагиваются менее сильные L-центры, определяемые методом ЯМР по адсорбции N₂O (δ = 22.3 м. д.). Согласно данным ИК спектроскопии, эти центры имеют силу $Q_{CO} \sim 34$ кДж/моль, а их концентрация составляет ~60 мкмоль/г Кт [12].

На различных катализаторах скорость превращения $T\Gamma \Phi$ в среде H_2S описывается одним и тем же уравнением [13]:

$$w = k P_1^{0.3} P_2^{0.7}$$

где k – константа скорости реакции, P_1 и P_2 – парциальные давления ТГФ и H₂S соответственно. Предполагается [8, 13] одинаковое протекание реакции на катализаторах с ПЦ и L-центрами. При хемосорбции ТГФ на кислотных центрах поверхности первоначально образуется оксониевый комплекс, который затем подвергается разрушению по связи С-О с образованием алкоксисодержащих и углеводородных структур. В случае недостаточной реакционной способности H₂S (что имеет место на катализаторах с ПЦ) эти поверхностные структуры разлагаются с выделением углеводородов и на поверхности катализатора откладывается "кокс". При взаимодействии алкоксигрупп с активированным H₂S образуется тиолан 2a. Участие в процессе групп SH⁻, образующихся при диссоциативной хемосорбции H₂S на катализаторах с L-центрами, обеспечивает более высокую скорость образования продукта 2а на алюмооксидных катализаторах, чем на протонодонорных катализаторах, не способных в достаточной мере активировать H₂S. Таким образом, в процессе рециклизации ТГФ в тиолан 2а нецелесообразно использовать твердые катализаторы, имеющие на поверхности главным образом ПЦ. Существенное преимущество имеют катализаторы с L-центрами умеренной силы, сопряженными с основными центрами. На таких катализаторах при T = 360 °C, P = 1 МПа, молярном соотношении H₂S : TГ Φ = 5:1, x = 85% продукт **2а** образуется с селективностью 100% [9, 10].

Синтез тиациклоалканов гидрированием тиофенов

В газовой фазе в присутствии сульфидов переходных металлов при повышенной температуре возможно гидрирование тиофенового кольца до тиоланового, однако эта реакция осложняется гидрогенолизом [14–19]. На различных сульфидных катализаторах с увеличением времени контакта растут конверсия незамещенного тиофена **За** и выходы продуктов гидрогенолиза, а выход продукта **2а** в расчете на исходный тиофен повышается до некоторого предела, после чего снижается [15–17]. Реакция гидрирования тиофена протекает по параллельно–последовательной схеме:

Аналогичные результаты получены и при гидрировании 2-метилтиофена (**3b**) [14]. Скорость реакции общего превращения незамещенного тиофена **3a** описывается уравнением

$$w = k P_1 P_2^{0.7} P_3^{-1},$$

где k – константа скорости реакции, P_1 , P_2 , P_3 – парциальные давления исходного **За**, водорода и продукта **2а** соответственно [16, 17].

Активность и селективность катализаторов зависят от их состава. В присутствии применяемых в процессах гидрообессеривания сульфидных катализаторов AlNiMo, AlCoMo, AlNiW гидрирование тиофена **3a** в тиолан **2a** протекает с малой скоростью и s = 10-34%, в основном происходит гидрогенолиз исходного **3a** с выделением H₂S и C₄-углеводородов. Монометаллические сульфидные катализаторы ускоряют гидрирование. Среди массивных сульфидов в этой реакции при T = 300 °C (для PdS T = 240 °C), P = 0.5 МПа, x = 30% наиболее активны и селективны сульфиды Pd и W, а наименее активен сульфид Ni [17]:

	PdS	WS ₂	CoS	MoS ₂	FeS	NiS
<i>w</i> , мкмоль/м ² •ч Кт	34.0	5.1	9.0	3.0	2.7	2.3
<i>s</i> , %	64	35	16	30	17	6

Активность и селективность последнего мало повышаются при его нанесении на Al₂O₃, SiO₂, AlSi, уголь (табл. 2) [15, 17]. Каталитические свойства NiS значительно улучшаются при внесении его в цеолит NaX и особенно в NaY. Увеличение кислотности цеолита способствует повышению активности Ni-цеолитного катализатора. Например, скорость образования тиолана 2а на обладающем высокой кислотностью катализаторе NiS/HNAY в 2 раза превышает наблюдаемую на некислотном NiS/NaY. Максимально достигнутый выход соединения 2a на NiS/HNaY составляет 80 мол.% при *s* = 86%, скорость его образования равна 1.3 г/ч-г Кт. Активность этого катализатора снижается во времени, его дезактивация происходит в основном из-за отложения на поверхности кокса, который образуется вследствие протекания реакций гидрокрекинга и конденсации на кислотных центрах цеолита. Регенерация NiS/HNaY достигается окислительной обработкой при повышенной температуре [18, 19]. Сульфиды Co, Rh, Ru на носителях Al₂O₃, SiO₂, AlSi, угле ускоряют гидрирование тиофена 3a в тиолан 2a, но селективность образования последнего не превышает 55% (табл. 2) [15, 17]. Более селективны нанесенные на носители сульфиды Мо и W, скорость образования продукта 2a на этих катализаторах тем выше, чем больше дисперсность сульфида металла, которая изменяется в ряду носителей: уголь > SiO₂ > Al₂O₃ > NaY. В гидрировании тиофена За и метилтиофена Зb высокоактивными и селективными являются нанесенные на носитель сульфидпалладиевые катализаторы, особенно PdS/AlSi и PdS/SiO₂ (табл. 2).

Суль-	Угол	њ	Si	SiO ₂		₂ O ₃	AlSi	
фид**	<i>w</i> ,	s, %	<i>w</i> ,	s, %	<i>w</i> ,	s, %	<i>w</i> ,	s, %
	<u>ммол 2а</u>		<u>ммол 2а</u>		<u>ммол 2а</u>		<u>ммол 2а</u>	
	ч•г Ме		ч•г Ме		ч•г Ме		ч•г Ме	
Ni	0	0	0.1	4	0	0	0	0
Co	1.2	30	0.5	26	0.5	22	1.7	55
Mo	6	78	4.3	70	2.5	72	2.5	86
W	1.0	90			0.5	60		
Rh	0.6	0	10.8	54	11.0	34	1.5	40
Ru	9.2	48	1.3	32	1.8	40	0.7	30
Pd	3.5	44	88	88	4.9	30	216	90

Зависимость удельной скорости образования тиолана 2a из тиофена 3a и селективности от природы сульфидов металлов на разных носителях*

* T = 240 °C, P = 2 МПа, концентрация 3a = 1 об.%, x = 20% [15, 17].

** Содержание в катализаторе металла: Мо 10%, W 18%, остальные – 5 мас.%.

По удельной активности в гидрировании тиофенов **3а,b** сульфидпалладиевые катализаторы на основе SiO₂, AlSi, HNaY на порядок превосходят PdS без носителя и PdS на остальных носителях и проявляют повышенную селективность в образовании тиолана **2a** и 2-метилтиолана (**2b**). По удельной скорости образования продукта **2b** из метилтиофена **3b** на PdS/носитель (T = 240 °C, P = 0.8 МПа, x = 50%) катализаторы располагаются в ряд [14]:

Носители	SiO ₂	HNaY	AlSi	С	Al ₂ O ₃	TiO ₂	без носителя
<i>w</i> , ммоль/ч•м ² Pd	3.80	3.30	2.46	0.45	0.22	0.18	0.16
s, %	85	83	82	38	56	60	64

