Г. Н. Липунова, Э. В. Носова, В. Н. Чарушин, О. М. Часовских

СИНТЕЗ ФТОРИРОВАННЫХ ПРОИЗВОДНЫХ 1,3,4-ОКСАДИАЗИНО[6,5,4-*i*,*j*]ХИНОЛИНА

3-(2-Ацилгидразино)-2-тетра(пента)фторбензоилакрилаты легко превращаются в ациламинозамещенные хинолоны, а в более жестких условиях происходит аннелирование оксадиазинового цикла. Выявлена возможность циклизации указанных акрилатов в 4,5-замещенные пиразолы.

Ключевые слова: гидразиды ароматических и пиридинкарбоновых кислот, 1,3,4-оксадиазино[6,5,4-*i*,*j*]хинолины, реакционная способность, спектральные характеристики.

Производные 4-оксо-6-фтор-1,4-дигидро-3-хинолинкарбоновой кислоты (фторхинолоны) зарекомендовали себя как эффективные антибактериальные средства [1–3]. Особенно перспективны в этом ряду три- и тетрациклические фторхинолоны, которые наряду с антибактериальной обладают противовирусной и противоопухолевой активностью. Важнейшими представителями полициклических фторхинолонов, нашедшими применение в клинической практике, являются препараты офлоксации (А), левофлоксации (оптически активный S-изомер офлоксацииа) и марбофлоксации (В), а также разрабатываемый препарат КВ-5246 (С) [4–6].

В соединениях **A** и **C** хинолоновый остов аннелирован по [i,j]-граням оксазиновым, а в соединении **B** – 1,3,4-оксадиазиновым циклом. Построение оксадиазинового цикла в соединении **B** осуществляется по схеме 1, причем данный способ позволяет получить только производные, не содержащие заместителей в положении 2 [7].

Схема 1

Синтез [*i*,*j*]-аннелированных хинолонов можно осуществить, если у хинолонового атома азота имеются заместители, содержащие нуклеофильный центр в γ-положении [8, 9]. Так, циклизации хинолонов, включающих тиосемикарбазидный фрагмент, позволили получить 1,3,4-тиадиазино[*i*,*j*]-аннелированные системы [9].

Из этиловых эфиров 2-полифторбензоил-3-этоксиакриловых кислот 1a,b и гидразидов бензойной и *м*-нитробензойной и уксусной кислот 2a,b,e в этаноле или пиридинкарбоновых кислот 2e,d в толуоле при комнатной температуре с выходами 71–97% нами синтезированы 3-(2-ацилгидразино)-2-тетра(пента)фторбензоилакрилаты 3a-h (схема 2) и изучена их циклизация. Подобно исходным акрилатам 1a,b, соединения 3a-c,hв растворе находятся в виде смеси двух изомеров (3' и 3") относительно связи C=C боковой цепи, о чем свидетельствует наличие в спектрах ЯМР ¹Н двойного набора сигналов протонов (табл. 1).

3e-5e X = F, R = пиридинил-4; **2d**, **3f-5f** X = H, R = пиридинил-3, **3g-5g** X = F, R = пиридинил-3; **2e**, **3h**, **4h** X = H, R = Me; **2f**, **3i**, **4i** X = H, R = CH₂CN

Соеди- нение	Растворитель	=CH <u>NH</u>		NHCO, уш. с		= <u>CH</u> NH		Соотношение	
		3'	3″	3'	3"	3'	3"	изомеров 3': 3''	
3a	CD3CN	11.90, уш. д, ³ J _{HH} = 11.0	10.45, уш. д, ³ J _{HH} = 11.0	\$	0.70	8.31, д, ³ J _{HH} = 11.0	8.11, д, ³ J _{НН} = 11.0	3:1	
3b	CDC1 ₃	12.0, уш. д, ³ J _{HH} = 11.4	11.1, уш. д, ³ J _{НН} = 11.4	9.99	10.4	8.71 J _{HH} =	, д, 11.4	5:2	
3c	CDCl ₃	12.3, уш. с	11.1, уш. с	10.1	10.7	8.37, c	8.64, c	5:2	
3d *2	ДМСО-d ₆	12.3, уш. с		1	1.0	8.4	, C	-	
3e	ДМСО-d ₆	11.5, уш. с		1	1.5	8.4, c		-	
3f ^{*3}	ДМСО-d ₆	12.3, уш. с		11.0		8.3, c		_	
3g	ДМСО-d ₆	11.2, уш. с		11.2		8.4, c		_	
3h	ДМСО-d ₆	13.60, уш. с		10.15	11.05	8.24, c	7.83, c	4:3	

Спектры ЯМР ¹Н этиловых эфиров 3-(2-ацилгидразино-1)-2-[тетра(пента)фторбензоил]акриловых кислот За–h, δ, м. д., КССВ (Л, Гц

