С. Н. Михайличенко, А. А. Чеснюк, В. Е. Заводник^а, С. И. Фирганг⁶, Л. Д. Конюшкин⁶, В. Н. Заплишный

ПРОИЗВОДНЫЕ сим-ТРИАЗИНА

2*. ПОЛУЧЕНИЕ, СВОЙСТВА И СТРОЕНИЕ 2-ОКСО-1,2-ДИГИДРО-*сим*-ТРИАЗИНОВ

Получены не описанные ранее 2-оксо-1,2-дигидро-*сим*-триазины и исследовано их алкилирование. Установлено, что, независимо от строения и природы заместителя в положениях 4 и 6 триазинового цикла, а также строения алкилгалогенида, реакция протекает региоселективно по атому кислорода. Методом РСА исследовано стереостроение 2-оксо-1,2-дигидро*сим*-триазинов и показано, что в кристаллическом состоянии они существуют в форме димеров.

Ключевые слова: 2-оксо-1,2-дигидро-*сим*-триазины, алкилирование, РСА.

Ранее [1] нами описаны новые четвертичные триметиламмониевые соли на основе различных производных 2-хлор-4,6-R,R'-*сим*-триазинов и исследованы некоторые их превращения. Попытка получить меркаптотриазины из четвертичных солей обработкой их водным раствором Na₂S не увенчалась успехом; при этом неожиданно были получены 2-оксо-1,2дигидро-*сим*-триазины. В настоящей работе показано, что последние гладко и с хорошими выходами (62–84%) образуются также при обработке четвертичных солей **1а**-**f** водным раствором щелочи. Оксосоединения, возможно, получаются в результате изомеризации 2-гидрокси-*сим*-триазина, образующегося в результате замещения триметиламиногруппы гидроксил-анионом.

1, **2** a $R = R' = N(CH_2CH_2)_2O$; b $R = R' = N(CH_2)_5$; c R = OMe, $R' = N(CH_2CH_2)_2O$; d R = R' = OMe; e R = R' = SPh; f $R = R' = NHCH_2Ph$

Подобная изомеризация описана [2] для реакции толуола с 2,4-дихлор-6-замещенными-1,3,5-триазинами по Фриделю–Крафтсу, а также для взаимодействия 2-метокси-4,6-дихлортриазина с натриймалоновым эфиром [3]. Интересно, что, согласно работе [4], циануровая кислота в щелочной среде находится преимущественно в енольной форме, а кислый гидролиз 2-алкокси-4,6-диалкиламино-*сим*-триазинов приводит к соответствующим 2-окси-4,6-диалкиламино-*сим*-триазинам [5, 6].

Состав и строение полученных соединений подтверждаются данными элементного анализа, ИК и масс-спектроскопии, а также спектрами ЯМР ¹Н (табл. 1). В ИК спектрах имеются сильные и средней интенсивности уширенные полосы поглощения, характерные для валентных колебаний группы NH в области 3430–3440, группы C=O при 1670–1690, а также набор полос поглощения в области 1640–1510 см⁻¹, характерных для связи C=C и сопряженной связи C=N (табл. 1).

В спектрах ЯМР ¹Н синтезированных соединений присутствует уширенный синглет группы NH при 10.52–13.05 м. д., а также сигналы протонов заместителей в положениях 4 и 6 триазинового цикла (табл. 1).

Поскольку в литературе имеются только отрывочные данные о синтезе 2-оксо-1,2-дигидро-*сим*-триазинов [2, 3], а их свойства изучены мало, в настоящей работе рассмотрено алкилирование этих соединений.