Различие в активности катализаторов не связано с дисперсностью PdS на носителях. Важное значение для каталитических свойств сульфидпалладиевых катализаторов имеет кислотность поверхности [16, 17]. Активность сульфидных алюмопалладиевых катализаторов зависит от природы предшественника [14, 15]. Так, катализатор PdS/Al₂O₃, полученный нанесением палладия из солянокислого раствора PdCl₂, примерно в 4 раза активнее аналогичного катализатора, приготовленного с использованием раствора ацетата Pd в толуоле. В процессе приготовления катализатора с использованием PdCl₂ выделяющийся HCl может адсорбироваться на носителе, образуя сильные кислотные центры. В образцах PdS/Al2O3 и PdS/SiO2, полученных пропиткой носителя солянокислым раствором PdCl₂, определяются ПЦ умеренной силы (PA^k ≤ 1300 кДж/моль). их количество в случае PdS/SiO₂ в 25 раз выше, чем на PdS/Al₂O₃ (0.25 и 0.01 мкмоль/м² соответственно). В образцах PdS на AlSi или HNaY содержатся более сильные ПЦ (РА = 1180-1200 кДж/моль, в количестве 0.2-0.4 мкмоль/м²) [14, 15]. Как показал эксперимент, наиболее активны в гидрировании 2-метилтиофена 3b катализаторы, содержащие PdS, нанесенный на SiO₂, AlSi и цеолит HNaY, имеющие повышенную протонную кислотность поверхности. Наиболее вероятно, что ПЦ участвуют в активации тиофенового кольца. При адсорбции соединения За на гидроксилированной поверхности возникает взаимодействие с участием 584

 π -системы тиофенового кольца. В спектрах ЯМР ¹Н образцов PdS/SiO₂ и Pd⁰/SiO₂ после напуска на них тиофена **За** наблюдается уменьшение интенсивности сигналов групп ОН на поверхности и появляется узкий синглет с $\delta = 6.7$ м. д., относящийся к водородносвязанному соединению За. Малая ширина этого сигнала объясняется высокой подвижностью адсорбированной молекулы. Адсорбированный на сульфиде палладия водород может подвергаться гетеролитическому разложению с образованием гидрид-иона. Предполагается, что протонированный по α-атому углерода тиофен За взаимодействует с гидрид-ионом с образованием тиоланового кольца [14, 15]. Дополнительным доводом в пользу такого механизма реакции может служить то, что в одинаковых условиях скорость образования тиолана 2а при гидрировании тиофена За ниже скорости образования метилтиолана при гидрировании метилтиофена 3b, который имеет повышенную электронную плотность у α-атома углерода кольца и потому более легко протонируется, чем незамещенный тиофен. Часть молекул тиофена адсорбируется на акцепторных центрах, образуя связь S-Pd. Происходящее при этом нарушение ароматического сопряжения облегчает разложение тиофенового кольца с образованием в среде водорода продуктов гидрогенолиза. Хемосорбция с участием атома серы продуктов гидрирования тиофенов – тиоланов, также способствует их гидрогенолизу.

При газофазном гидрировании тиофенов **За,b** в присутствии сульфидпалладиевого катализатора (200–260 °C, P = 2-3 МПа) выход тиоланов **2а,b** составляет 40–65 мол.%, а селективность их образования равна 80–90% при конверсии x = 50% и 40–80% – при x = 80% [14–17].

Жидкофазное низкотемпературное гидрирование различных органических соединений часто осуществляют в присутствии металлов VIII группы. Но эти катализаторы непригодны для селективного гидрирования тиофенового кольца [20, 21]. Катализаторы, содержащие 1–10 мас.% Рd на оксиде алюминия, активированном угле, сульфате бария, при T = 20-80 °C, P = 0.1-5 МПа, в растворах спиртов, углеводородов, ДМФА ускоряют гидрирование различных тиофенов, с начальным выходом тиоданов до 100%, но они быстро и необратимо дезактивируются из-за образования донорно-акцепторной связи Pd←S<, а также возникновения поверхностных соединений типа PdSR и PdS_x. Независимо от характера носителя, содержания в нем Pd и от условий гидрирования (природа растворителя, кислотность среды, давление, время контакта, содержание тиофена в исходном растворе) полная дезактивация катализатора при гидрировании тиофена **За** происходит после образования ~0.1 г тиолана на 1 г катализатора. Безуспешной оказалась попытка защитить металлический Pd от отравления с помощью комплексообразования [22-23]. Хотя активность комплексов металлов при гидрировании тиофена в растворе выше, чем металла, они также не являются устойчивыми в процессе. Методами РФЭС и УФ показано, что при гидрировании тиофена дезактивация комплекса Pd, закрепленного на SiO₂, происходит вследствие того, что образующийся тиолан входит в координационную сферу Pd, вытесняя внешний лиганд и образуя связь Pd-S; в определенных условиях происходит полное разрушение структуры комплекса.

На сульфидах металлов платиновой группы и рения, в индивидуальном состоянии или нанесенных на Al₂O₃, SiO₂, AlSi, уголь, гидрирование тиофена в углеводородных растворителях (150–250 °C, P = 3-25 МПа) приводит к тиолану с выходом до 60% при s = 70-90% [24, 25]. Сульфиды металлов, нанесенные на Al₂O₃, по активности располагаются в ряд:

$$PdS > Re_2S_7 > Rh_2S_3 > RuS_2 > OsS_2 = PtS_2^{-1}$$

При гидрировании в жидкой фазе наблюдаются те же кинетические закономерности, что и в газофазном гидрировании [25–27]. Скорость накопления метилтиолана **2b** при гидрировании метилтиофена **3b** (T = 220–300 °C, P = 3.3-3.5 МПа) в присутствии PdS/Al₂O₃ и PdS/AlSi описывается уравнением:

$$w = k_1 c_1 P / c_2 - k_2 P$$
,

где k_1 и k_2 – константы скоростей реакции общего превращения соединения **3с** и его гидрогенолиза соответственно, c_1 и c_2 – концентрации соединений **3b** и **2b** соответственно; P – давление водорода [26].

Жидкофазное гидрирование бензотиофена (4a) с образованием 2,3-дигидробензотиофена (5), этилбензола и H_2S протекает по такой же схеме, что и гидрирование тиофенов 3a,b, но отсутствует стадия гидрогенолиза исходного соединения 4a [28, 29]:

Селективность образования продукта 5 близка к 100% при конверсии бензотиофена ниже 60%, с увеличением конверсии она падает и при x = 100% составляет 50%. В случае алкилзамещенных бензотиофенов, вероятно, в небольшой мере происходит и их гидрогенолиз. Тиофены различного строения (тиофен, 2-метил-, 2-пропил-, 2-гексил-, 2-октил-, 2,5-диметилтиофены, бензотиофен, 3-метилбензотиофен) обладают близкой реакционной способностью. Например, на катализаторе PdS/Al₂O₃ (200 °C, P = 5 МПа (растворитель – циклогексан, продолжительность 0.25–1 ч) выход тиоланов и 2,3-дигидробензотиофенов составляет 23–55 мол.%; скорость их образования при x = 35-40% равна 1.5–2.8 ммоль/ч-г Кт, а s = 85-98% [30].

В присутствии сульфидного алюмопалладиевого катализатора с выходом до 80% осуществлен процесс получения тиациклоалканов путем восстановления водородом алкил-, циклоалкилтиофенов и бензотиофенов, содержащихся в средне-дистиллятных фракциях самотлорской и арланской нефтей и в выделенных из них концентратах, а также тиабицикло- и тиатрициклоалканов восстановлением бензотиофенов, дибензотиофенов и нафталинбензотиофенов из концентратов вакуумного газойля мангышлакской и западно-сибирской нефтей [31].