Окончание таблицы 1

Соеди- нение	R			Ĩ	COOEt				
				.	СН2, к		СН3, т		
	3'	3″	3'	3"	3'	3″	3'	3"	
3a	7.87 (2Н, м, 2'- и 6'-Н), 7.56 (3Н, м, 3'-,4'- и 5'-Н)			м	4.04, ${}^{3}J_{\rm HH} = 7.1$		$1.09, {}^{3}J_{\rm HH} = 7.1$		
3b	8.2-8.5 (3Н, м, 2'-, 4'- и 6'-Н),	7.72 (1Н, д. д, 5'-Н, ³ J _{HH} = 8.0)	7.02, м		4.05 ${}^{3}J_{\rm HH} = 7.0$	4.12 $^{3}J_{\rm HH} = 7.0$	1.07 ${}^{3}J_{\rm HH} = 7.0$	1.24 ${}^{3}J_{\rm HH} = 7.0$	
3c	8.72 (1H, м, 2'-H), 8.44 (1H, м, 4'-Н или 6'-H), 8.27 (1H, м, 4'-Н или 6'-H), 7.72 (1H, т, 5'-H, ³ J _{HH} = 7.9)	8.70 (1Н, м, 2'-Н), 8.41 (1Н, м, 4'-Н или 6'-Н), 8.23 (1Н, м, 4'-Н или 6'-Н), 7.68 (1Н, т, 5'-Н, ³ <i>J</i> _{НН} = 7.9)	_		4.06 ${}^{3}J_{\rm HH} = 7.0$	4.11 ${}^{3}J_{\rm HH} = 7.0$	1.09 ${}^{3}J_{\rm HH} = 7.0$	$^{1.01}_{^3J_{\rm HH}} = 7.0$	
3d	8.9 (2Н, м, 3'- и 5'-Н), 7.8 (2Н, м, 2'- и 6'-Н)		7.5,	м	4.1, ${}^{3}J_{\rm HH} = 7.1$		$1.1, {}^{3}J_{\rm HH} = 7.1$		
3e	8.8 (2Н, м, 3'- и 5'-Н), 7.8 (2Н, м, 2'- и 6'-Н)		-		4.0, ${}^{3}J_{\rm HH} = 7.1$		$1.1, {}^{3}J_{\rm HH} = 7.1$		
3f	9.1 (1Н, м, 2'-Н), 8.8 (1Н, м, 4'-Н), 7.7 (1Н, м, 6'-Н), 7.5 (1Н, м, 5'-Н)		7.5,	м	4.1, ${}^{3}J_{\rm HH} = 7.2$		$1.1, {}^{3}J_{\rm HH} = 7.2$		
3g	9.1 (1Н, м, 2'-Н), 8.7 (1Н, м, 4'-Н), 8.3 (1Н, м, 6'-Н), 7.6 (1Н, м, 5'-Н)				4.1, ${}^{3}J_{\rm HH} = 7.2$		$1.1, {}^{3}J_{\rm HH} = 7.2$		
3h	2.12 (3H, c, CH ₃ CO) 1.93 (3H, c, CH ₃ CO)		7.41, 6.95,	M M	4.14 ${}^{3}J_{\rm HH} = 7.0$	3.94 ${}^{3}J_{\rm HH} = 7.0$	1.20 ${}^{3}J_{\rm HH} = 7.0$	0.99 ${}^{3}J_{\rm HH} = 7.0$	

* Установлено по соотношению интенсивностей удвоенных сигналов. *² Спектр ЯМР ¹⁹F (ДМСО-d₆): 157.6 (1F, м), 156.2 (1F, м), 143.4 (1F, м), 140.1 (1F, м). *³ Спектр ЯМР ¹⁹F (ДМСО-d₆): 157.7 (1F, м), 156.2 (1F, м), 142.3 (1F, м), 140.2 (1F, м).

Соеди- нение	Растворитель	NH, уш. с	2-H, c	5-H	R	ОСН ₂ , к	СН3, т
4 a	CD ₃ CN	10.75	8.50	7.66 м	7.97 (3Н, м); 7.58 (2Н, м)	4.24	1.30
4b	CD3CN	10.9	8.54	8.01 (д. д. д. д. ${}^{3}J_{\rm HF} = 10.4,$ ${}^{4}J_{\rm HF} = 8.2,$ ${}^{5}J_{\rm HF} = 2.2)$	8.76 (1H, д. д. ⁴ J _{IH} = 1.7, 2'-H,); 8.49 (1H, д. д. д. ³ J _{IH} = 8.3, ⁴ J _{HH} = 2.4, ⁴ J _{HH} = 1.1, 4'- или 6'-H); 8.30 (1H, м, 4'- или 6'-H); 7.83 (1H, д. д. ³ J _{HH} = 8.1, 5'-H)	4.26	1.31
4c	CDCl ₃	12.4	8.54	-	8.98 (1H, д. д. ⁴ J _{HH} = 1.8, 2'-H); 8.45 (2H, м, 4'-, 6'-H); 7.73 (1H, д. д. ³ J _{HH} = 7.9, 5'-H)	4.09	1.19
4d	ДМСО-d ₆	12.9	8.81	8.04 (д. д. д. д. ${}^{3}J_{\rm HF} = 10.2,$ ${}^{4}J_{\rm HF} = 8.0,$ ${}^{5}J_{\rm HF} = 2.1)$	8.87 (2H, д. д. $^{4}J_{HH} = 4.4, {}^{5}J_{HH} = 1.5, 3'-, 5'-H);$ 7.87 (2H, д. д. $^{4}J_{HH} = 4.4, {}^{5}J = 1.5, 2'-, 6'-H)$	4.26	1.30
4e	ДМСО-d ₆	12.85	8.72	_	8.87 (2H, μ , μ , $J_{HH} = 4.4$, ${}^{5}J_{HH} = 1.5$, 3'-, 5'-H); 7.85 (2H, μ , μ , ${}^{4}J_{HH} = 4.4$, ${}^{5}J = 1.5$, 2'-, 6'-H)	4.23	1.29
4g	ДМСО-d ₆	12.6	8.56		9.09 (1H, \exists , \exists , ${}^{4}J_{\text{HH}} = 1.5$, ${}^{5}J_{\text{HH}} = 0.9$, 2'-H); 8.80 (1H, \exists , \exists , ${}^{3}J_{\text{HH}} = 4.9$, ${}^{4}J_{\text{HH}} = 2.1$, 4'-H); 8.26 (1H, \exists , \exists , \exists , ${}^{3}J_{\text{HH}} = 7.9$, ${}^{4}J_{\text{HH}} = 2.1$, ${}^{4}J_{\text{HH}} = 1.5$, 6'-H); 7.58 (1H, \exists , \exists , \exists , ${}^{3}J_{\text{HH}} = 7.9$, ${}^{3}J_{\text{HH}} = 4.9$, ${}^{5}J_{\text{HH}} = 0.9$, 5'-H)	4.27	1.34
4h	CDCl ₃	11.68	8.45	7.71 (д. д. д. д. ${}^{3}J_{\rm HF} = 10.5,$ ${}^{4}J_{\rm HF} = 8.1,$ ${}^{5}J_{\rm HF} = 2.1)$	2.33 (3H, c, COCH ₃)	4.09	1.24
4i	ДМСО-d ₆	12.4	8.61	8,0 м	3.99 (2H, c, CH ₂ CN)	4,26	1.29

