## А. В. Варламов, Ф. И. Зубков, К. Ф. Турчин<sup>а</sup>, А. И. Чернышев, Р. С. Борисов

## СТЕРЕОХИМИЯ [3+2]-ЦИКЛОПРИСОЕДИНЕНИЯ АКРИЛОНИТРИЛА К N-ОКСИДУ 4,5-ДИГИДРО-5-МЕТИЛ-3H-СПИРО[БЕНЗ-2-АЗЕПИН-3,1'-ЦИКЛОГЕКСАНА]

[3+2]-Циклоприсоединение акрилонитрила к N-оксиду 4,5-дигидро-5-метил-3H-спиро[бенз-2-азепин-3,1'-циклогексана] в условиях как кинетического, так и термодинамического контроля протекает не регио- и не стереоселективно с образованием 8 изомерных 1-циано- и 2-циано-1,2,4,6,7,11bгексагидро-7-метил-5H-спиро[изоксазолидино[3,2-*a*]бенз-2-азепин-5,1'-циклогексанов], шесть из которых выделены в индивидуальном виде. Их строение и стереохимия установлены методом ЯМР.

Ключевые слова: алкены, бенз-2-азепины, спиросоединения, циклические нитроны, [3+2]-циклоприсоединение.

Реакции [3+2]-циклоприсоединения – наиболее изученный раздел химии нитронов [1-3]. Интерес к этим реакциям обусловлен легкостью расщепления связи N-O в образующихся изоксазолинах и изоксазолидинах, что используется для построения сложных органических молекул. Как правило, межмолекулярное циклоприсоединение протекает с высокой степенью региоселективности, а состав аддуктов циклоприсоединения в зависимости от условий проведения реакции может определяться как кинетическим, так и термодинамическим контролем. Стереохимия [3+2]-циклоприсоединения к циклическим нитронам изучена меньше [4-6], а нитроны бенз-2-азепинового ряда не изучались вовсе. Регио- и стереоселективность циклоприсоединения к циклическим нитронам зависит от условий проведения реакции, величины электронной плотности на двойной связи диполярофила, стерических эффектов заместителей, а также от эффекта вторичного взаимодействия граничной орбитали атома азота нитрона с орбиталями заместителей диполярофила [4, 7]. Так, со 100% регио- и стереоселективностью протекает циклоприсоединение алкенов к циклическим нитронам, образующимся in situ из гидроксиламинов в присутствии палладиевого катализатора [8]. Циклоприсоединение к 2-оксо-3-(этоксикарбонил)-3,4-дигидро-β-карболину в зависимости от строения алкена протекает с полной или высокой регио- и стереоселективностью. При этом из-за стерических препятствий происходит только *транс*-присоединение алкена относительно этоксикарбонильной группы в положении 3 [7].

Нами изучено циклоприсоединение акрилонитрила к N-оксиду 4,5-дигидро-5-метил-3H-спиро[бенз-2-азепин-3,1'-циклогексана] (1) [9]. Реакцию для препаративных целей проводили в толуоле с 3-кратным избытком акрилонитрила при 105 °C (сутки), для определения соотношения продуктов на разных стадиях реакции – в бензоле-d<sub>6</sub> с 10% избытком акрилонитрила при 20 °C в ампуле спектрометра ЯМР (7 дней).

В зависимости от ориентации акрилонитрила в процессе циклоприсоединения могут образовываться два региоизомера: 1-циано- и 2-циано-1,2,4,6,7,11b-гексагидро-7-метил-5H-спиро[изоксазолидино[3,2-*a*]бенз-2азепин-5,1'-циклогексаны] (2 и 3 соответственно). Для каждого региоизомера возможно существование четырех геометрических изомеров, поскольку акрилонитрил может присоединяться как в *цис*-, так и *транс*положение относительно группы 5-СН<sub>3</sub> соединения **1**, а циклоприсоединение протекает как через *экзо*-, так *эндо*-переходное состояние. Таким образом, аддукт циклоприсоединения может находиться в виде восьми изомеров – **2A-D** и **3A-D**, конфигурация которых может быть охарактеризована взаимным расположением атомов водорода 7-H, 11b-H и 1-H (в ряду **2A-D**) или 2-H (в ряду **3A-D**).