Таблица 1

Соеди-	Брутто-		<u>Найдено, %</u> Вычислено, %		Т. пл., ℃	Выход, %
нение	формула*	С	N	Н		
2a	$C_{11}H_{17}N_5O_3$	<u>49.57</u> 49.42	<u>26.45</u> 26.20	<u>6.63</u> 6.41	310-311	62
2b	C ₁₃ H ₂₁ N ₅ O	<u>59.52</u> 59.29	<u>26.85</u> 26.59	<u>8.29</u> 8.04	220	84
2c	$C_8H_{12}N_4O_3$	<u>45.41</u> 45.28	<u>26.75</u> 26.40	<u>5.89</u> 5.70	239–241	62
2d	C ₅ H ₇ N ₃ O ₃	<u>38.37</u> 38.22	<u>26.99</u> 26.74	<u>4.65</u> 4.49	202–203	70
2e	$C_{15}H_{11}N_3OS_2$	<u>57.72</u> 57.49	<u>13.54</u> 13.41	<u>3.77</u> 3.54	231–232	70
2f	C ₁₇ H ₁₇ N ₅ O	<u>66.58</u> 66.43	<u>22.91</u> 22.79	<u>5.82</u> 5.58	>400	80
3 a	C ₁₂ H ₁₉ N ₅ O ₃	<u>51.47</u> 51.23	<u>25.13</u> 24.90	<u>7.02</u> 6.81	154–155	65
3b	C ₁₄ H ₂₃ N ₅ O ₃	<u>54.52</u> 54.35	<u>25.05</u> 24.90	<u>8.48</u> 8.24	146147	50
3c	C ₁₅ H ₂₅ N ₅ O ₃	<u>55.87</u> 55.71	<u>21.92</u> 21.66	<u>7.88</u> 7.79	98–99	60
3d	$C_{16}H_{13}N_3OS_2$	<u>58.78</u> 58.69	<u>12.99</u> 12.83	<u>4.23</u> 4.00	55–56	64

Характеристики синтезированных соединений

* Соединение 2е – найдено: S 20.57%, вычислено: S 20.46%; соединение 3d – найдено: S 19.75%, вычислено: S 19.58%.

Взаимодействие 2-оксо-1,2-дигидро-*сим*-триазинов **2а,е** с алкилгалогенидами проводили в ацетонитриле или в ДМФА, в присутствии гидроксида калия при эквимолярном соотношении реагентов.

3a-c $R = R' = N(CH_2CH_2)_2O$, **d** R = R' = SPh; **a**, **d** R'' = Me; **b** $R'' = C_3H_7$, **c** $R'' = C_4H_9$

Установлено, что независимо от природы галогенпроизводного, растворителя и температуры реакция протекает высокорегиоселективно по атому кислорода и приводит к образованию 2-алкокси-4,6-дизамещенных *сим*-триазинов **3а–d** с выходами 60–70%. Определяющим фактором региоселективности, по-видимому, является локализация отрицательного заряда на атоме кислорода промежуточной калиевой соли. Строение 2-алкокси-4,6-дизамещенных *сим*-триазинов **3а–d** подтверждено данными ИК и масс-спектров, ЯМР ¹Н (табл. 2).

В ИК спектрах соединений **3а–d** отсутствуют полосы поглощения, характерные для связей С=О и N–H, но имеется ряд полос при 1015–1170 см⁻¹, характерных для валентных колебаний простой эфирной связи. В спектрах ЯМР ¹Н нет уширеннного сигнала протона группы NH и присутствуют сигналы протонов алкоксигруппы (табл. 2).

С целью подтверждения строения и для детального изучения геометрии молекул проведено рентгеноструктурное исследование соединений **2a** и **2c**. Проекции пространственных моделей молекул представлены на рисунке, а координаты атомов, значения межатомных расстояний, валентных и торсионных углов сведены в табл. 3–5.

Установлено, что в кристаллическом состоянии соединения **2а,с** находятся в виде димеров, соединенных между собой по оксо- и аминогруппе водородной связью, длина которой в соединении **2a** составляет 1.77 Å, а в **2c** – 1.836 Å. Димеризация, вероятно, и является причиной высокоплавкости, плохой растворимости и малой реакционной способности соединений **2**. При этом неполное сопряжение приводит к деформации триазинового цикла. Наиболее деформирован такой цикл с разными заместителями в положениях 4 и 6.

Самой длинной в триазиновом цикле обоих соединений является связь $N_{(3)}-C_{(6)}$: 1.377 для соединения **2с** и 1.385 Å для **2а**. Длина остальных связей С–N и С=N соединения **2а** варьирует в пределах от 1.317 ($C_{(7)}-N_{(4)}$) до 1.361 Å ($C_{(7)}-N_{(3)}$), тогда как длина таких связей для незамещенного *сим*-триазина, по данным авторов [8], составляет 1.337 Å. Деформированы и валентные углы соединения **2а**. Наиболее искажены углы при атомах $N_{(4)}$ (116.0°), $N_{(2)}$ (115.9°) и $C_{(5)}$ (127.0°).