По удельной активности в жидкофазном гидрировании тиофенов [30] катализатор PdS/AlSi на порядок превосходит PdS без носителя и PdS, нанесенный на оксид алюминия и углеродный носитель, и проявляет повышенную селективность. Например, при T = 260 °C, P = 5 МПа,

x = 50-60% в присутствии катализаторов, содержащих 2 мас.% Pd на носителе, средние значения селективности и скорости образования метилтиолана **2b** из 3-метилтиофена **3b** в расчете на 1 г Pd равны [30]:

	PdS/AlSi	PdS/C	PdS/Al ₂ O ₃	PdS
w, ммоль/ч∙г Pd	2.7	0.25	0.15	0.08
<i>s</i> , %	91	82	77	84

На сульфидном алюмопалладиевом катализаторе при гидрировании тиофенов **3a,b** в жидкой фазе (T = 200–300 °C, P = 2-5 МПа) выходы тиоланов **2a,b** достигают 50–75 мол.%, соответственно, при s = 80-90%. Катализатор работает устойчиво, но все же со временем дезактивируется вследствие накопления на поверхности кокса с низкой степенью конденсации (данные ЭПР) [30]. Таким образом, нет принципиальной разницы между процессами селективного гидрирования тиофенов в газовой и жидкой фазах [15, 30].

2. СИНТЕЗ ТИОФЕНОВ

Дегидроциклизация алифатических соединений серы

Одним из методов синтеза тиофенов является гетероциклизация алкантиолов RSH, диалкилдисульфидов R^1SSR^2 , диалкилсульфидов R^1SR^2 и их оксидов R^1SOR^2 (часто $R^1 = R^2$) в присутствии катализаторов. Реакции образования тиофенов осложняются крекингом исходных соединений с выделением углеводородов и H₂S или SO₂ [32-34]. Отсутствие максимума на кривых зависимости конверсии различных соединений от времени контакта и постоянство селективности по продуктам при различных конверсиях свидетельствуют о протекании этих реакций по независимым маршрутам. Из алифатических соединений с R^1 или R^1 , $R^2 = C_2$ и C_4 образуется тиофен За, из высших – его гомологи. Например, в присутствии хромового катализатора при 500 °C из соединений, с R^1 или $R^1 = R^2 = C_2$ (метилэтилсульфид, диэтилсульфид 6, дивинилсульфид, диэтилдисульфид. диэтилсульфоксид) и с R^1 или $R^1 = R^2 = C_4$ (бутантиол 7, этилбутилсульфид, дибутилсульфид 8, диизобутилсульфид, ди-втор-бутилсульфид, дибутилсульфоксид) образуется главным образом тиофен, причем, его содержание в смеси с его гомологами равно 90-95%. Из соединений, с $R^1 = R^2 = C_5$ (диамил- и диизоамилсульфиды) получаются, соответственно, 2-метилтиофен 3b или 3-метилтиофен 3c, содержание которых в смеси равно 87–91 мол.%. Из соединений с R^1 или $R^1 = R^2 = C_3$ (этилпропилсульфид, дипропилсульфид, диизопропилсульфид) образуется смесь тиофена За, метилтиофенов Зb,с, 2-этилтиофена, 2,4- и 2,5-диметилтиофенов. Состав продуктов соответствует предположению, что их образованию предшествует распад исходных соединений по связям С-S [32-34]. Аналогично алифатическим сернистым соединениям происходит превращение в тиофены и при взаимодействии H₂S с C₄-C₅-углеводородами (дивинилом, бутиленом (9), изопреном, пипериленом). Кинетические закономерности этих реакций близки к наблюдаемым в случае гетероциклизации органических соединений серы [33].

Сульфид	q_{s}^{*}	<i>k</i> , мл/м ² •с						
		BuSH (7)	Bu ₂ S (8)	Et ₂ S (6)	Тиолан (2 а)	Бутилен (9)		
Re	34	270	250	32	274	152		
Mo	23	140	127	51	144	92		
Co	22	224	91	33	80	14		
Cr	19	60	104	26	60	68		
W	19	82	60	10	35	18		
Mg	15	26	4	1	9	1		
Si	14	7	5	1	2	0.3		
Al	13	8	7	0.7	1.4	0.03		

Зависимость констант скорости реакций образования тиофена из различных соединений при 500 °C от подвижности серы на поверхности катализатора [33]

* Подвижность серы ($q_{\rm S}$) оценивали величиной обратной температуры (1/Т К•10⁴), при которой достигается определенная удельная скорость выделения H₂S при обработке катализатора водородом.

В реакции образования тиофенов активны только сульфиды переходных металлов, причем существенную роль в их каталитической активности играет сера, содержащаяся на поверхности катализатора. Установлено, что тиофены из различных сероорганических соединений и из смесей углеводородов с H₂S образуются с тем большей скоростью, чем меньше энергия связи серы с поверхностью (табл. 3) [33-35]. Образование тиофена происходит по стадийному механизму [35]. Алифатические соединения серы термически нестойки (энергия разрыва первой связи C-S равна 70-73, второй - 25-30 ккал/моль) и их адсорбция при повышенной температуре сопровождается разложением с выделением серы и углеводородных фрагментов. Последние претерпевают ряд превращений, в частности дегидрирование, иногда изомеризацию, конденсацию до фрагментов с числом атомов углерода не менее 4, которые затем взаимодействуют с поверхностными атомами серы, что приводит к тиофену За или его гомологам. Сернистые соединения, реагируя с обедненным серой катализатором, восстанавливают стационарное содержание серы на поверхности. Стадии адсорбции и десорбции, крекинга, изомеризации, конденсации, дегидрирования углеводородных фрагментов и реосернения катализатора протекают с большой скоростью, медленной стадией является взаимодействие дегидрированных фрагментов с атомами серы на поверхности катализатора. Реакцию образования тиофена, например из диэтилсульфида 6, можно описать схемой [35]:

EtSEt
$$\longrightarrow$$
 [2Et] \longrightarrow [-CH-CH-CH-CH-] $\xrightarrow{Rn[S]}$ 3a + Rn[]
6 $Rn[] + -S \longrightarrow Rn[S]$

Наиболее активными в гетероциклизации различных соединений серы являются сульфиды Re, Mo, Cr, Co, нанесенные на некислотный Al_2O_3 и AlSi. В зависимости от субстрата и применяемого катализатора при T = 450–500 °C выход тиофенов колеблется в пределах 25–50 мол.% [33].

Дегидрирование тиациклоалканов

Сульфидные катализаторы выше 400 °С (P = 0.1 МПа) в инертной среде ускоряют образование тиофенов из тиоланов. В превращении, например тиолана в тиофен, активны сульфиды металлов без носителя или нанесенные на Al₂O₃, SiO₂, AlSi, MgO, активированный уголь. Образование тиофена **3a** сопровождается параллельно протекающим разложением исходного тиолана **2a**:

Выход продуктов увеличивается с ростом температуры, времени контакта и не зависит от концентрации, при 450–500 °C тиофен образуется с выходом до 75 мол.% и селективностью до 80% [36–38].

Механизм образования тиофена из тиолана при повышенной температуре на сульфидных катализаторах такой же, как и в случае дегидроциклизации алифатических соединений серы. Тиолан 2a, хемосорбированный на поверхности катализатора, при повышенной температуре разлагается по обеим связям С–S с выделением серы и С₄-углеводородного фрагмента, последний испытывает дегидрирование до частиц –CH–CH–CH–CH–, конденсация которых с поверхностными атомами серы, приводит к тиофену 3a:

$$2a \xrightarrow{-S, -H} [-CH=CH-CH=CH-] \xrightarrow{Rn[S]} 3a$$

Скорость образования продукта **За** зависит от реакционной способности серы на поверхности катализатора (табл. 3) [35].

Образование тиофена **3a** возможно также при каталитическом превращении тиолан-1,1-диоксида **10** по такому же механизму, как и при превращении **2a** \rightarrow **3a**. На сульфидированных катализаторах AlMo, AlCr, AlCoMo при 400–500 °C, *P* = 0.1 МПа тиофен получается из соединения **10** с выходом до 46 мол.% и при этом выделяются также H₂S и SO₂ [39].

Сульфидные катализаторы в процессе образования тиофенов из различных соединений серы дезактивируются после образования на 1 м² поверхности 0.05–0.1 ммоль указанных продуктов. Выяснено, что дезактивация происходит вследствие коксообразования и обусловленного этим уменьшения реакционной способности поверхностной серы. Окислительная обработка дезактивированного катализатора приводит к его регенерации [21, 37].