В нитроне 1 группа 5-CH $_3$  занимает псевдоэкваториальную ориентацию.



Реакционная смесь, полученная при проведении синтеза в толуоле, была подвергнута хроматографическому разделению. При этом изомеры **2A-D**, **3A** и **3C** были выделены в индивидуальном виде, а изомеры **3B** и **3D** получены в виде смесей с содержанием основного компонента 60–70%. Составы реакционных смесей приведены в табл. 1.

Таблица 1

| Соеди-<br>нение | Содер<br>в реакц<br>смеся<br>при<br>20 °С* <sup>2</sup> | жание<br>ионных<br>х, % *<br>при<br>105 °C* <sup>3</sup> | Тип<br>переходного<br>состояния | Направление атаки<br>акрилонитрила по<br>отношению к 7-CH <sub>3</sub> | Взаимное<br>расположение<br>протонов 7-Н, 11b-<br>H, 1-H (2) и 2-H (3) |  |  |
|-----------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| 2A              | 16                                                      | 34                                                       | экзо                            | транс                                                                  | транс-транс                                                            |  |  |
| 2B              | 15                                                      | 6                                                        | эндо                            | транс                                                                  | транс-цис                                                              |  |  |
| 2C              | - 5                                                     | 2                                                        | эндо                            | цис                                                                    | цис-цис                                                                |  |  |
| 2D              | 17                                                      | 25                                                       | экз0                            | цис                                                                    | цис-транс                                                              |  |  |
| 3A              | 16                                                      | 7                                                        | экзо                            | транс                                                                  | транс-транс                                                            |  |  |
| 3B              | 3                                                       | 7                                                        | эндо                            | транс                                                                  | транс-цис                                                              |  |  |
| 3C              | 17                                                      | 7                                                        | экз0                            | цис                                                                    | цис-цис                                                                |  |  |
| 3D              | 11                                                      | 12                                                       | эндо                            | цис                                                                    | цис-транс                                                              |  |  |

# Состав реакционных смесей, тип переходного состояния и направление атаки акрилонитрила при циклоприсоединении к нитрону 1

\* Определено по спектрам ЯМР <sup>1</sup>Н.

\*<sup>2</sup> После 7 дней выдерживания в ампуле спектрометра ЯМР <sup>1</sup>Н при 20 °C, соотношение  $2/3 \sim 1:1$ .

\*<sup>3</sup> После 24 ч кипячения в толуоле, соотношение 2/3 ~1:2.

Содержание изомеров **2A-D** и **3A-D** в реакционных смесях определяли по интегральным интенсивностям сигналов в спектрах ЯМР <sup>1</sup>Н в области 2.3–4.9 м. д. Параметры характерных сигналов в спектрах ЯМР <sup>1</sup>Н изомеров **2** и **3** приведены в табл. 2. Строение всех изомеров **2** и **3** установлено по спектрам ЯМР <sup>1</sup>Н и <sup>13</sup>С с использованием методов гомоядерной (<sup>1</sup>H–<sup>1</sup>H) и гетероядерной (<sup>1</sup>H–<sup>13</sup>C) корреляционной спектроскопии, а также измерением ядерных протон-протонных эффектов Оверхаузера (об установлении стереохимии изомеров **2** и **3** будет сообщено в отдельной публикации).

