А. М. Шестопалов, К. С. Чунихин, Л. А. Родиновская

ИССЛЕДОВАНИЕ РЕАКЦИЙ ИЛИДА ХИНОЛИНИЯ С НИТРОСТИРОЛАМИ

Исследованы реакции нитростиролов с илидом хинолиния, получены ранее не известные 2-арил-1-бензоил-3-нитро-1,2,3,3а-тетрагидропирроло-[1,2-*a*]хинолины и установлена их стереохимия.

Ключевые слова: илиды хинолиния, нитростиролы, 1,2,3,3а-тетрагидропирроло[1,2-*a*]хинолины.

Реакции илидов азиния с содержащим нуклеофугную группу непредельным нитросоединением – 1,1-диметилтио-2-нитроэтиленом – были исследованы ранее [1–5]. Установлено, что эти реакции могут протекать как по синхронному механизму 1,3-диполярного циклоприсоединения, так и по асинхронному с образованием индолизинов. До настоящего времени не были изучены реакции илидов азиния с непредельными нитросоединениями, не содержащими нуклеофугную группу. Мы впервые [6] изучили взаимодействие илида хинолиния с нитростиролами и установили его регио- и стереоселективность. Реакции проводили в этаноле при 40–45 °С, генерируя илид 1 действием триэтиламина на соль хинолиния 2.

3, 4 a Ar = Ph; **b** Ar = 2-NO₂C₆H₄; **c** Ar = 4-ClC₆H₄; **d** Ar = 4-CH₃OC₆H₄; **e** Ar = 2-C₄H₃S

В таких условиях нами были получены замещенные *транс-транс-транс-пранс*-1,2,3,3а-тетрагидропирроло[1,2-*а*]хинолины **4а**-е (табл. 1), строение которых было подтверждено данными физико-химических исследований. В ИК спектрах соединений **4а**-е присутствуют характерные сигналы кетогруппы и полосы валентных колебаний группы NO₂ (см. табл. 2), масс-спектры содержат пики молекулярных ионов, характерные для нитросоединений пики, связанные с отщеплением группы NO₂ (M-46 *m/z*), масс-пик хинолина (*m/z* 129) и пик бензоильного фрагмента (*m/z* 107) (табл. 2).

Таблица 1

Соеди- нение	Брутто- формула	B	<u>Найдено,</u> % ычислено, ^ч	Т. пл., °С	Выход,	
		С	Н	Ν	(этанол)	%
4a	$C_{25}H_{20}N_2O_3$	<u>76.02</u> 75.75	<u>5.25</u> 5.05	<u>6.78</u> 7.07	176–178	75
4 b	C ₂₅ H ₁₉ N ₃ O ₅	$\frac{67.81}{68.02}$	$\frac{4.09}{4.31}$	<u>9.31</u> 9.52	166–167	50
4c	$C_{25}H_{19}ClN_2O_3$	<u>69.43</u> 69.76	$\frac{4.25}{4.41}$	<u>6.77</u> 6.51	174–176	56
4d	$C_{26}H_{22}N_2O_4$	<u>72.90</u> 73.23	<u>5.32</u> 5.16	<u>6.81</u> 6.57	154–156	57
4 e	$C_{23}H_{18}N_2O_3S$	<u>68.85</u> 68.65	$\frac{4.61}{4.47}$	<u>7.11</u> 6.96	167–168	75

Характеристики соединений 4а-е

По данным спектров ЯМР ¹Н, соединения **4а**-е представляют собой индивидуальные вещества (табл. 3). Отнесение сигналов было сделано на основании анализа КССВ и данных эксперимента разностного двойного резонанса для соединения **4d**: по изменениям в спектре в результате подавления сигналов при 4.57, 5.38 и 5.91 м. д. Возможен и альтернативный вариант отнесения: 4.57 м. д. – 4-H, 5.38 – 3а-H, 5.56 – 2-H, 5.91 – 5-H, 5.97 – 3-H, 6.53 м. д. – 2-H. Однако он менее вероятен, так как сигнал протона 2-H, соседнего с ароматическим ядром, должен проявляться в области более сильного поля – при 4.5–4.7 м. д. [7–10].