Таблица 2 Спектры ЯМР ¹Н этиловых эфиров 5-Х-1-ациламино-4-оксо-6,7,8-трифтор-1,4-дигидро-3-хинолинкарбоновых кислот 4а-e,g,h,i, б, м. д., КССВ (J), Гц

Циклизация акрилатов **3** может протекать по двум направлениям: кипячение соединений **3a**–**e**,**g**,**h** в бензоле (толуоле) в течение 1 ч приводит к 1-ациламинозамещенным хинолонам **4a**–**e**,**g**,**h** (выходы 40–92%); при более длительном нагревании акрилатов **3a**–**g** в толуоле в присутствии K₂CO₃ (3–4 ч) за формированием хинолонового остова следует циклизация с участием атома кислорода амидной группы, ведущая к соединениям **5a**–**g** (выходы 56–87%). Ацилгидразиды **3d**,**e**,**f**,**g** могут быть превращены в трициклические соединения **5d**,**e**,**f**,**g** в кипящем толуоле и в отсутствие основания. Акрилат **3f** циклизуется до хинолона **5f** настолько легко, что не удается выделить производное **4f**. Бициклические хинолоны **4a**–**e** превращаются в трициклические производные **5a**–**e** при нагревании в толуоле в присутствии K₂CO₃. Соединения **5e**,**g** получены также при кипячении соответствующих акрилатов **3e**,**g** в ацетонитриле в присутствии КF в течение 3 ч.

Хинолоны **4h,i** могут быть получены и без выделения промежуточных гидразидоакрилатов **3h,i**. Так, выдерживание в этаноле при комнатной температуре (5 ч) смеси гидразида уксусной кислоты **2e** и 2-тетрафторбензоил-3-этоксиакрилата **1a** и последующее кипячение остатка после удаления растворителя в толуоле (4 ч) привели к продукту **4h** (выход 91%). При нагревании смеси гидразида циануксусной кислоты **2f** и акрилата **1a** в толуоле (80 °C, 1.5 ч), выход хинолона **4i** составил 63%.

Осуществить превращение **4h**,**i**→**5h**,**i** не удалось при проведении реакции как в толуоле с K₂CO₃, так в диоксане с NaH. Только при нагревании соединения **4h** в ацетонитриле в присутствии диазабициклоундец-7-ена спектрально регистрируется продукт циклизации, в спектре ЯМР ¹H которого сигнал протона полифторбензольного фрагмента наблюдается в виде дублета дублетов (${}^{3}J = 10.2$, ${}^{4}J = 7.6$ Гц), в то время как для хинолона **4h** он проявляется в виде дублета дублетов дублетов. Изолировать индивидуальный продукт этой реакции и однозначно установить его строение не удалось.

Строение синтезированных этиловых эфиров 1-ациламино-5-Х-4-оксо-6,7,8-трифтор-1,4-дигидрохинолин-3-карбоновых кислот **4a–e,g,h,i** и этиловых эфиров 2-R-8-Х-7-оксо-9,10-дифтор-7-Н-[1,3,4]-оксадиазино[6,5,4-*i,j*]хинолин-6-карбоновых кислот **5a–g** установлено на основании данных ЯМР ¹H, ¹⁹F и масс-спектров. Так, в спектрах ЯМР ¹H хинолонов **4a–e,g,h,i** наблюдаются синглетный сигнал протона 2-H, дублет дублетов дублетов протона 5-H в случае соединений **4a,b,d,h,i**, сигналы протонов этильной группы, заместителя R, а также уширенный синглет протона группы NH в области 10.7–12.9 м. д. (табл. 2). В спектрах ЯМР ¹⁹F имеются сигналы всех атомов фтора.

Масс-спектры соединений 4 характеризуются низкой интенсивностью пика молекулярного иона (3–4% в случае хинолонов 4d,h,i) или отсутствием такового, при наличии интенсивных пиков $[M-HF]^+$ у соединений 4a,b,e, поскольку в условиях съемки масс-спектров данные хинолоны легко отщепляют HF с образованием трициклических производных 5. Последующая фрагментация связана, по-видимому, с отщеплением этокси- и карбэтоксигруппы, а также с разрушением оксадиазинового цикла (табл. 3).