Оксидные катализаторы, содержащие Mo, Cr, Ni, Co, W, в инертной среде при T = 290–300 °C и P = 0.1 МПа также проявляют активность в

отношении превращения тиолана **2a** и его гомологов в тиофен и его алкилзамещенные, особенно активны алюмомолибденовые катализаторы [36]. Начальный выход тиофенов составляет 70–95 мол.%, но он быстро снижается вследствие взаимодействия оксидного катализатора с серосодержащей реакционной средой, при этом на 1 г катализатора получается всего 0.02 г продукта **3a**. Предполагается, что на оксидных катализаторах в реакции дегидрирования тиоланового кольца участвуют связанные с металлом ионы кислорода, например, в алюминий-молибденовом катализаторе – это ионы кислорода, связанные с молибденом.

Введение кислорода в реакционную среду [40, 41] стабилизирует активность катализаторов MoO_3 без носителя и MoO_3/Al_2O_3 , работающих при 200–400 °C. Продуктами каталитического превращения тиолана **2а** являются тиофен **3a**, вода, SO_2 , CO_2 . Увеличение температуры выше 350 °C приводит к резкому увеличению глубины окисления соединения **2a** и снижению селективности по продукту **3a**. В присутствии воздуха превращение тиолана происходит по двум независимым направлениям: его дегидрирование до тиофена и образование продуктов глубокого окисления:

Общая скорость реакции выражается уравнением $w = k P_1 P_2 n$, где P_1 и P_2 – парциальное давление тиолана и кислорода соответственно; n = 0 и 1, соответственно, при $[O_2]$: **2a** >3 и <1. При недостатке кислорода по отношению к тиолану **2a** выход продукта **3a** ниже, чем при его избытке, но в последнем случае наблюдается пониженная селективность образования тиофена **3a**, так как увеличивается скорость реакции глубокого окисления исходного **2a**. На катализаторе MoO₃/Al₂O₃ при 300–350 °C, P = 1 МПа, $\tau = 0.3-0.7$ с, O₂ : **2a** >1 выход тиофена при окислительном дегидрировании тиолана достигает 67%, s = 75%. Устойчивость катализаторе в отсутствие кислорода повышается в 50 раз и на 1 г катализатора можно получить ~4 г указанного продукта.

Окислительное дегидрирование $2a \rightarrow 3a$ ускоряют также сульфиды металлов, например, дисульфиды Мо и W (360–380 °C), при этом скорость реакции в присутствии MoS₂ на порядок выше, чем на WS₂. Активным компонентом катализаторов, по-видимому, являются оксисульфиды Мо и W. На них закономерности изменения выхода тиофена в зависимости от условий проведения реакции совершенно аналогичны наблюдаемым на оксидных катализаторах, но в присутствии кислорода продукт **3a** получается с большей, чем на последних селективностью, которая при его выходе 77 мол.% достигает 90–100%. Этим способом получается тиофен высокой степени чистоты (99.99%), не содержащий примеси бензола и других углеводородов. В длительном процессе катализаторы стабильны [40, 41].

Дезалкилиролвание тиофенов

Замещенные тиофены могут быть превращены в тиофен **3a** и его низшие гомологи [42–46]. Дезалкилирование возможно в присутствии сульфидных и оксидных катализаторов. На сульфидах Mo, W, V, Cr, Fe, Со наряду с дезалкилированием тиофенов с алкильными радикалами нормального строения наблюдается дегидрирование боковой цепи с образованием алкенилтиофенов [36]. Более селективны в дезалкилировании кислотные оксидные катализаторы, в частности аморфные силикаты и цеолиты [42–46]. Но и на них при 450–500 °C, P = 0.1 МПа кроме отрыва от тиофенового кольца алкильных групп происходит их перемещение в иное положение кольца и элиминирование серы. Продуктами превращения 2-метилтиофена **3b** являются тиофен **3a**, 3-метилтиофен **3c**, H₂S, метан, немного C₂–C₄-углеводородов, "кокс", а также водород, участвующий в деметилировании. Процесс протекает по схеме:

Высшие гомологи тиофена **3a** с нормальными алкильными группами в положении 2 превращаются на кислотных оксидных катализаторах главным образом в продукт **3a**, 3-алкилтиофен и углеводороды с тем же числом атомов углерода, что и в алкильной группе, при этом количество выделяющегося углеводорода близко к количеству образующегося тиофена **3a**. Тиофены с заместителями *изо*-строения испытывают преимущественно дезалкилирование; скорость перемещения R из положения 2 в положение 3 и обратно в этом случае значительно меньше скорости дезалкилирования до тиофена **3a**. При дезалкилировании тетразамещенных тиофенов с одинаковыми радикалами, например, *i*-Pr, при x = 40-70% наиболее легко отрывается от тиофенового кольца один алкильный остаток, затем второй, третий, четвертый. По скорости дезалкилирования на катализаторе AlSi при 450 °C и x = 30% изопропилтиофены располагаются в следующий ряд [46]:

591

При x > 70% образовавшиеся алкилтиофены подвергаются дальнейшему превращению. Дезалкилированию можно подвергать не только индивидуальные алкилтиофены, но и смеси тиофенов, содержащихся в природных продуктах [46].

Реакция дезалкилирования 2-алкилтиофенов протекает по карбониевоионному механизму; по реакционной способности они располагаются в ряд, совпадающий с рядом устойчивости алкилкатионов [45]:

Активность катализаторов зависит от кислотности поверхности. Так, наблюдается линейная зависимость между функцией кислотности различных катализаторов и логарифмом скорости дезалкилирования, отнесенной к одному кислотному центру. Для катализаторов одной природы скорость реакции увеличивается с ростом числа кислотных центров на поверхности. В зависимости от строения исходного алкилтиофена выход незамещенного тиофена и его низших гомологов составляет 40–90 мол.% при селективности 60–98%.

3. СИНТЕЗ 4-МЕТИЛТИАЗОЛА

4-Метилтиазол 11 был получен взаимодействием SO₂ с N-метилизопропилиденимином 12, легко образующимся из ацетона и метиламина в присутствии щелочи [47, 48]

Me₂C=O + H₂NMe $\xrightarrow{\text{KOH}}$ Me₂C=N-Me $\xrightarrow{\text{SO}_2}$ \bigvee_{S}

Без катализатора при пропускании смеси паров имина **12** с SO₂ в токе инертного газа (350–450 °C, SO₂ : **12** = 1.3–1.5, скорость газового потока 4 л/ч) выход продукта **11** не превышает 7 мол.%, но значительно увеличивается в присутствии оксидов и сульфидов Fe, Cr, Mo, W, Al, Si. Конверсия соединения **12** в различных условиях равна 100%. Основными продуктами каталитической реакции являются метилтиазол **11** и вода, побочные продукты – ацетон, сероуглерод, ацетонитрил, CO, CO₂, H₂, H₂S, элементная сера, смола. Выход продукта **11** увеличивается с ростом температуры, времени контакта и не зависит от концетрации исходного имина **12**. Выход метилтиазола в расчете на последний при 440 °C и $\tau = 1.8$ с на оксидных катализаторах составляет 30–67 мол.%.

По удельной активности исследованные массивные катализаторы располагаются в следующий ряд [47, 48]:

$$CaO>MgO = Fe_2O_3>Cr_2O_3>MoO_3>MoS_2>Al_2O_3>WS_2>SiO_2$$

w, мкмоль/m² • ч 480 193 190 170 90 28 14 4 3

При нанесении оксидов на Al₂O₃, SiO₂, углеродный носитель "Сибунит" скорость в расчете на 1 м² металла остается постоянной.