Таблица 2

Спектральные характеристики синтезированных соединений*

Соеди-	ИК спектр, ү , см ⁻¹			Спектр ЯМР ¹ Н, б, м. д. (КССВ, <i>J</i> , Гц)**					
нение	NH	C=O	C=N, C=C	COC	CH3	NCH ₂ , OCH ₂	OCH3, c	NH, уш. с	Другие протоны
2 a	3440		1590, 1560	1150, 1070	-	3.53-3.73 (16Н, м)		10.52	-
2b	3430	1670	1630, 1570, 1510	1100, 1140		3.55–3.70 (16Н, м)	3.9	11.45	
2c	3440	1690	1630, 1570, 1500	1190, 1120	-		3.89	12.30	_
2d	3430	1670	1640, 1570, 1520	1230, 1140		-	-	13.05	7.29–7.50 (10Н, м, H(Ar)
3 a	-		1560, 1520	1130, 1090, 1050, 1030	-	3.56–3.78 (16Н, м)	3.81		-
3b	-		1570, 1530	1140, 1100, 1060	0.72 (3Н, т, J = 9)	3.58–3.73 (16Н, м); 4.16 (2Н, т, <i>J</i> = 6, ОСН ₂)			1.64–1.78 (2Н, м, ОСН <u>2СН2</u> СН3)
3c	-		1570, 1520	1170, 1140, 1100, 1030	0.97 (3Н, т, J = 9)	3.58–3.73 (16Н, м); 4.20 (2Н, т, <i>J</i> = 8, ОСН ₂)	-	-	1.37–1.50 (2Н; м, <u>CH2</u> CH3) 1.61–1.71 (2Н, м, – <u>CH</u> 2CH2CH3)
3d	_	-	1570, 1520	1160, 1140, 1055, 1015	-	_	3.72	_	7.24–7.43 (10Н, м, Н (Ar)

* Данные масс-спектров можно получить у авторов.
** Спектр ЯМР ¹Н, м. д., *J* (Гц): **3b**: 0.72 (3H, т, *J* = 9, CH₃); **3c**: 0.97 (3H, т, *J* = 9, CH₃).

329

Координаты атомов*	$(x \ 10^4)$) соединений	2a,c
--------------------	--------------	--------------	------

Атом	x	у	Z	U (eq)
		Соединение 2с		
O(1)	6966(5)	1229(4)	5770(4)	67(1)
O(2)	-660(5)	8455(5)	1694(4)	71(1)
O(3)	5557(5)	8401(4)	-888(4)	60(1)
N(1)	5005(6)	3646(5)	3192(4)	57(1)
N(2)	2071(6)	5974(5)	2502(4)	54(1)
N(3)	2495(6)	8361(5)	406(4)	56(1)
N(4)	5441(5)	5966(5)	1131(4)	49(1)
C(1)	7221(8)	2698(8)	308(6)	63(2)
C(2)	8015(9)	2275(8)	4560(6)	62(2)
C(3)	4810(8)	2193(8)	5920(6)	59(2)
C(4)	3848(9)	2696(8)	4488(6)	59(2)
C(5)	4108(7)	5244(6)	2252(5)	46(1)
C(6)	1208(8)	7608(6)	1555(5)	53(1)
C(7)	4526(7)	7507(6)	254(5)	49(1)
C(8)	7777(9)	7595(8)	-1123(8)	62(2)
O(1)	102(5)	2524(5)	-156(2)	56(1)
	1	Соединение 2а	1	1
O(2)	9574(5)	4800(4)	3572(2)	58(1)
O(3)	3993(5)	1042(4)	7759(3)	61(1)
N(1)	3199(5)	2475(5)	1775(3)	44(1)
N(2)	6443(5)	3637(5)	2606(3)	42(1)
N(3)	7321(5)	3702(5)	4640(3)	40(1)
N(4)	4034(5)	2488(4)	3751(3)	38(1)
N(5)	4945(5)	2552(5)	5737(3)	39(1)
C(1)	1137(7)	1635(7)	1782(4)	46(1)
C(2)	-335(8)	2477(9)	985(4)	54(1)
C(3)	2086(7)	3446(7)	-124(4)	51(1)
C(4)	3623(7)	2633(8)	607(4)	51(1)
C(5)	4616(6)	2882(5)	2742(3)	36(1)
C(6)	7815(6)	4058(6)	3574(3)	40(1)
C(7)	5421(6)	2917(5)	4698(3)	36(1)
C(8)	6507(8)	2401(9)	6743(4)	52(1)
C(9)	5718(8)	2346(8)	7838(4)	55(1)
C(10)	2439(8)	1401(9)	6884(4)	61(2)
C(11)	3006(8)	1397(8)	5716(4)	53(1)

* Координаты атомов водорода могут быть получены у авторов.