14

Соеди- нение	Масс-спектр, <i>m/z</i> (І _{отн} , %)	Спектры ЯМР ¹⁹ F (в ДМСО-d ₆), б _F , м. д., КССВ (<i>J</i>), Гц
4a	[M–HF] ⁺ 370 (20), 325 (21), 298 (100), 222 (14), 195 (42)	151.31 (π . π . π , ${}^{3}J_{FF} = 23.1$, ${}^{3}J_{FF} = 19.5$, ${}^{4}J_{HF} = 8.3$, 7-F); 148.48 (π . π . π , ${}^{3}J_{FF} = 19.5$, ${}^{4}J_{FF} = 4.9$, ${}^{5}J_{HF} = 2.0$, 8-F); 136.45 (π . π . π , ${}^{3}J_{FF} = 23.1$, ${}^{3}J_{HF} = 10.5$, ${}^{4}J_{FF} = 4.9$, 6-F)
4b	[M-HF] ⁺ 415 (11), 370 (13), 343 (100), 324 (15), 297 (14), 222 (9), 195 (22)	151.14 (д. д. д., ${}^{3}J_{FF} = 23.1$, ${}^{3}J_{FF} = 19.4$, ${}^{4}J_{HF} = 8.2$, 7-F); 148.71 (д. д. д., ${}^{3}J_{FF} = 19.4$, ${}^{4}J_{FF} = 4.9$, ${}^{5}J_{HF} = 2.2$, 8-F); 136.36 (д. д. д., ${}^{3}J_{FF} = 23.1$, ${}^{3}J_{HF} = 10.4$, ${}^{4}J_{FF} = 4.9$, 6-F)
4c	[M-HF] ⁺ 434 (18), 388 (23), 361 (100), 342 (17), 315 (12), 240 (24), 213 (38)	160.11 (π . π , ${}^{3}J_{FF} = 21.7$, ${}^{3}J_{FF} = 20.2$, 7-F); 154.12 (π . π , ${}^{3}J_{FF} = 20.2$, ${}^{4}J_{FF} = 13.9$, 5-F); 147.15 (π . π , π , ${}^{3}J_{FF} = 21.7$, ${}^{3}J_{FF} = 20.2$, ${}^{4}J_{FF} = 9.2$, 6-F); 142.82 (π . π , π , ${}^{3}J_{FF} = 20.2$, ${}^{4}J_{FF} = 13.9$, ${}^{4}J_{FF} = 9.2$, 8-F)
4d	M ⁺ 391 (4), 371 (100), 326 (100), 300 (98), 299 (100), 222 (38)	151.13 (д. д. д., ${}^{3}J_{FF} = 23.2$, ${}^{3}J_{FF} = 19.2$, ${}^{4}J_{HF} = 8.0$, 7-F); 148.66 (д. д. д., ${}^{3}J_{FF} = 19.2$, ${}^{4}J_{FF} = 4.6$, ${}^{5}J_{HF} = 2.1$, 8-F); 136.32 (д. д. д., ${}^{3}J_{FF} = 23.2$, ${}^{3}J_{HF} = 10.2$, ${}^{4}J_{FF} = 4.6$, 6-F)
4e	[M–HF] ⁺ 389 (63), 344 (48), 317 (100), 240 (24)	160.75 (π . π , ${}^{3}J_{FF} = 22.6$, ${}^{3}J_{FF} = 21.6$, 7-F); 155.89 (π . π , ${}^{3}J_{FF} = 21.6$, ${}^{4}J_{FF} = 13.3$, 5-F); 148.65 (π . π , π , ${}^{3}J_{FF} = 21.6$, ${}^{3}J_{FF} = 22.6$, ${}^{4}J_{FF} = 8.5$, 6-F); 143.17 (π . π , π , ${}^{3}J_{FF} = 21.6$; ${}^{4}J_{FF} = 13.3$; ${}^{4}J_{FF} = 8.5$, 8-F)
4g	[M–HF] ⁺ 390 (30), 34 (27), 317 (100), 240 (24), 213 (42), 185 (31)	160.81 (д. д., ${}^{3}J_{FF} = 22.2$, ${}^{3}J_{FF} = 21.5$, 7-F); 155.91 (д. д., ${}^{3}J_{FF} = 21.5$, ${}^{4}J_{FF} = 13.3$, 5-F); 148.68 (д. д. д., ${}^{3}J_{FF} = 21.5$, ${}^{3}J_{FF} = 22.2$, ${}^{4}J_{FF} = 8.5$, 6-F); 143.22 (д. д. д., ${}^{3}J_{FF} = 21.5$, ${}^{4}J_{FF} = 13.3$, ${}^{4}J_{FF} = 8.5$, 8-F)
4h	M ⁺ 328 (3%), 308 (27), 263 (56), 236 (100), 222 (30), 195 (46)	151.53 (д. д. д, ${}^{3}J_{FF} = 23.3$, ${}^{3}J_{FF} = 19.4$, ${}^{4}J_{HF} = 8.6$, 7-F); 148.73 (д. д. д, ${}^{3}J_{FF} = 19.4$, ${}^{4}J_{FF} = 4.3$, ${}^{5}J_{HF} = 2.2$, 8-F); 136.60 (д. д. д, ${}^{3}J_{FF} = 23.3$, ${}^{3}J_{HF} = 10.8$, ${}^{4}J_{FF} = 4.3$, 6-F)
4i	M ⁺ 353 (3%), 333 (13), 308 (4), 288 (32), 261 (100), 223 (36), 195 (6)	151.29 (д. д. д, ${}^{3}J_{FF} = 23.2$, ${}^{3}J_{FF} = 19.3$, ${}^{4}J_{HF} = 7.8$, 7-F); 148.29 (д. д. д, ${}^{3}J_{FF} = 19.3$, ${}^{4}J_{FF} = 4.9$, ${}^{5}J_{HF} = 2.0$, 8-F); 136.42 (д. д. д, ${}^{3}J_{FF} = 23.2$, ${}^{3}J_{HF} = 10.5$, ${}^{4}J_{FF} = 4.9$, 6-F)

Масс-спектр и спектры ЯМР ¹⁹F этиловых эфиров 5-Х-1-ациламино-4-оксо--6,7,8-трифтор-1,4-дигидро-3-хинолинкарбоновых кислот 4а-е,g,h,i

Спектры ЯМР ¹Н производных трициклических фторхинолонов 5 характеризуются наличием синглета протона 2-Н, дублета дублетов протона 8-Н (**5а,b,d,e**), а также сигналов протонов этильной группы и заместителя R (табл. 4). Спектры ЯМР ¹⁹F также отвечают предложенной структуре 5. В масс-спектрах хинолонов 5 наблюдаются интенсивные пики молекулярных ионов. Пик с интенсивностью 100%, соответствующий отщеплению карбэтоксигруппы, подчеркивает высокую термическую стабильность трициклической системы 5 (табл. 5).