Активность катализатора изменяется в зависимости от кислотно-основных характеристик его поверхности. В присутствии катализаторов, содержащих ПЦ (SiO₂, H₂SO₄/SiO₂), или сильные L-кислотные центры (Al₂O₃, B₂O₃/Al₂O₃), скорость реакции образования продукта 11 не превышает 0.5 мг/ч·м². Она существенно увеличивается (в 40–100 раз) при наличии в катализаторе сильных основных центров, сопряженных со слабыми L-кислотными центрами (например, CaO, MgO, оксид калия, нанесенный на SiO₂ и Al₂O₃). Предполагается, что при контакте с катализатором имин 12 хемосорбируется на основных центрах с участием атома водорода группы CH₃, а SO₂ – на L-кислотных центрах. Взаимодействие между этими поверхностными формами приводит к метилтиазолу 11. Сильные основные центры благоприятствуют активации исходного соединения 12. Кислотные L-центры, на которых активируется SO₂, не должны обладать большой силой, так как иначе на них происходит конкурентная хемосорбция исходного имина 12 с участием атома азота, что приводит к разрушению связи N-C, а взаимодействие катализатора с SO₂ сопровождается образованием поверхностных сульфонатов и сульфатов, не активных в синтезе продукта 11. Максимальный выход соединения 11 при 440 °C, SO₂: **12** = 1.5 составляет 64 мол.% (90 мас.%). На 1 г катализатора можно получить 3 г метилтиазола 11, после чего катализатор дезактивируется, но он может быть регенерирован прокаливанием в токе воздуха при 450-500 °С [47, 48].

4. СИНТЕЗ ТИОЛАН-1,1-ДИОКСИДА

Удобным способом получения тиолан-1,1-диоксида **10** является каталитическое жидкофазное гидрирование 3-тиолен-1,1-диоксида **(13)** и 2-тиолен-1,1-диоксида **(14)** [5].

В этом процессе сульфиды переходных металлов проявляют активность при повышенных температуре и давлении водорода [24, 49]. При гидрировании тиолендиоксида **13** (100 °C, P = 25 МПа) на сульфидах Os, Pt, Rh, Ru выход продукта **10** не превышает 1 мол.%, на сульфидах Pd и Re он возрастает до 50%. Процесс образования тиоландиоксида **10** осложняется разложением термически нестойкого соединения **13**. При гидрировании его более термостойкого изомера **14** (150 °C, P = 11 МПа) на сульфидах W, Ni, Co продукт **10** получается с выходом до 6 мол.%, а на сульфидах Re, Pt, Os, Rh, Pd последний повышается до 50–90 мол.%. Удельная скорость образования тиоландиоксида **10** из тиолендиоксида **14** на сульфидах Pd, Rh, Re значительно выше,чем на сульфидах других металлов [49]:

	PdS	Rh ₂ S ₃	Re ₂ S ₇	OsS ₂	PtS ₂	CoS	WS ₂	NiS
<i>w</i> , ммоль/м ² ∙ч	3.5	2.5	1.3	0.6	0.2	0.2	0.14	0.004
<i>s</i> , %	88	90	72	88	68	86	39	46

Гидрирование соединения **14** в присутствии сульфидов металлов, нанесенных на γ -Al₂O₃ или SiO₂, протекает по схеме:

$$14 \quad \underbrace{H_2} \qquad \begin{array}{c} \bullet \quad 10 \\ \bullet \quad C_4 H_8 + H_2 S + 2 H_2 O \\ 9 \end{array}$$

Скорость реакции растет прямо пропорционально увеличению концентрации исходного диоксида **14** и парциального давления водорода (до P = 12 МПа), но при большем значении давления не изменяется. Реакция лимитируется взаимодействием растворенного диоксида **14** с адсорбированным на катализаторе водородом. Сульфидные катализаторы стабильны в процессе гидрирования этого соединения, например, скорость реакции на 1 г катализатора PdS/Al₂O₃ не изменяется до образования ~50 г продукта **10** [49].

Металлы VIII группы очень активны при гидрировании диоксидов **13** и **14** (растворитель: спирт, сульфолан, бензол) в мягких условиях (10–30 °C и P>1 МПа), продукт **10** получается с выходом до 100% [50–57]. В случае соединения **13** наибольшей удельной активностью (20 °C, P = 5 МПа) при s = 100% обладают Rh и Pd, наименьшей – Ni [50]:

	Rh	Pd	Pt	Ir	Ru	Ni
<i>w</i> , ммоль/ч•м ²	306	92	19	2	1	0.1

При нанесении металлов VIII группы на носитель увеличивается их дисперсность, что приводит к возрастанию скорости образования тиолан-1,1-диоксида (10). Регулировать дисперсность можно, изменяя природу носителя (наибольшая дисперсность наблюдается при нанесении металла на γ -Al₂O₃, SiO₂, AlSi и уголь), уменьшая поверхностную концентрацию металла, варьируя природу предшественника, а также применяя дополнительную химическую обработку образца перед восстановлением и изменением условий термообработки. В ряде случаев дисперсность металлов можно увеличить, добавляя к нему другие элементы. Для препаративного синтеза соединения 10 целесообразно использовать нанесенные металлические катализаторы [50–54]. Хотя с увеличением содержания металла в катализаторе его дисперсность снижается, но до определенного предела суммарная поверхность металла растет и поэтому повышается скорость гидрирования в расчете на единицу веса катализатора. Удельная активность катализатора, т. е. скорость, отнесенная к 1 м² поверхности металла, при изменении дисперсности последнего, остается примерно постоянной и практически не отличается от активности металла без носителя.

Механизм гидрирования тиолендиоксида **13** на различных металлах VIII группы сходен, поэтому наблюдаются одинаковые кинетические закономерности [53, 55]. Скорость образования продукта **10** при

увеличении давления водорода с 0.1 до 2 МПа и концентрации оксида **13** до 0.1 моль/л растет прямо пропорционально, но при дальнейшем увеличении этих параметров не изменяется. Наблюдаемое изменение порядков реакции от первого к нулевому связано с различием лимитирующих стадий реакции, которые зависят от степени заполнения поверхности катализатора реагирующими соединениями при варьировании условий гидрирования.

Металлические катализаторы достаточно стабильны при гидрировании тиоленоксидов 13 и 14, но при очень длительном ведении процесса наблюдается снижение их начальной активности. Дезактивация катализатора связана с отравлением металла образующимися в процессе соединениями двух- и четырехвалентной серы (H₂S, SO₂, тиолан 2a) [21, 51, 56, 57]. Полная дезактивация происходит при введении в раствор менее 0.14 ммоль SO_2 или H_2S в расчете на 1 м² металла. Металлы VIII группы по удельной устойчивости, определяемой по количеству продукта 10, образующегося на 1 м² металла (в массивном или нанесенном катализаторе) до полной его дезактивации, располагаются в такой же последовательности, как и по удельной каталитической активности, т. е., чем более активен катализатор в гидрировании соединения 13, тем он и более устойчиво работает. В этом процессе стабильность катализаторов растет не только с увеличением доступной поверхности металла, что достигается разными способами, но также при снижении температуры гидрирования, способствующем уменьшению скорости разложения тиолендиоксида 13 с выделением SO₂ и, следовательно, снижению скорости образования токсичных соединений двухвалентной серы. Благоприятна и тщательная очистка соединения 13 от примесей в нем SO₂, для чего в раствор для гидрирования вносят щелочные добавки [58, 59]. Устойчивость катализатора при этом несколько увеличивается, но в присутствии щелочи, например КОН, скорость образования продукта 10 на палладиевом катализаторе по сравнению со скоростью, наблюдаемой в нейтральной среде, снижается пропорционально [KOH]^{0.5}.

Одной из причин уменьшения активности металлического палладия при гидрировании оксида 13 в щелочной среде является повышение прочности связи водорода с Pd, что затрудняет его взаимодействие с указанным оксидом. Под действием основания при комнатной температуре происходит изомеризация 13→14. Однако скорость образования тиоландиоксида 10 при гидрировании тиолендиоксида 14 в нейтральной и щелочной средах близка к наблюдаемой при гидрировании его изомера 13, т. е. уменьшение скорости гидрирования последнего в щелочном спиртовом растворе не связано с его изомеризацией. Кроме изомеризации в спиртово-щелочной среде происходит присоединение спирта к двойной связи соединения 13 с образованием 3-алкокситиолан-1,1-диоксида (15)

При нагревании щелочного раствора продукт **15** разлагается до диоксида **14** и спирта, причем этот процесс обратим. В среде водорода в присутствии катализатора соединение **14** гидрируется и равновесие сдвигается в сторону образования продукта элиминирования спирта.