Соединение **2с** содержит в положениях 4 и 6 триазинового цикла заместители различной природы и строения, что приводит к еще большей деформации валентных углов и изменению длин связей в триазиновом цикле. Длина сопряженных связей в этом соединении варьирует в пределах от 1.288 (C₍₇₎–N₍₄₎) до 1.355 Å (C₍₆₎–N₍₂₎), а значения валентных углов – от 113.6 (C₍₇₎–N₍₄₎–C₍₅₎) до 126.9° (N₍₂₎–C₍₅₎–N₍₄₎). Такое искажение длин связей и значений валентных углов в триазиновом цикле соединения **2с**,

Таблица 4

Межатомные расстояния в молекулах 2а,с

Атом	d, Å	Атом	<i>d</i> . Å
Соеди	инение 2а	Соед	инение 2с
O(1)–C(3)	1.424(5)	O(1)-C(3)	1.420(6)
O(1)-C(2)	1.429(6)	O(1)-C(2)	1.425(6)
O(2)–C(6)	1.250(5)	O(2)C(6)	1.233(5)
O(3)-C(9)	1.414(6)	O(3)-C(7)	1.320(5)
O(3)-C(10)	1.414(6)	O(3)-C(8)	1.441(6)
N(1)-C(5)	1.343(5)	N(1)-C(5)	1.339(5)
N(1)C(1)	1.459(6)	N(1) - C(1)	1.451(6)
N(1) - C(4)	1.462(6)	N(1)-C(4)	1.466(6)
N(2)-C(6)	1.328(5)	N(2)-C(5)	1.323(5)
N(2)-C(5)	1.335(5)	N(2)-C(6)	1.355(5)
N(3)-C(7)	1.361(5)	N(3)-C(7)	1.329(6)
N(3)-C(6)	1.385(5)	N(3)-C(6)	1.377(5)
N(4) - C(7)	1.317(5)	N(4)-C(7)	1.288(5)
N(4)C(5)	1.350(5)	N(4)-C(5)	1.374(5)
N(5)-C(7)	1.351(5)	C(1)-C(2)	1.496(8)
N(5)-C(8)	1.467(6)	C(3)-C(4)	1.504(8)
N(5)-C(11)	1.474(6)		
C(1) - C(2)	1.503(7)		
C(3)-C(4)	1.481(7)		
C(8)-C(9)	1.486(7)		
C(10)-C(11)	1.495(7)		

Таблица 5

Валентные углы в соединениях 2а,с

Угол	ф, град	Угол	ф, град	
Соединение 2а		Соединение 2с		
C(3)-O(1)-C(2)	110.5(3)	C(3)-O(1)-C(2)	109.7 (4)	
C(9)-O(3)-C(10)	109.4(4)	C(7)–O(3)–C(8)	117.4 (4)	
(5)-N(1)-C(1)	123.2(3)	C(5)-N(1)-C(1)	124.1 (4)	
C(5)-N(1)-C(4)	123.3(3)	C(5)–N(1)–C(4)	123.2 (4)	
C(1)-N(1)-C(4)	113.1(3)	C(1)-N(1)-C(4)	112.6 (4)	
C(6)-N(2)-C(5)	115.9(3)	C(5)–N(2)–C(6)	116.6 (4)	
C(7)–N(3)–C(6)	119.9(4)	C(7)–N(3)–C(6)	120.4 (4)	
C(7)-N(4)-C(5)	116.0(3)	C(7)-N(4)-C(5)	113.6 (4)	
C(7)–N(5)–C(8)	121.0(4)	N(1)-C(1)-C(2)	109.8 (4)	
C(7)–N(5)–C(11)	116.6(3)	O(1)-C(2)-C(1)	110.0 (5)	
C(8)-N(5)-C(11)	114.0(4)	O(1)-C(3)-C(4)	112.1 (5)	
N(1)-C(1)-C(2)	110.6(4)	N(1)-C(4)-C(3)	109.4 (5)	
O(1)-C(2)-C(1)	111.4(4)	N(2)C(5)N(1)	117.8 (4)	
O(1)-C(3)-C(4)	111.9(4)	N(2)-C(5)-N(4)	126.9 (4)	
N(1)C(4)C(3)	110.5(4)	N(1)-C(5)-N(4)	115.3(4)	
N(2)-C(5)-N(1)	116.7(3)	O(2)-C(6)-N(2)	123.1(5)	
N(2)C(5)N(4)	127.0(4)	O(2)-C(6)-N(3)	118.8(4)	
N(1)-C(5)-N(4)	116.3(3)	N(2)–C(6)–N(3)	118.1(4)	
O(2)C(6)-N(2)	122.5(4)	N(4)–C(7)–O(3)	122.2(4)	
O(2)C(6)-N(3)	117.2(4)	N(4)-C(7)-N(3)	124.4(4)	
N(2)–C(6)–N(3)	120.3(4)	O(3)C(7)N(3)	113.4(4)	
N(4)-C(7)-N(5)	119.2(3)			
N(4)-C(7)-N(3)	121.0(4)			
N(5)–C(7)–N(3)	119.9(4)			
N(5)-C(8)-C(9)	111.9(4)			
O(3)C(8)C(9)	111.9(4)			
O(3)–C(9)–C(8)	111.9(4)			
O(3)-C(10)-C(11)	112.0(5)			
(5)-C(11)-C(10)	111.5(4)			