На примере акрилатов **3d,f** показано, что при их кипячении в ацетонитриле в присутствии KF (4 ч) протекает циклизация по второму направлению с участием карбонильной группы, ведущая к 4,5-замещенным пиразолам **6**, **7**.

Соели-	5-H		_	OCH ₂ .	CH ₃
нение	с,	8-H	R	К	T
5a	8.48	7.63 м	8.02 (2Н, м), 7.63 (3Н, м)	4.27	1.33
5b	8.72	7.59 д. д $({}^{3}J_{\rm HF} = 10.5,$ ${}^{4}J_{\rm HF} = 7.6)$	7.90 (д. д. 1Н, ³ J _{HH} = 7.9, 5'-Н); 8.37 (м, 1Н, 4'- или 6'-Н); 8.48 (м, 1Н, 4'- или 6'-Н); 8.54 (м, 1Н, 2'-Н)	4.26	1.35
5c	8.46	-	7.89 (д. д. 1Н, ³ J _{HH} = 8.1, 5'-Н); 8.34 (м, 1Н, 4'- или 6'-Н); 8.51 (м, 1Н, 4'- или 6'-Н); 8.68 (м, 1Н, 2'-Н)	4.24	1.34
5đ	8.56	7.63 д. д (³ J _{HF} =11.0, ⁴ J _{HF} = 7.5)	7.88 (д. д. 2H, ³ J _{HH} = 4.5, ⁴ J _{HH} = 1.5, 2'- и 6'-H); 8.85 (д. д. 2H, ³ J _{HH} = 4.5, ⁴ J _{HH} = 1.5, 3'- и 5'-H)	4.23	1.30
5e	8.47	_	7.85 (д. д. 2H, ³ J _{HH} = 4.6, ⁴ J _{HH} = 1.5, 2'- и 6'-H); 8.84 (д. д. 2H, ³ J _{HH} = 4.6, ⁴ J _{HH} = 1.5, 3'- и 5'-H)	. 4.22	1.28
5f	8.57	7.64 \pm . \pm (³ <i>J</i> _{HF} = 10.4, ⁴ <i>J</i> _{HF} = 7.6)	7.67 (μ . μ . μ , 1H, ³ J _{HH} = 8.1, ³ J _{HH} = 4.9, ⁵ J _{HH} = 0.8, 5'-H); 8.32 (μ . μ . μ , 1H, ³ J _{HH} = 8.1, ⁴ J _{HH} = 2.3, ⁴ J _{HH} = 1.5, 6'-H); 8.85 (μ . μ , 1H, ³ J _{HH} = 4.9, ⁴ J = 2.3, 4'-H); 9.14 (μ . μ , 1H, ⁴ J _{HH} = 1.5, ⁵ J _{HH} = 0.8, 2'-H)	4.23	1.30
5g	8.50	-	7.65 (д. д. д. 1H, ${}^{3}J_{HH} = 8.1$, ${}^{3}J_{HH} = 4.8$, ${}^{5}J_{HH} = 0.9$, 5'-H); 8.32 (д. д. д. 1H, ${}^{3}J_{HH} = 8.1$, ${}^{4}J_{HH} = 2.3$, ${}^{4}J_{HH} = 1.5$, 6'-H); 8.86 (д. д. 1H, ${}^{3}J_{HH} = 4.8$, ${}^{4}J_{HH} = 2.3$, 4'-H); 9.12 (д. д. 1H, ${}^{4}J_{HH} = 1.5$, ${}^{5}J_{HH} = 0.9$, 2'-H)	4.23	1.29

Спектры ЯМР ¹Н этиловых эфиров 2-R-8-X-7-оксо-9,10-дифтор-7-H-[1,3,4]оксадиазино[6,5,4-*i*,*j*]хинолин-6-карбоновых кислот 5а-g^{*}, б, м. д., КССВ (*J*), Ги

* Спектр соединения 5a снят в CD₃CN, остальных соединений – в ДМСО-d₆.

Таблица 5

Масс-спектры и спектры ЯМР ¹⁹F этиловых эфиров 2-R-8-X-7-оксо-9,10-дифтор-7-H-[1,3,4]оксадиазино[6,5,4-*i,j*]хинолин-6-карбоновых кислот 5а–g