15
$$\xrightarrow{\text{OH}^-}$$
 ROH + 14 $\xrightarrow{\text{H}_2}$ 10

В результате указанных реакций происходит полное превращение $13 \rightarrow 10$ [60, 61]. Замещенные в положении 3 эфиры 15, например 3-бутокситиолан-1,1-диоксид (15а), и высшие (C₇-C₁₂) 3-алкокситиолан-1,1-диоксиды в условиях гидрирования в водно-щелочном растворе при 20–85 °C, P = 0.1-5 МПа в присутствии Pd/Al₂O₃ превращаются в тиоландиоксид 10. Выход последнего из эфира 15а составляет 100% за время 15–42 мин, а из остальных эфиров – 18–34% за время 2 ч. Это превращение происходит также в присутствии PdS/Al₂O₃. На процесс влияют условия его проведения. Так, при увеличении концентрации исходного 15а в растворе от 0.1 до 1.5 моль/л выход продукта 10 снижается в ~10 раз, а повышение парциального давления водорода с 0.1 до 5 МПа немного его увеличивает, процесс ускоряется с ростом концентрации КОН. Скорость превращения соединения 15а описывается уравнением

$w = k c_1^n P^{0.2} c_2^{0.5},$

где c₁, c₂ – концентрации 15а и КОН соответственно, P – давление водорода [59, 60]. Лимитирующим этапом образования тиоландиоксида 10 является элиминирование спирта, а не восстановление образующегося тиолендиоксида 14. Поскольку в присутствии щелочи происходит как каталитическое превращение эфира 15а, так и присоединение спирта к тиолендиоксиду 13, оба процесса можно объединить: сначала получить соединение 15a из диоксида 13 и BuOH, а затем, не выделяя его в чистом виде, превратить в условиях гидрирования в продукт 10 с выходом до 100% (100 °C, P = 5 МПа). Без щелочи в этих условиях в основном происходит разложение соединения 13. По сравнению с гидрированием тиолендиоксидов 13 и 14 в нейтральной среде на металлах превращение эфира 15а в спиртово-щелочных растворах происходит в более жестких условиях (повышенная температура, большое время реакции) и с меньшей скоростью. В спиртово-щелочной среде скорости образования тиоландиоксида 10 из соединений 13, 14 и 15а на катализаторах Pd/Al₂O₃ и PdS/Al₂O₃ близки (табл. 4), поскольку в этих условиях устанавливается одинаковое состояние катализатора, активным компонентом которого является PdS [59].

При длительном гидрировании эфиров 15 используемые катализаторы дезактивируются. Независимо от концентрации субстрата при P = 0.1 МПа на 1 г катализатора может быть получено 0.2–0.5 г, а при P = 5 МПа – 50 г продукта 10. Эти различия обусловлены повышением при высоком давлении скорости гидрирования соединения 14 по сравнению со скоростью изомеризации 14–13 [59]. Приведенные данные показывают, что гидрирование соединения 13 на палладиевом катализаторе в присутствии 596

Катали- затор	Раство- ритель	Субстрат	Содержание в исходной смеси, моль/л субстрат КОН		T, ℃	Скорость при <i>x</i> = 65–70%, ммоль/ч•г Кт
Pd /Al ₂ O ₃	<i>i</i> -PrOH	13 13	0.4 0.13	0 0	20 20	11670 3750
		13 14 14	0.04 0.4 0.13	0 0 0	20 20 20	1250 12840 4500
	BuOH	14 14 13	0.04 0.53	0 0	20 20 85	1500 8.3
		13 14 159	0.53 0.60 0.60	0.45 0.45 0.45	87 87 87	12.0 12.5 123 3
PdS /Al ₂ O ₃	BuOH	13a 13 13	0.04 0.04	0 0.45	100 100	0.67 1.0
		14 15a	0.04 0.04	0 0.45	100 100	0.83 1.5

Гидрирование тиоленоксидов 13, 14 и превращение эфира 15а на алюмопалладиевых катализаторах при *P* = 5 МПа [59]

добавок щелочи не имеет преимущества перед гидрированием в нейтральной среде на металлах при низкой температуре. Связывание металла в комплекс также не обеспечивает его защиту от отравления соединениями серы [62]. На ряде комплексов металлов VIII группы, например, гомогенных и гетерогенизованных комплексах Pd с S- и Nсодержащими лигандами, при комнатной температуре и атмосферном давлении тиолендиоксиды 13 и 14 легко гидрируются и выходы тиолана достигают 100%. По удельной активности эти комплексы не уступают металлам или даже их превосходят и обладают повышенной устойчивостью в процессе. Но полностью пока не удается предотвратить отравление комплексов металлов соединениями двух- и четырехвалентной серы и по мере протекания гидрирования соединений 13 и 14 скорость образования пролукта 10 снижается. Причина дезактивании комплексов Pd, как установлено исследованием с использованием методов УФ, ЯМР и РФЭС, заключается в том, что сернистый яд, входя в координационную сферу металла, вытесняет внешний лиганд и образует связь Pd с S, а в определенных условиях происходит полное разрушение комплекса.

Препаративный синтез тиоландиоксида **10** поэтому осуществляют путем гидрирования тиолендиоксида **13** в нейтральной среде в присутствии нанесенных на носитель металлов VIII группы, проявляющих высокую активность и 100%-ю селективность в мягких условиях. На разработанном катализаторе ИК-7-1 [63] синтез соединения **10** осуществляется в жидкой фазе при 17–25 °C, P = 2-5 МПа с выходом этого продукта 100% и производительностью по нему в кинетической области до 3000 г/ч-г Кт. Количество тиоландиоксида **10**, полученного за время полной дезактивации катализатора, составляет 120–140 г/г Кт. При работе в аппарате непрерывного действия на неподвижном слое катализатора падение выхода от 100 до 97% происходит через 600 ч непрерывной работы, затем проводится регенерация катализатора.

5. СИНТЕЗ СУЛЬФОКСИДОВ

Тиациклоалканы, имеющие атом серы с неподеленными парами электронов, при взаимодействии с катализаторами на основе соединений переходных металлов активируются вследствие образования донорноакцепторного комплекса, что облегчает их взаимодействие с молекулярным кислородом с образованием окисленных по атому серы соединений [64, 65]. Наиболее активными катализаторами этой реакции являются соединения двухвалентной меди. В присутствии хлорида или *о*-аминофенолята меди в ацетоновом растворе с добавкой 3.3 мол/л AcOH при 100–130 °C, P = 5-6 МПа за 5–30 мин при окислении тиациклоалкана получаются сульфоксиды с выходом до 95 мол.%. По реакционной способности, оцененной по константе скорости реакции первого порядка, исследованные соединения в реакции образования сульфоксидов располагаются в ряд [65]:

k, k/ x•uf nCu 2500 2000 1400 1300 650 Производительность по сульфоксидам в зависимости от катализатора и окисляемого соединения составляет 350–600 моль/ ч•г Кт.