Как видно из данных табл. 1, в условиях кинетического контроля (20 °C) реакция циклоприсоединения протекает не регио- и не стереоселективно. Соотношение региоизомеров  $2/3 \sim 1:1$ . Все стереоизомеры, кроме 2C и 3B, образуются с близкими выходами. Переходное состояние для соединений 2C и 3B затруднено, вероятно, по стерическим причинам. При 20 °C через 30 мин степень превращения 1 в 2 и 3 составляла 9%; после 7 сут реакция практически завершилась, конверсия составляла 93%. Соотношение изомеров в реакционной смеси по мере протекания реакции практически не менялось. При 105 °C циклоприсоединение становится регионаправленным. В реакционной смеси преобладает региоизомер 2 (соотношение  $2/3 \sim 2:1$ ), соответствующий поляризации двойной связи в акрилонитриле. Для изомера 2 возрастает также и стереоселективность. Все отмеченные особенности могут быть удовлетворительно объяснены в рамках понятий обратимости циклоприсоединения, кинетического и термодинамического

Таблица 2

Спектры ЯМР <sup>1</sup>Н изомеров 2А-D, ЗА-D в С<sub>6</sub>D<sub>6</sub>

and the second secon

| 0     | Химические сдвиги, б, м. д.<br>(мультиплетность) |                   |                      |             |          |             | КССВ, <i>J</i> , Гц |                    |                    |         |         |             |
|-------|--------------------------------------------------|-------------------|----------------------|-------------|----------|-------------|---------------------|--------------------|--------------------|---------|---------|-------------|
| нение | IA-H                                             | 1B-H              | 2A-H                 | 2В-Н        | 7-H      | 11b-H       | 1, 1                | 1, 2А<br>или 2, 1А | 1, 2В<br>или 2, 1В | 1A, 11b | 1B, 11b | 2, 2        |
| 2A    | 2.67 (д.                                         | д. д)             | 3.52 (д. д) 3.33 (т) |             | 3.32 (м) | 4.64 (д)    | _                   | 5.2                | 8.2                | 7.2     |         | 8.2         |
| 2B    | 2.87 (д. т)                                      |                   | 3.71 (д. д)          | 3.32 (д. д) | 3.74 (м) | 4.21 (д)    |                     | 3.6                | 7.2                | 7.2     |         | 8.4         |
| 2C    | 2.78 (д. т)                                      |                   | 3.71 (д. д)          | 3.29 (д. д) | 2.79 (м) | 4.11 (д)    | 2008                | 3.6                | 6.0                | 6.0     |         | 8.0         |
| 2D    | 3.24 (д. д. д)                                   |                   | 3.66 (д. д)          | 3.48 (д. д) | 2.65 (м) | 4.65 (д)    | —                   | 4.8                | 6.4                | 6.8     |         | 8.0         |
| 3A    | 2.34<br>(д. д. д)                                | ~1.87<br>(уш. м)  | 3.88 (д. д)          |             | 3.34 (м) | 4.58 (т)    | 12.8                | 2.0                | 8.2                | 8.4     | 8.4     | _           |
| 3B    | 2.24<br>(д. д. д)                                | 2.20<br>(д. д. д) | 3.88 (д. д)          |             | 3.51 (м) | 4.11 (т)    | 12.2                | 8.4                | 5.6                | 8.4     | 8.4     | -           |
| 3C    | 2.62<br>(д. д. д)                                | 1.80<br>(д. д. д) | 3.95 (д. д)          |             | 2.83 (м) | 4.11 (д. д) | 12.8                | 4.4                | 7.6                | 7.0     | 8.8     | -           |
| 3D    | 2.52<br>(д. д. д)                                | 1.86<br>(д. д. д) | 4.05                 | (д. д)      | 2.77 (м) | 4.52 (д. д) | 12.2                | 7.6                | 1.6                | 11.2    | 5.2     | -<br>-<br>- |