Проекции молекул соединения 2а,с

Торсионные углы в соединениях 2а,с

Таблица б

Угол	Ө, град	Угол	Ө, град	
Соединение 2а		Соединение 2с		
C(4)-N(1)-C(1)-C(2)	-50.7	C(4)-N(1)-C(1)-C(2)	-54.6	
C(5)-N(1)-C(1)-C(2)	136.2	C(5)-N(1)-C(1)-C(2)	123.0	
C(3)-O(1)-C(2)-C(1)	58.5	C(3)O(1)C(2)C(1)	61.7	
N(1)C(1)C(2)O(1)	53.8	N(1)-C(1)-C(2)-O(1)	58.9	
C(2)-O(1)-C(3)-C(4)	59.7	C(2)-O(1)-C(3)-C(4)	60.0	
C(1)-N(1)-C(4)-C(3)	51.5	C(1)-N(1)-C(4)-C(3)	51.7	
C(5)–N(1)–C(4)–C(3)	-135.5	C(5)-N(1)-C(4)-C(3)	-125.9	
O(1)-C(3)-C(4)-N(1)	-55.6	O(1)C(3)C(4)N(1)	-54.2	
C(7)–N(5)–C(8)–C(9)	168.6			
C(11)-N(5)-C(8)-C(9)	44.3			
C(10)-O(3)-C(9)-C(8)	-62.0			
N(5)-C(8)-C(9)-O(3)	53.3			
C(9)-O(3)-C(10)-C(11)	61.8			
C(7)N(5)-C(11)-C(10)	-167.5			
C(8)–N(5)–C(11)–C(10)	44.0			
O(3)-C(10)-C(11)-N(5)	-52.7			

332

по-видимому, связано с частичным сопряжением неподеленной электронной пары атома кислорода метоксигруппы с кратной связью $C_{(7)}$ — $N_{(4)}$ и перераспределением электронной плотности в цикле. Этими же эффектами, по-видимому, можно объяснить и некоторое уменьшение длин связей N—H (0.936 Å) и C=O (1.233 Å) в соединении **2с** по сравнению с длинами соответствующих связей в соединении **2a** (1.004 и 1.25 Å).

Интересно, что морфолильный заместитель в положении 6 соединения 2а находится в конформации полукресло. При этом длины простых связей С-С в этом фрагменте несколько короче по сравнению со средней длиной связи С-С в алифатических циклических аминах, а валентные углы несколько искажены (табл. 3). Такой же заместитель в положении 4 триазинового цикла имеет конформацию кресло при меньшем искажении длин связей и валентных углов по сравнению со средними значениями для подобных соединений (табл. 4-6).

В соединении 2с морфолильный заместитель в положении 6 триазинового цикла также находится в конформации полукресло, при этом его торсионные углы практически совпадают с таковыми у заместителя в положении 6 соединения 2а (табл. 5, 6). Атом углерода метильной группы расположен в той же плоскости, что и триазиновый цикл.

Таким образом, синтезированы новые 2-оксо-1,2-дигидро-*сим*-триазины, изучены их реакционная способность в реакциях алкилирования и строение, что позволило установить их склонность к димеризации в кристаллическом состоянии за счет водородной связи N–H...O=C.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны для суспензий образцов в вазелиновом масле на спектрофотометре Specord IR-75. Спектры ЯМР ¹Н сняты для растворов образцов в ДМСО-d₆ на радиоспектрометре Bruker WM-250 (250 МГц). Масс-спектры записаны на приборе Finnigan MAT INCOS50 (70 эВ). Контроль за ходом реакции и чистотой получаемых продуктов проводили методом TCX на пластинках Silufol UV-254 в системе ацетон–гексан, 1:1.