Выход тиолан-1-оксида 16 при окислении тиолана 2a не зависит от содержания последнего в растворе и от давления воздуха в интервале 2.5–5.0 МПа; кислая среда благоприятна для реакции. С увеличением количества катализатора и продолжительности процесса выход продукта 16 повышается до определенного предела, после чего снижается. Селективность его образования при конверсии исходного 2a до 80% равна 100%, а при большей конверсии она снижается и в оксидате обнаруживается сульфон 10. Последний образуется при окислении чистого оксида 16. Из кинетических данных следует, что рассматриваемый процесс протекает по консекутивной схеме [65]:

Во всех случаях суммарная селективность образования соединений **16** и **10** равна 100%. Высокая селективность по сульфоксидам и сульфонам обусловлена тем, что окисление протекает через стадию одноэлектронного переноса без разрыва связи C–S. При контакте с медным катализатором возникает ион-радикал (CH₂)₄S^{+•}, который в окислительной среде превращается в пероксид (CH₂)₄S^{+OO⁻}, реагирующий с исходным тиоланом **2a** с образованием сульфоксида **16**. Последний далее окисляется в сульфон **10** по аналогичному механизму. Ион меди, восстановленный вследствие комплексообразования, реокисляется кислородом. Под действием тиоланов ион двухвалентной меди может восстановиться до Cu⁺ и Cu⁰, причем Cu⁰ трудно реокисляется кислородом. Ацетон, используемый

в качестве растворителя, препятствует глубокому восстановлению меди. Он образует кластер $Cu^{2+}-Cu^+$, наличие в нем иона Cu^{2+} , необходимого для активации сульфидной серы, и иона Cu^+ , активирующего молекулярный кислород, а также полная гомогенизация системы за счет растворения в ацетоне комплекса меди с субстратом и продуктами реакции, обеспечивают высокую скорость образования сульфоксида **16** и сульфона **10**. Меньшая скорость образования сульфона объясняется более трудной активацией сульфоксида вследствие пониженной донорной способности атома серы, а также из-за того, что частично молекула сульфоксида координируется с катализатором по атому кислорода группы SO, а не по атому серы. Увеличение кислотности реакционной среды снижает скорость окисления сульфоксида в сульфон из-за образования прочного комплекса (CH₂)₄SO–H. Это затрудняет координацию сульфоксида с Cu²⁺, что необходимо для протекания реакции его окисления в сульфон [66].

Соединения меди(II) в ацетоновом растворе ускоряют также реакцию парциального окисления кислородом воздуха природной смеси тиацикланов [67, 68]. В средне-дистиллятных фракциях ряда сибирских и волжских нефтей (например, арланской, западно-сургутской, самотлорской) основную долю сернистых соединений (80–90%) составляют так называемые "нефтяные сульфиды" (НС):

где $R = алкил C_1 - C_7$, находящийся у разных атомов углерода; средняя степень замещения (*n*) близка к 3.

В окислении НС в сульфоксиды проявляют активность различные соединения двухвалентной меди – хлорид, фенолят, *п*-крезолят, α-нафтолят, о- и п-аминофеноляты, ацетат, фталат, бензоат. Наиболее активны CuCl₂ и медь-фенолятные катализаторы. Реакция протекает при 120-150 °C, P = 5-6 МПа, с добавкой 0.4 моль/л АсОН и концентрации серы 0.25-0.40 моль/л. Выход сульфоксидов достигает при этом 95 мол.% Кинетические закономерности окисления НС совершенно аналогичны установленным для окисления индивидуальных тиациклоалканов. Независимо от природы катализатора и условий окисления (температура, продолжительность реакции, концентрация катализатора и кислоты) при конверсии НС до 80% селективность образования сульфоксидов близка к 100%, при большей конверсии она снижается, так как сульфоксиды испытывают дальнейшее превращение в сульфоны и сульфокислоты. НС различных нефтей в парциальном окислении обладают близкой реакционной способностью. Так, при 130 °C, P = 5 МПа, продолжительности реакции 20 мин, [Кт] = 7–7.9 мг-ат Си/л выход сульфоксидов составил 90–100% при окислении дизельного топлива арланской нефти и выделенных из него концентратов НС (с т. кип. 190-260, 260-360, 190-360 °С), а также концентратов НС, полученных из западно-сибирской и самотлорской нефтей. Константа скорости реакции, определенная при глубине превращения НС ниже 70%, колеблется в пределах 900-1100 л/ч-г-ат Си, прозводительность по нефтяным сульфоксилам составляет около 250±60 моль/ч-г-ат Си [67. 68]. Поскольку присутствие тиофенов и углеводородов в сырье мало сказывается на окисляемости нефтяных сульфидов [69], оказывается возможным получение нефтяных сульфоксидов прямым окислением топлива без извлечения из него соединений серы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. К. Ляпина. Химия и физикохимия сераорганических соединений нефтяных дистиллятов, Наука, Москва, 1984.
- I. Rosso, E. Garrone, F. Geobaldo, B. Onida, G. Saracco, V. Specchia, Appl. Catal. B. Environ., 30, 61 (2001).
- Л. И. Беленький, Е. П. Захаров, М. А. Калик, В. П. Литвинов, Ф. М. Стоянович, С. З. Тайц, Б. П. Фабричный, Новые направления химии тиофена, под ред. Я. Л. Гольдфарба, Наука, Москва, 1976.
- 4. А. Х. Шарипов, Хим. пром-сть, № 9, 24 (2000).
- 5. А. В. Машкина, в кн. Химия сераорганических соединений, содержащихся в нефтях и нефтепродуктах, Химия, Москва, 1964, **6**, 146.
- 6. Ю. К. Юрьев, М. Д. Прокина, *ЖОХ*, **7**, 1868 (1937).
- 7. I. V. Desyatov, A. V. Mashkina, React. Kinet. Catal. Lett., 44, 39 (1991).
- 8. А. В. Машкина, В. Н. Яковлева, Л. Н. Хайрулина, В. Ю. Машкин, *Кин. и кат.*, **34**, 93 (1993).
- A. V. Mashkina, V. M. Mastikhin, E. A. Paukshtis, V. Yu. Mashkin, A. V. Nosov, I. V. Desyatov, *Appl. Catal. A: General*, **116**, 95 (1994).
- 10. А. В. Машкина, И. В. Десятов, В. Ю. Машкин, Кин. и кат., 37, 104 (1996).
- 11. I. V. Desyatov, E. A. Paukshtis, V. Yu. Mashkin, React. Kinet. Catal. Lett., 51, 45 (1993).
- 12. S. V. Filimonova, V. M. Mastikhin, React. Kinet. Catal. Lett., 65, 131 (1998).
- 13. В. Ю. Машкин, И. В. Десятов, А. В. Машкина, Кин. и кат., 34, 873 (1993).
- 14. А. В. Машкина, А. А. Зирка, Кин. и кат., 41, 575 (2000).
- 15. А. В. Машкина, Л. Г. Сахалтуева, Кин. и кат., 42, 102 (2001).
- 16. А. В. Машкина, Л. Г. Сахалтуева, ХГС, 598 (2001).
- 600