контроля [2, 10]. Содержание стереоизомеров **2А-D** и **3А-D** в реакционных смесях определяется как направлением подхода акрилонитрила к нитронному фрагменту соединения **1** (*цис-* или *транс-*присоединение относительно группы 5-CH<sub>3</sub>), так и типом переходного состояния (*экзо-*или *эндо-*). При 20 °C *цис-* и *транс-*присоединение акрилонитрила протекает с равной вероятностью (соотношение аддуктов *цис-* и *транс-*присоединения:  $\sum (2C, 2D, 3C, 3D)/\sum (2A, 2B, 3A, 3B) ~1:1$ ), при 105 °C несколько преобладает *транс-*присоединение (соотношение ~1:1.2). Однако для каждого из региоизомеров **2** и **3** можно отметить свои особенности в направлении присоединения акрилонитрила к нитрону **1**, обусловленные, вероятно, стерическими факторами. Так, при образовании региоизомера **2** и при 20 °C  $\sum (2C, 2D)/\sum (2A, 2B)$ , и при 105 °C предпочтительнее *транс-*присоединение акрилонитрила (при 20 °C ~1:1.3, при 105 °C ~1:1.5), а при образовании региоизомера **3** – *цис-*присоединение (при 20 и 105 °C *цис/транс*~1.4:1).

Как уже отмечалось, акрилонитрил может присоединяться к нитрону 1 двумя диастереоселективными путями, через эндо- и экзо-переходные состояния. В случае циклоприсоединения сопряженных алкенов к циклическим нитронам в условиях кинетического контроля обычно преобладают аддукты экзо-присоединения [4, 7, 11]. На схеме в качестве примера показаны эндо- и экзо-переходные состояния для присоединения акрилонитрила при образовании региоизомера 2.



Анализ эндо/экзо-селективности для нашего случая показывает, что при 20 °С циклоприсоединение также протекает преимущественно через экзо-переходное состояние. Для региоизомера 2 соотношение  $\sum(2A, 2D)/\sum(2B, 2C) \sim 1.6:1$ , для региоизомера 3 экзо/эндо ~2.3:1. При 105 °С при 1364

образовании стереоизомеров соединения 2 доля экзо-аддуктов возрастает до 7.9:1. При образовании изомеров 3 начинает преобладать эндоприсоединение (экзо/эндо ~1:1.4), что, вероятно, обусловлено вторичным орбитальным взаимодействием граничных орбиталей атомов азота нитрона и углерода нитрильной группы акрилонитрила [12]. В случае региоизомера 3 при *транс*-присоединении акрилонитрила [12]. В случае экзо- и эндо-аддуктов (3A/3B) изменяется от 4.9:1 при 20 °C до 1:1 при 105 °C, а при *цис*-присоединении (3C/3D) соответственно от 1.5:1 до 1:1.7. Отмеченные закономерности регио- и стереоселективности циклоприсоединения акрилонитрила к нитрону 1 удовлетворительно объясняются с учетом стерических и вторичных орбитальных взаимодействий, а также обратимостью реакции циклоприсоединения.

Изучение масс-спектрометрического поведения выделенных в индивидуальном виде региоизомеров **2А-D** и **3А**, **3С** (табл. 3) под действием электронного удара показало, что в масс-спектрах всех соединений наблюдается пик молекулярного иона с m/z 296, соответствующий их брутто-формуле. Наибольшую интенсивность в спектрах имеют пики с m/z 226 и 253. Образование осколочных ионов с m/z 281, 267 и 253 связано с расщеплением циклогексанового кольца (распады 1–3) и выбросом соответственно метильного, этильного и пропильного радикалов.