Таблица 2

Соеди-	Mass approximation $m/\pi(1.06)$	ИК спектр, v, см ⁻¹		
нение	Mace-energy, $m_2(i, 76)$	СО	NO ₂	
4 a	396 [M ⁺] (9.7), 364 [M ⁺ -O ₂] (15.0), 350 [M ⁺ -NO ₂] (23.1), 319 (34.3), 291 (23.4), 188 (45.6), 149 (67.9), 144 (56.9), 131 (89.0), 105 (74.7)	1688	1548 (<i>as</i>), 1384 (<i>s</i>)	
4b	441 [M ⁺] (12.3), 409 [M ⁺ –O ₂] (14.4), 395 [M ⁺ –NO ₂] (24.5), 319 (32.1), 336 (2.0), 188 (42.1), 194 (23.7), 144 (58.4), 131 (90.1), 105 (75.2)	1680	1544 (as), 1380 (s)	
4c	430 [M ⁺] (11.7), 398 [M ⁺ -O ₂] (16.8), 384 [M ⁺ -NO ₂] (21.5), 325 (27.0), 319 (39.0), 278 (17.0), 188 (28.0), 183 (24.8), 144 (45.3), 131 (92.2), 105 (79.0)	1688	1548 (as), 1384 (s)	
4d	427 $[M^+]$ (12.0), 395 $[M^+-O_2]$ (12.3), 381 $[M^+-NO_2]$ (31.0), 322 (30.0), 319 $[M^+-4-CH_3O-C_6H_4]$ (21.0), 275 (10.0), 188 (32.1), 179 (45.0), 144 (64.0), 131 (95.0), 105 (80.0)	1684	1548 (<i>as</i>), 1384 (<i>s</i>)	
4e	402 [M ⁺], 370 [M ⁺ –O ₂], 356 [M ⁺ –NO ₂], 325 (7.0), 319 (34.7), 297 (3.0), 188 (32.0), 156 (57.0), 144 (57.9), 131 (100.0), 105 (77.0)	1688	1548 (<i>as</i>), 1380 (<i>s</i>)	

Данные ИК и масс-спектров соединений 4а-е

Таблица З

Соели-	δ, м. д., КССВ (Ј), Гц							
нение	1-H,	2-Н,	3-Н,	3а-Н, д.	4-H,	5-H,	$6\text{-}H-9\text{-}H,H_{Ph},H_{Ar}$	
	д	д. д	д. д	д	д. д	д		
4a	5.91	4.63	5.38	5.97	5.56	6.53	6.05 (1Н, д); 6.59–7.85	
	$J_{1,2} = J_{2,1} = 9.75; J_{2,3} = J_{3,2} = 2.42$		$J_{3,3a} = J_{3a,3} = 7.01;$ $J_{3a,4} = J_{4,3a} = 2.53$		$J_{4,5} = J_{5,4} = 10.05$		(1311, M)	
4b	6.16	5.34	5.72	6.01	5.65	6.56	6.27 (1Н, д); 6.59–7.85	
	$J_{1,2} = J_{2,1} = 9.57; J_{2,3} = J_{3,2} = 2.2$		$J_{3,3a} = J_{3a,3} = 7.10;$ $J_{3a,4} = J_{4,3a} = 2.25$		$J_{4,5} = J_{5,4} = 10.05$		(12Н, м)	
4c	5.91	4.84	5.63	5.85	5.56	6.53	6.15 (1Н, д); 6.59–7.85	
	$J_{1,2} = J_{2,1}$ $J_{2,3} = J_{3,2}$	= 9.87; = 1.42	$J_{3,3a} = J_{3a,}$ $J_{3a,4} = J_{4,3}$	$a_{a} = 7.01;$ a = 2.53	$J_{4,5} = J_{5,4}$	= 10.07	(12Н, м)	
4d *	5.91	4.57	5.38	5.97	5.56	6.53	6.05 (1Н, д); 6.59–7.85	
	$J_{1,2} = J_{2,1}$ $J_{2,3} = J_{3,2}$	= 2.42; = 9.75	$J_{3,3a} = J_{3a,3} = 7.02; J_{3a,4} = J_{4,3a} = 2.53$		$J_{4,5} = J_{5,4}$	= 10.05	(12Н, м)	
4 e	5.93	5.16	5.51	5.81	5.64	6.53	6.05 (1Н, д); 6.59–7.85	
	$J_{1,2} = J_{2,1}$ $J_{2,3} = J_{3,2}$	= 9.75; = 2.42	$J_{3,3a} = J_{3a,}$ $J_{3a,4} = J_{4,3}$	$a_{a} = 7.01;$ a = 1.93	$J_{4,5} = J_{5,4}$	= 9.90	(11Н, м)	

Спектры ЯМР ¹Н соединений 4а-е

* Синглетный сигнал группы CH₃O находится при 3.65 м. д.