- 17. А. В. Машкина, Л. Г. Сахалтуева, *Нефтехимия*, 42, 2 (2002).
- 18. T. P. Voskresenskaya, T. S. Sukhareva, React. Kinet. Catal. Lett., 36, 307 (1988).
- Т. П. Воскресенская, Т. С. Сухарева, Гетерогенный катализ в химии гетероциклических соединений. Тез., IV Всесоюз. симп., Зинатне, Рига, 1987, 135.
- 20. А. В. Машкина, Кин. и кат., 16, 925 (1975).
- 21. А. В. Машкина, в кн. *Проблемы дезактивации катализаторов,* Сб. науч. тр. Института катализа СО АН СССР, Новосибирск, 1985, 21.
- А. П. Шелепин, П. А. Ждан, Т. П. Воскресенская, В. А. Семиколенов, В. А. Лихолобов, А. В. Машкина, в кн. Гетерогенный катализ в химии гетероциклических соединений. Тез. III Всесоюз. симп., Зинатне, Рига, 1981, 99.
- Т. П. Воскресенская, В. Н. Яковлева, В. А. Семиколенов, В. А. Лихолобов, А. В. Машкина, в кн. Гетерогенный катализ в химии гетероциклических соединений. Тез. III Всесоюз. симп., Зинатне, Рига, 1981, 94.
- Г. Л. Вейцман, Т. С. Сухарева, А. В. Машкина, в кн. Катализаторы процессов получения и превращения сернистых соединений, Сб. науч. тр. Института катализа СО АН СССР, Новосибирск, 1979, 70.
- A. A. Zirka, R. S. Sagitullin, R. M. Masagutov, A. Kh. Sharipov, N. K. Lyapina, A. V. Mashkina, *React. Kinet. Catal. Lett*, 25, 171 (1984).
- 26. A. A. Zirka, A. Yermakova, A. V. Mashkina, React. Kinet. Catal. Lett., 43, 487 (1991).
- 27. Д. Ю. Мурзин, А. А. Зирка, А. В. Машкина, *Кин. и кат.*, **34**, 286 (1993).
- A. A. Zirka, G. L. Ryzhova, Yu. G. Slizhov, A. V. Mashkina, *React. Kinet. Catal. Lett*, 23, 7 (1983).
- 29. Г. Л. Рыжова, Ю. Г. Слижов, А. В. Машкина, Нефтехимия, 23, 548 (1983).
- 30. А. А. Зирка, А. В. Машкина, Кин. и кат., 41, 426 (2000).
- А. А. Зирка, Н. К. Ляпина, М. А. Парфенова, Р. М. Масагутов, А. Х. Шарипов, З. А. Сулейманова, Г. Л. Рыжова, Ю. Г. Слижов, А. В. Машкина, *Нефтехимия*, 28, 271 (1988).
- 32. Т. С. Сухарева, А. В. Машкина, Кин. и кат., 11, 665 (1970).
- 33. Т. С. Сухарева, А. В. Машкина, Л. В. Шепель, Л. С. Забродова, в кн. Катализаторы процессов получения и превращения сернистых соединений, Сб. науч. тр. Института катализа СО АН СССР, Новосибирск, 1979, 142.
- 34. А. В. Машкина, Т. С. Сухарева, Г. Л. Вейцман, Кин. и кат., 13, 249 (1972).
- 35. А. В. Машкина, Кин. и кат., 32, 885 (1991).
- 36. А. В. Машкина, Т. С. Сухарева, В. И. Чернов, Нефтехимия, 7, 301 (1967).
- 37. Л. В. Мануйлова, Т. С. Сухарева, А. В. Машкина, в кн. *Гетерогенный катализ в химии гетероциклических соединений*. Тез. III Всесоюз. симп., Зинатне, Рига, 1981, 91.
- 38. Т. С. Сухарева, А. В. Машкина, В. И. Чернов, Кин. и кат., 10, 392 (1969).
- 39. А. В. Машкина, в кн. Химия сераорганических соединений, содержащихся в нефтях и нефтепродуктах, Химия, Москва, 1964, **6**, 316.
- 40. Л. В. Мануйлова, С. В. Дударев, Ю. Н. Тюрин, Т. С. Сухарева, *Кин. и кат.*, **26**, 654 (1985).
- L. V. Manuilova, F. Kh. Sharipov, S. V. Kovtunenko, R. M. Masagutov, T. S. Sukhareva, *React. Kinet. Catal. Lett.*, 54, 293 (1995).
- 42. А. В. Машкина, В. И. Чернов, Нефтехимия, 9, 445 (1969).
- 43. В. И. Чернов, А. В. Машкина, Кин. и кат., 10, 307 (1969).
- 44. В. И. Чернов, А. В. Машкина, *Кин. и кат.*, **12**, 985 (1971).
- 45. А. В. Машкина, в кн. Каталитический синтез и превращения гетероциклических соединений, Зинатне, Рига, 1976, 31.
- В. И. Чернов, в кн. XIII научная сессия по химии и технологии органических соединений серы, Тезисы, Зинатне, Рига, 1974, 293.
- 47. L. V. Manuilova, N. D. Parshukova, T. S. Sukhareva, *React. Kinet. Catal. Lett.*, 55, 151 (1995).
- 48. L. V. Manuilova, N. D. Parshukova, T. S. Sukhareva, in *Russian-Korean Seminar on Catalysis*, Abstract, Novosibirsk, 1995, Pt II, 176.
- 49. A. V. Mashkina, T. S. Sukhareva, React. Kinet Catal. Lett., 67, 103 (1999).
- 50. А. В. Машкина, Н. Т. Кулишкин, В. П. Корнилова, Кин. и кат., 16, 697 (1975).
- 51. N. T. Kulishkin, A. V. Mashkina, React. Kinet. Catal. Lett., 44, 265 (1991).
- 52. Н. Т. Кулишкин, А. В. Машкина, Н. Е. Буянова, А. П. Карнаухов, И. Д. Ратнер, Л. М. Плясова, *Кин. и кат.*, **12**, 1539 (1971).

- 53. N. T. Kulishkin, A. V. Mashkina, React. Kinet. Catal. Lett., 43, 527 (1991).
- 54. А. В. Машкина, В. Н. Яковлева, Н. Е. Буянова, З. А. Довбий, Кин. и кат., 23, 58 (1982).
- 55. A. V. Mashkina, N. T. Kulishkin, React. Kinet. Catal. Lett., 60, 163 (1997).
- 56. N. T. Kulishkin, A. V. Mashkina, React. Kinet. Catal. Lett., 45, 41 (1991).
- 57. N. T. Kulishkin, A.V. Mashkina, React. Kinet. Catal. Lett., 61, 133 (1997).
- A. V. Mashkina, V. N. Yakovleva, T. P. Voskresenskaya, *React. Kinet. Catal. Lett.*, 60, 157 (1997).
- 59. А. В. Машкина, Кин. и кат., **39**, 204 (1998).
- 60. Т. Э. Безменова, А. В. Машкина, В. Н. Яковлева, Кин. и кат., 25, 56 (1984).
- 61. Т. Э. Безменова, А. В. Машкина, В. Н. Яковлева, А. с. СССР 1079651; *Б. И.*, № 10, 85 (1984).
- 62. Т. П. Воскресенская, В. А. Семиколенов, В. А. Лихолобов, А. П. Шелепин, П. А. Ждан, А. В. Машкина, *Кин. и кат.*, **23**, 382 (1982).
- 63. А. В. Машкина, Успехи химии, 66, 463 (1997).
- 64. Г. В. Варнакова, Л. М. Загряцкая, З. А. Сулейманова, Р. М. Масагутов, А. Х. Шарипов, В. Н. Яковлева, Л. В. Власова, Н. П. Кирик, А. В. Машкина, в кн. *Каталитический синтез органических соединений серы*, Сб. науч. тр. Института катализа СО АН СССР, Новосибирск, 1979, 66.
- А. В. Машкина, Г. В. Варнакова, Л. М. Загряцкая, З. А. Сулейманова, Р. М. Масагутов, А. Х. Шарипов, В. Н. Яковлева, Л. В. Власова, Н. П. Кирик, *Кин. и кат.*, 22, 607 (1981).
- 66. А. В. Машкина, Р. С. Сагитуллин, Т. А. Манякина, *Нефтехимия*, 25, 96 (1985).
- 67. А. В. Машкина, А. Х. Шарипов, Н. К. Ляпина, Р. М. Масагутов, З. А. Сулейманова, *Нефтехимия*, **25**, 96 (1985).
- М. А. Парфенова, Н. К. Ляпина, Л. М. Загряцкая, З. А. Сулейманова, Р. М. Масагутов, А. Х. Шарипов, В. Н. Яковлева, Н. П. Кирик, А. В. Машкина, в кн. *Каталитический синтез органических соединений серы*, Сб. науч. тр. Института катализа СО АН СССР, Новосибирск, 1979, 70.
- Л. В. Власова, Я. Б. Чертков, А. В. Машкина, в кн. Каталитический синтез органических соединений серы, Сб. науч. тр. Института катализа СО АН СССР, Новосибирск, 1979, 75.

Институт катализа им. Г. К. Борескова СО РАН, Новосибирск 630090 e-mail: A.V.Mashkina@catalysis.nsk.su Поступило в редакцию 12.05.2000 После доработки 01.03.2002