Соеди- нение	Масс-спектр, <i>m/z (I</i> отн, %)	Спектры ЯМР ¹⁹ F (в ДМСО-d ₆), б _F , м. д., КССВ (<i>Л</i>), Гц
5a	M ⁺ 370 (23), 325 (24), 298 (100), 222 (17), 195 (51)	154.65 (д. д., ³ <i>J</i> _{FF} = 22.0, ⁴ <i>J</i> _{HF} = 7.3, 10-F); 134.91 (д. д., ³ <i>J</i> _{FF} = 22.0, ³ <i>J</i> _{HF} = 10.7, 9-F)
5b	M ⁺ 415 (14), 370 (16), 343 (100), 324 (20), 297 (16), 222 (11), 195 (26)	154.65 (д. д. ${}^{3}J_{FF} = 22.1, {}^{4}J_{HF} = 7.8, 10$ -F); 134.59 (д. д. ${}^{3}J_{FF} = 22.1, {}^{3}J_{HF} = 10.5, 9$ -F)
5c	M ⁺ 433.6 (16), 389 (14), 362 (100), 42 (13), 315 (8), 240 (12), 213 (29), 185 (23)	160.58 (д. д., ${}^{3}J_{FF} = 19.5, {}^{3}J_{FF} = 20.5, 9-F$); 151.45 (д. д., ${}^{3}J_{FF} = 20.5, {}^{4}J_{FF} = 5.5, 10-F$); 146.25 (д. д., ${}^{3}J_{FF} = 19.5, {}^{4}J_{FF} = 5.5, 8-F$)
5d	M ⁺ 371 (50), 326 (51), 299 (100)	154.24 (д. д., ${}^{3}J_{FF} = 22.0$, ${}^{4}J_{HF} = 7.5$, 10-F); 134.51 (д. д., ${}^{3}J_{FF} = 22.0$, ${}^{3}J_{HF} = 11.0$, 9-F)
5e	M ⁺ 389 (40), 344 (45), 317 (100), 240 (36), 213 (34), 185 (34)	160.59 (д. д., ${}^{3}J_{FF} = 20.2$, ${}^{3}J_{FF} = 21.4$, 9-F); 151.43 (д. д., ${}^{3}J_{FF} = 21.4$, ${}^{4}J_{FF} = 6.0$, 10-F); 146.19 (д. д., ${}^{3}J_{FF} = 20.2$, ${}^{4}J_{FF} = 6.0$, 8-F)
5f	M ⁺ 371 (82), 326 (73), 299 (100)	154.24 (д. д. ${}^{3}J_{FF} = 22.0, {}^{4}J_{HF} = 7.6, 10$ -F); 134.66 (д. д. ${}^{3}J_{FF} = 22.0, {}^{3}J_{HF} = 10.4, 9$ -F)
5g	M ⁺ 389 (34), 344 (30), 317 (100), 240 (29), 213 (33), 185 (27)	160.77 (д. д., ${}^{3}J_{FF} = 20.2$, ${}^{3}J_{FF} = 21.3$, 9-F); 151.42 (д. д., ${}^{3}J_{FF} = 21.3$, ${}^{4}J_{FF} = 5.5$, 10-F); 146.31 (д. д., ${}^{3}J_{FF} = 20.2$, ${}^{4}J_{FF} = 5.5$, 8-F)

Характеристики синтезированных соединений

Соеди-	Бругто-	E	<u>Найдено, %</u> Зычислено, %	Т. пл.,	Выход, %	
нение	формула	C	Н	N	°C	(метод)
3a	$C_{19}H_{14}F_4N_2O_4$	<u>55.84</u> 55.62	<u>3.35</u> 3.44	<u>7.01</u> 6.83	148–150	74 (A)
3b	$C_{19}H_{13}F_4N_3O_6$	<u>49.98</u> 50.12	<u>3.08</u> 2.88	<u>9.41</u> 9.23	6870	90 (A)
3c	C ₁₉ H ₁₂ F ₅ N ₃ O ₆	<u>47.74</u> 48.12	<u>2.76</u> 2.56	<u>8.96</u> 8.88	79–81	79 (A)
3d	$C_{18}H_{13}F_4N_3O_4$	<u>52.47</u> 52.56	<u>3.59</u> 3.19	<u>9.62</u> 10.22	111–113	97 (B)
3e	$C_{18}H_{12}F_5N_3O_4$	<u>50.20</u> 50.36	<u>3.00</u> 2.89	<u>10.03</u> 9.79	125–127	89 (B)
3f	$C_{18}H_{13}F_4N_3O_4$	<u>52.61</u> 52.56	<u>3.35</u> 3.19	<u>10.03</u> 10.22	127–129	93 (B)
3g	$C_{18}H_{12}F_5N_3O_4$	<u>49.97</u> 50.36	<u>3.00</u> 2.82	<u>10.40</u> 9.79	117–119	97 (B)
3h	$C_{14}H_{12}F_{4}N_{2}O_{4}H_{2}O$	<u>45.92</u> 45.91	<u>3.60</u> 3.85	<u>7.81</u> 7.65	133–135	71 (A)
4a	$C_{19}H_{13}F_3N_2O_4H_2O$	<u>56.06</u> 55.89	<u>3.77</u> 3.70	<u>6.80</u> 6.86	82-84	91 (D)
4b	$C_{19}H_{12}F_3N_3O_6H_2O$	<u>50.43</u> 50.34	<u>3.23</u> 3.11	<u>9.15</u> 9.27	124-126	82 (D)
4c	$C_{19}H_{11}F_4N_3O_6\cdot 0.5H_2O$	<u>49.70</u> 49.38	2.85 2.62	<u>9.12</u> 9.05	1/6-1/8	96 (D)
40	$C_{18}H_{12}F_{3}N_{3}O_{4}C_{2}H_{5}OH$	<u>55.10</u> 54.92	<u>4.22</u> 4.15	<u>9.58</u> 9.61	140-142	40 (C)
4e	$C_{18}H_{11}F_{4}N_{3}O_{4}H_{2}O$	50.60	<u>3.09</u> 3.07	<u>9.86</u> 9.83	130-138	56 (C)
4g	$C_{18}H_{11}F_{4}N_{3}O_{4}H_{2}O$	50.60	<u>3.38</u> 3.07	<u>9.78</u> 9.83	112-114	78 (D)
40	$C_{14}H_{11}F_{3}N_{2}O_{4}H_{2}O$	<u>49.13</u> 48.56	<u>3.48</u> 3.78	<u>8.22</u> 8.09	1/2-1/4	84 D), 91 (E)
41	$C_{15}H_{10}F_{3}N_{3}O_{4}$	51.00	<u>3.02</u> 2.85	<u>12.77</u> 11.90	213-215	63 (F)
5a	$C_{19}H_{12}F_2N_2O_4$	61.63	<u>3.31</u> 3.27	<u>7.39</u> 7.56	209-211	85 (1), 95 (J)
50	$C_{19}H_{11}F_{2}N_{3}O_{6}O_{5}H_{2}O$	<u>54.08</u> 53.81	<u>2.94</u> 2.85	<u>9.85</u> 9.91	256-258	76 (I), 89 (J)
50	$C_{19}H_{10}F_{3}N_{3}O_{6}O.5H_{2}O$	<u>51.79</u> 51.62	2.65 2.51	<u>9.46</u> 9.51	248-250	71 (I), 83 (J)
50	$C_{18}H_{11}F_2N_3O_4$	<u>58.10</u> 58.23	<u>2.99</u> 2.99	<u>10.86</u> 11.32	244-246	69 (I), 78 (J), 61 (G)
5e	$C_{18}H_{10}F_3N_3O_4$	<u>55.67</u> 55.54	<u>2.71</u> 2.59	<u>11.17</u> 10.79	238–240	87 (I), 81 (J), 72 (H), 87 (G)
5f	$C_{18}H_{11}F_2N_3O_4$	<u>58.42</u> 58.23	<u>2.89</u> 2.99	$\frac{11.11}{11.32}$	216–218	67 (I), 58 (G)
5g	$C_{18}H_{10}F_3N_3O_4$	<u>55.38</u> 55.54	<u>2.67</u> 2.59	<u>10.57</u> 10.79	226–228	56 (I), 76 (H), 64 (G)
6	$C_{18}H_{11}F_4N_3O_3\cdot H_2O$	<u>52.53</u> 52.56	<u>3.10</u> 3.19	$\frac{10.07}{10.22}$	143–145	47
7	$C_{12}H_8F_4N_2O_2$	<u>50.41</u> 50.09	<u>3.15</u> 2.80	<u>9.89</u> 9.72	140–142	38