### Таблица З

| Соеди-<br>нение |                       | Ионы, <i>т/z</i> |     |     |     |     |     |     |     |     |     |     |
|-----------------|-----------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                 | 296<br>M <sup>+</sup> | 281              | 267 | 253 | 243 | 226 | 211 | 201 | 185 | 184 | 170 | 169 |
| 2A              | 28                    | 14               | 9   | 68  | 11  | 100 | 19  | 10  | 16  | _   | _   | 52  |
| 2B              | 15                    | 4                | 4   | 16  | 14  | 100 | 13  | 11  | 13  | -   | 35  | -   |
| 2C              | 14                    | 2                | 4   | 22  | 16  | 100 | 13  | 10  | -   | 12  | _   | 10  |
| 2D              | 42                    | 13               | 28  | 100 | 11  | 75  | 17  | 10  | -   | 13  | -   | 18  |
| 3A              | 13                    | 20               | 7   | 82  | 13  | 85  | 12  | 14  | -   | 15  | 10  | -   |
| 3C              | 37                    | 11               | 16  | 100 | 15  | 73  | 12  | 12  |     | 15  | 10  |     |
|                 |                       |                  |     |     |     |     |     |     |     |     |     |     |

#### Интенсивность (I<sub>отн</sub>, %) основных фрагментных ионов в масс-спектрах электронного удара цианозамещенных спиро[изоксазоло[3,2-*a*]-5H-бенз-2-азепин-5,1'-циклогексанов] 2 и 3

Высокая интенсивность иона с m/z 253 обусловлена образованием относительно стабильной сопряженной системы [13]. Второе направление фрагментации ионов M<sup>+</sup> связано с элиминированием молекулы акрилонитрила в результате ретродиенового распада (РДР). Образующийся при этом ион исходного нитрона 1 с m/z 243 отщепляет радикал HO<sup>•</sup>, давая фрагментный ион с m/z 226. Указанные выше характеристические фрагментные ионы подтверждают структуру соединений 2 и 3, однако не позволяют делать какие-либо предположения об их стереохимии.

Таблица 4

| Соеди-<br>нение | E                     | Найдено. % *<br>Зычислено, % | ~<br>~              | Г. пл., °С<br>(из гексана) | ИК<br>спектр,<br>см <sup>-1</sup> | R <sub>f</sub> * <sup>3</sup> | Выход,<br>% * <sup>4</sup> |
|-----------------|-----------------------|------------------------------|---------------------|----------------------------|-----------------------------------|-------------------------------|----------------------------|
|                 | С                     | Н                            | N                   |                            | VCN                               |                               |                            |
| 2A              | <u>76.82</u><br>77.00 | <u>7.85</u><br>7.70          | <u>9.46</u><br>9.46 | 104.0–106.5                | 2244                              | 0.60                          | 7.7                        |
| 2B              | <u>76.90</u><br>77.00 | <u>7.50</u><br>7.70          | <u>9.32</u><br>9.46 | 133.0–133.5                | 2246                              | 0.28                          | 8.9                        |
| 2C              | <u>77.21</u><br>77.00 | <u>7.43</u><br>7.70          | <u>9.58</u><br>9.46 | 126.0–127.0                | 2256                              | 0.26                          | 6.1                        |
| 2D              | 77.00                 | 7.70                         | 9.46                | *2                         | 2248                              | 0.25                          | >1.0                       |
| 3A              | <u>76.80</u><br>77.00 | <u>7.81</u><br>7.70          | <u>9.42</u><br>9.46 | 105.5–106.5                | 2248                              | 0.43                          | 7.2                        |
| 3C              | <u>76.71</u><br>77.00 | <u>7.71</u><br>7.70          | <u>9.68</u><br>9.46 | 128.0–129.0                | 2245                              | 0.36                          | 7.4                        |

#### Характеристики выделенных в индивидуальном виде спиро[изоксазолидинобенз-2-азепин-5,1'-циклогексанов] 2А-2D и ЗА, ЗС

\* Брутто-формула всех синтезированных соединений C<sub>19</sub>H<sub>24</sub>N<sub>2</sub>O.

<sup>\*2</sup> Из-за малого выхода соединение характеризовалось с помощью ИК, ЯМР <sup>1</sup>Н спектрометрии и масс-спектросопии.

\*<sup>3</sup> Этилацетат-гексан, 1:4.