Рентгеноструктурное исследование соединений 2а,с. Призматические кристаллы выращены из раствора в этиловом спирте.

Соединение 2а. $C_{11}H_{17}N_5O_3$. Параметры элементарной ячейки: a = 6.877(1) Å; b = 7.834(2) Å; c = 11.762(2); $\alpha = 92.08(3)^\circ$; $\beta = 100.66(3)^\circ$; $\gamma = 99.80(3)^\circ$; Z = 2; d = 1.450 Mg/m³; V = 612.1(2) Å³. Пространственная группа Triclinic, P-1.

Соединение 2с. $C_8H_{12}N_4O_3$. Параметры элементарной ячейки: a = 7.023(1) Å; b = 8.573(2) Å; c = 9.439(2) Å, $\alpha = 69.07(3)^\circ$; $\beta = 76.33$ (3)°; $\gamma = 67.38(3)^\circ$; Z = 2; d = 1.448 Mg/m³; V = 486.7(1) Å³. Пространственная группа Triclinic, P-1. Экспериментальные данные получены на автоматическом дифрактометре Enraf-Nonius CAD 4 на МоК α -излучении с β -фильтром методом $\theta/2\theta$ -сканирования. Всего получено 944 отражений с $I > 2\delta$ (I). Структура расшифрована прямым методом по комплексу программ SHELXTL [8] и уточнена в анизотропном (изотропном для атомов H) приближении до факторов расходимости 2a R = 0.0390, $R_w = 0.0439$; 2c R = 0.0469, $R_w = 0.0470$.

2-Оксо-1,2-дигидро-4,6-R,R'-*сим*-триазины (2а–f). Смесь 9 ммоль хлорида 2-триметиламмонио-4,6-R,R'-*сим*-триазина, полученного по методике [1], и 18 ммоль NaOH выдерживают при перемешивании и температуре 40 °C в течение 3–5 ч. Затем, реакционную смесь подкисляют CH₃COOH до pH 6.5–5.0, выпавший осадок продукта 2 отфильтровывают, промывают водой и очищают кристаллизацией из спирта.

2-Алкокси-4,6-R,R'-сим-триазины (3а-d). К раствору 1.9 ммоль соединения 2а-f в 10-15 мл ДМФА быстро добавляют 1.5 мл (1.9 ммоль) 10% водного раствора КОН. К полученному раствору при перемешивании добавляют 1.9 ммоль алкилгалогенида и

выдерживают смесь от 3 ч до 2 сут при 25-60 °C. Затем содержимое разбавляют 2-кратным количеством воды, выпавший осадок продукта отфильтровывают, промывают водой и очищают перекристаллизацией из смеси гексан-бензол, 3 : 1.

При использовании в качестве растворителя ацетонитрила после завершения реакции ацетонитрил упаривают в вакууме, осадок отфильтровывают и обрабатывают согласно описанному выше.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. А.Чеснюк, С. Н. Михайличенко, В. С. Заводнов, В. Н. Заплишный, ХГС, 197 (2002).
- 2. В. Н. Заплишный, Э. С. Аванесян, Г. М. Погосян, XTC, 558 (1979).
- 3. Г. М. Вахантова, Л. Н. Яхонтов, *ХГС*, 554 (1980).
- 4. Г. М. Погосян, В. А. Панкратов, В. Н. Заплишный, С. Г. Мацоян, *Политриазины*, Изд-во АН АрмССР, Ереван, 1987.
- 5. В. В. Довлатян, В. А. Пивазян, К. А. Элиазян, Арм. хим. журн., 33, № 3, 247 (1980).
- 6. В. В. Довлатян, *XГС*, 17 (1998).
- 7. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1974.
- 8. P. J. Wheatley, Acta Crysallogr., 8, 224 (1955).
- 9. G. M. Sheldrick, Computational Crystallography, Oxford Univ. Press, Oxford, 506 (1982).

Кубанский государственный аграрный университет, Краснодар 350044, Россия e-mail: vlad.zpl@mail.ru Поступило в редакцию 18.07.2000 После доработки 11.02.2001

^вНаучно-исследовательский физикохимический институт им. Л. Я. Карпова, Москва 103064, Россия

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913, Россия