Эта реакция сопровождается гидролизом амидной группы (схема 2), причем в случае акрилата **3f** был выделен только пиразол 7. Строение продуктов **6**, 7 подтверждено данными ЯМР ¹Н и ¹⁹F спектров (см. экспериментальную часть).

В заключение отметим, что производные 5 являются важными синтетическими интермедиатами и могут быть использованы для получения широкого ряда новых производных трициклических фторхинолонкарбоновых кислот с целью изучения их биологической активности.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н получены на приборе Bruker WP-250 (250 МГц), растворители – ДМСО-d₆, CDCl₃, CD₃CN, внутренний стандарт ТМС. Спектры ЯМР ¹⁹F получены на приборе Bruker WP-80 (80 МГц), растворитель ДМСО-d₆, внутренний стандарт гексафторбензол. Масс-спектры зарегистрированы на спектрометре Varian MAT 311A. Условия съемки: ускоряющее напряжение 3 кВ, ток эмиссии катода 300 мкА, энергия ионизирующих электронов 70 эВ, прямой ввод образца в источник.

Характеристики синтезированных соединений приведены в табл. 6.

Этиловые эфиры 3-[2-(R-карбонил)гидразино-1]-2-[тетра(пента)фторбензоил]акриловых кислот (3а-h). А. К суспензии 3.9 ммоль гидразида 2а,b,е в 15 мл этанола добавляют 4 ммоль этилового эфира 2-тетра(пента)фторбензоил-3-этоксиакриловой кислоты 1а,b. Реакционную массу перемешивают при комнатной температуре 2-3 ч, осадок продукта отфильтровывают и перекристаллизовывают из этанола. Получают соединения 3а-с, h.

В. К суспензии 1 г (7 ммоль) пиридинилгидразида **2с,d** в 15 мл абсолютного толуола добавляют 7 ммоль этилового эфира 2-тетра(пента)фторбензоил-3-этоксиакриловой кислоты **1а,b**. Реакционную массу перемешивают при комнатной температуре 2–3 ч, полученный осадок отфильтровывают и промывают *н*-гексаном. Получают соединения **3d–g**.

Этиловые эфиры 5-Х-1-ациламино-4-оксо-6,7,8-трифтор-1,4-дигидрохинолин-3карбоновых кислот (4а-e,g,h,i). С. Раствор 0.8 г (1.9 ммоль) соединения 3d в 12 мл абс. толуола кипятят 1 ч, реакционную массу отфильтровывают горячей, фильтрат упаривают, продукт 4d перекристаллизовывают из изопропанола. Выход 0.3 г. Аналогично из ацилгидразида 3e получают соединение 4e.

D. Раствор 0.7 г (1.5 ммоль) акрилата **3b** в 10 мл абсолютного бензола выдерживают при 80 °C 2 ч. После охлаждения осадок соединения **4b** отфильтровывают и перекристаллизовывают из этанола. Аналогично получают соединения **4a,c,g,h**.

Е. К суспензии 0.5 г (6.76 ммоль) ацетгидразида 2е в 15 мл этанола добавляют 2.2 г (6.8 ммоль) этилового эфира 1а. Реакционную массу перемешивают при комнатной температуре 5 ч, затем упаривают. К остатку добавляют 12 мл абсолютного толуола, раствор кипятят 4 ч. Выпавший осадок соединения 4h отфильтровывают и перекристаллизовывают из этанола.

F. К суспензии 1 г (10 ммоль) гидразида циануксусной кислоты 2f в 15 мл абс. толуола добавляют 3.2 г (10 ммоль) этилового эфира 2-(2,3,4,5-тетрафторбензоил)-3-этоксиакриловой кислоты. Реакционную массу выдерживают при 80 °C 1.5 ч, охлаждают, осадок соединения 4i отфильтровывают и перекристаллизовывают из ацетонитрила.