Протон в области 6.06 м. д., по данным разностного двойного резонанса, является вицинальным по отношению к протону в области 6.86 м. д. и, повидимому, оба принадлежат бензольному кольцу хинолинового фрагмента. Торсионный угол $\varphi_{2,3}$, рассчитанный по уравнению Карплуса–Конроя, с учетом стерических факторов по значению КССВ $J_{2,3} \sim 9.7$ Гц, равен 140°, что свидетельствует о том, что протоны 2 и 1 расположены *транс*псевдодиаксиально, при этом протоны 3 и 3а с КССВ $J_{3,3a} \approx 7$ Гц могут иметь как *цис*- так и *транс*-взаимное расположение. Поскольку илиды хинолиния реагируют в *анти*-форме [7–10], а протон 3а и протон 1 расположены *транс*-псевдодиаксиально, следовательно, протоны 3а и 3 расположены также *транс*-псевдодиаксиально. Таким образом, можно сделать заключение о *транс-транс-транс*-псевдодиаксиальной конфигурации соединения 4d. Эти данные хорошо согласуются с полученными ранее корреляционными данными ЯМР ¹Н и РСА для 1,2,3,3а-тетрагидропирроло-[1,2-*b*]хинолина [7–10].

Такая высокая стереоселективность свидетельствует о том, что реакция протекает по пути синхронного $[\pi_s 4+\pi_s 2]$ -циклоприсоединения илида. В пятицентровом переходном состоянии **A**, характерном для синхронного 1,3-диполярного циклоприсоединения, илид хинолиния находится в *анти*-форме, а *транс*-расположение заместителей в нитростироле сохраняется.

Очевидно, при протекании этой реакции по асинхронному механизму, например через аддукт Михаэля, стереохимия была бы иной.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления определяли на столике Кофлера, ИК спектры регистрировали на приборе Perkin-Elmer 577 в таблетках КВг, спектры ЯМР ¹Н – на спектрометре Brucker WM-250 (250 МГц) в ДМСО-d₆, масс-спектры на масс-спектрометре MAT INCOS-50 фирмы Finnigan (ионизирующая энергия 70 эВ). Элементный анализ проводили на приборе Perkin-Elmer C, H, N-analyzer.

2-Арил-1-бензоил-3-нитро-1,2,3,3а-тетрагидропирроло[1,2-*b***]хинолины (4а–е)** (общая методика). Суспензию 0.17 г (0.52 ммоль) бромида N-фенацилхинолиния **2** и 0.5 ммоль *транс*-2-нитростирола **3а–е** в 2 мл этанола выдерживают при 40–45 °C до образования раствора, к которому добавляют 0.08 мл (0.6 ммоль) триэтиламина. Наблюдается кратковременное покраснение реакционной массы, через 3–4 мин выделяется оранжевый осадок продукта, который отфильтровывают, последовательно промывают водой, этанолом, гексаном и кристаллизуют из этанола. Характеристики полученных соединений **4а–е** приведены в табл. 1–3.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. П. Литвинов, А. М. Шестопалов, *ЖОрХ*, **33**, 975 (1997).
- 2. Y. Tominaga, Y. Miyake, H. Fujito, K. Kurata, H. Awaya, H. Matsuda, G. Kabayashi, *Chem. Pharm. Bull*, **25**, 1528 (1977).
- 3. Y. Tominaga, Y. Matsuda, J. Heterocycl. Chem., 22, 937 (1985).
- 4. Y. Tominaga, Y. Shiroshita, A. Hosomi, J. Heterocycl. Chem., 25, 1745 (1988).
- 5. Y. Tominaga, Y. Shiroshita, T. Kurokava, H. Gotou, Y. Matsuda, A. Hosomi, J. Heterocycl. Chem., 26, 477 (1989).
- К. С. Чунихин, Л. А. Родиновская, А. М. Шестопалов, в кн. Молодежная научная школа по органической химии, Тез. Всероссийской науч. конф., Екатеринбург, 2000, 132.
- 7. А. М. Шестопалов, В. П. Литвинов, Ю. А. Шаранин, Г. Е. Хорошилов, *ДАН*, **312**, 1156 (1990).
- А. М. Шестопалов, Ю. А. Шаранин, В. Н. Нестеров, Г. Е. Хорошилов, В. Е. Шкловер, Ю. Т. Стручков, В. П. Литвинов, XTC, 1354 (1991).
- 9. А. М. Шестопалов, Дис. докт. хим. наук, Москва, 1991.
- 10. В. П. Литвинов, *ЖОрХ*, **31**, 1441 (1995).

Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913, Россия e-mail: shchem@dol.ru Поступило в редакцию 14.03.2001 После доработки 30.05.2001