Этиловые эфиры 2-R-8-X-7-оксо-9,10-дифтор-7-Н-[1,3,4]оксадиазино[6,5,4-*i*,*j*]хинолин-6-карбоновых кислот (5а-g). G. Раствор 0.5 г (1.2 ммоль) соединения Зе в 20 мл абсолютного толуола кипятят 2 ч. После охлаждения осадок продукта 5е отфильтровывают и перекристаллизовывают из изопропанола. Аналогично получают соединения 5d,f,g.

Н. Раствор 0.5 г (1.2 ммоль) соединения **3g** и 0.14 г (2.4 ммоль) фторида калия в 10 мл абсолютного ацетонитрила кипятят 2 ч. После охлаждения реакционной массы осадок продукта **5g** отфильтровывают, промывают водой и перекристаллизовывают из этанола. Аналогично получают соединение **5e**.

I. К суспензии 0.5 г (1.2 ммоль) акрилата 3g в 8 мл абсолютного толуола добавляют 0.3 г (2.4 ммоль) карбоната калия. Реакционную массу капятят 2 ч, затем охлаждают. Осадок соединения 5g отфильтровывают, промывают водой и перекристаллизовывают из этанола. Аналогично получают соединения 5a-f.

1405

J. К раствору 0.3 г (0.7 ммоль) хинолонопроизводного 4b в 8 мл абсолютного толуола добавляют 0.1 г (0.7 ммоль) карбоната калия. Реакционную массу кипятят 3 ч, затем охлаждают. Осадок продукта 5b отфильтровывают, промывают водой и перекристаллизовывают из диметилформамида. Аналогично получают соединения 5a,c,d,e.

1-(Пиридин-4-ил)карбонил-5-(2,3,4,5-тетрафторфенил)-4-этоксикарбонилпиразол (6) и 1-H-5-(2,3,4,5-тетрафторфенил)-4-этоксикарбонилпиразол (7). К раствору 0.5 г (1.2 ммоль) акрилата 3d в 12 мл абсолютного ацетонитрила добавляют 0.14 г (2.4 ммоль) фторида калия. Реакционную массу кипятят 4 ч, затем охлаждают. Осадок пиразола 6 отфильтровывают, промывают водой и перекристаллизовывают из этанола. Маточный раствор разбавляют водой, осадок соединения 7 отфильтровывают и перекристаллизовывают из этанола.

Соединение 6: спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д., J (Гц): 8.73 (2H, д. д. 3'-H, 5'-H, ⁴ $J_{\text{HH}} = 4.4$; ⁵ $J_{\text{HH}} = 1.5$, 3'- и 5'-H); 8.39 (1H, с, 3-H); 7.78 (2H, д. д. ⁴ $J_{\text{HH}} = 4.4$, ⁵ $J_{\text{HH}} = 1.5$, 2'- и 6'-H); 7.54 (1H, м, 6"-H); 4.20 (2H, к, CH₂); 1.10 (3H, т, CH₃); спектр ЯМР ¹⁹F (ДМСО-d₆), δ , м. д.: 117.6 (1F, м); 116.5 (1F, м); 100.9 (1F, м); 99.3 (1F, м).

Соединение 7: спектр ЯМР ¹Н (ДМСО-d₆), б, м. д.: 13.77 (1Н, уш. с, NH); 8.40 (1Н, с, 3-H); 7.54 (1Н, м, 6"-H); 4.10 (2Н, к, CH₂); 1.20 (3Н, т, CH₃); спектр ЯМР ¹⁹F (ДМСО-d₆), б, м. д.: 157.7 (1F, м), 156.7 (1F, м), 141.1 (1F, м), 139.4 (1F, м); масс-спектр, *m*/*z* (%): M⁺ 288 (26), 260 (17), 243 (100), 240 (65), 216 (22), 18 (21).

Работа выполнена при финансовой поддержке федеральной целевой научно-технической программы "Исследования и разработки по приоритетным направлениям развития науки и техники гражданского назначения", направление "Фундаментальные проблемы современной химии", проект 9.1.06.

СПИСОК ЛИТЕРАТУРЫ

- 1. Quinolone Antibacterial Agents, eds. D. C. Hoope, J. S. Wolfson, ASM, Washington, 1993.
- Г. А. Мокрушина, С. Г. Алексеев, В. Н. Чарушин, О. Н. Чупахин, ЖВХО, 36, 447 (1991).
- 3. D. Bouzard, Antibiotics and Antiviral Compounds, eds. K. Krohn, H. A. Kirst, H. Maag, VCH, Weinheim, 1993.
- M. Taguchi, H. Kondo, Y. Inoue, Y. Kawahata, Y. Jinbo, F. Sakamoto, G. Tsukamoto, J. Med. Chem., 35, 94 (1992).
- 5. S. Atarashi, S. Yokohama, K. Yamazaki, K. Sakano, M. Imamuro, I. Hayakawa, *Chem. Pharm. Bull.*, **35**, 1896 (1987).
- 6. R. J. Dorgan, D. W. Gottschall, WO Pat. 9727201; Chem. Abstr., 127, 176444 (1997).
- 7. S. L. Dax, C. C. Wei, J. Org. Chem., 57, 744 (1992).
- G. N. Lipunova, G. A. Mokrushina, E. V. Nosova, L. I. Rusinova, V. N. Charushin, Mendeleev Commun., 109 (1997).
- G. N. Lipunova, E. V. Nosova, V. N. Charushin, L. P. Sidorova, O. M. Chasovskikh, Mendeleev Commun., 131 (1998).

Уральский государственный технический университет, Екатеринбург 620002, Россия e-mail; charushin@prm.uran.ru e-mail:azine@htf.rcupi.e-burg.su Поступило в редакцию 20.07.99 После переработки 05.06.2000