\* Выход индивидуальных изомеров после хроматографического разделения.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на приборе UR-20 в таблетках КВг. Масс-спектры измерены на приборе Varian MAT 112 с прямым вводом образца в источник ионов при ионизирующем напряжении 70 эВ. Спектры ЯМР <sup>1</sup>Н ~7% растворов изомеров **2A-D**, **3A**, **3C**, смесей **3B** и **3D**, а также реакционных смесей в  $C_6D_6$  регистрировали при 20 °C на спектрометре UNITY plus 400 с рабочей частотой 400 МГц. Химические сдвиги измерены относительно сигнала остаточных протонов растворителя ( $C_6HD_5$  7.15 м. д.). Для колоночной хроматографии использовали нейтральный оксид алюминия нулевой степени активности по Брокману, для TCX – пластины Silufol UV-254, проявление парами иода.

1-Циано- и 2-циано-1,2,4,6,7,11b-гексагидро-7-метил-5H-спиро[изоксазолидино-[3,2-а]бенз-2-азепин-5,1'-циклогексаны] (2А-D и ЗА-D). Раствор 1.70 г (7.00 ммоль) нитрона 1 и 1.12 г (21.00 ммоль) акрилонитрила в 30 мл толуола кипятят 24 ч. Толуол и остаток акрилонитрила удаляют в вакууме. Полученную стеклообразную массу хроматографируют на колонке с оксидом алюминия (60 × 1.5 см), элюент этилацетат-гексан, 1:50. Разделенные на узкие фракции смеси изомеров хроматографируют дополнительно. Суммарный выход всех выделенных фракций 85% (табл. 4).

Исследование выполнено при финансовой поддержке РФФИ (проект № 99-03-3942а).

#### СПИСОК ЛИТЕРАТУРЫ

- 1. D. St. Black, R. F. Crosier, V. Ch. Davis, Synthesis, 205 (1975).
- J. J. Tufariello, Nitrones in 1,3-Dipolar Cycloaddition Chemistry, Padwa A., Wiley Intersci., N. Y., Vol. 2, 1984.
- 3. P. N. Confalon, E. M. Huie, *The [3+2]-Nitrone Olefine Cycloaddition Reaction, Organic Reactions*, J. Wiley a. Sons, N. Y., 1988, **36**, 1.
- 4. M. Burdisso, R. Gandolfi, P. Grünanger, A. Rastelli, J. Org. Chem., 55, 3427 (1990).
- 5. М. Г. А. Швехгеймер, XIC, 435 (1998).
- 6. K. Torssell, Nitrile Oxides and Nitronate in Organic Synthesis. Novel Strategies in Synthesis, Ed. H. Feuer, VCH Publ. Inc., 1988.
- 7. R. Plate, P. Hermkens, J. Smits, H. Ottenheijm, J. Org. Chem., 51, 309 (1986).
- 8. S. I. Murahashi, H. Mitsui, T. Watanabe, S. I. Zenki, Tetrah. Lett., 24, 1049 (1983).
- V. Kouznetsov, A. Palma, S. Salas, L. Vargas, F. Zubkov, A. Varlamov, J. Martinez, J. Heterocycl. Chem., 34, 1591 (1997).
- 10. G. Bianchi, C. De Micheli, R. Gandolfi, Angew. Chem. Int. Ed. Engl., 18, 721 (1979).
- 11. J. J. Tufariello, Sk. A. Ali, Tetrah. Lett., 4647 (1978).
- 12. M. Joucla, F. Tonnard, D. Gme, J. Hamelin, J. Chem. Res., 240 (1978).
- П. Б. Терентьев, П. П. Станкявичус, Масс-спектрометрический анализ биологически активных азотистых оснований, Мокспас, Вильнюс, 1987.

Российский университет дружбы народов, Москва 117927 e-mail: avarlamov@sci.pfu.edu.ru Поступило в редакцию 20.10.99

<sup>а</sup>Центр по химии лекарственных средств — Всероссийский научно-исследовательский химико-фармацевтический институт, Москва 119815 e-mail: turchin@drug.org.ru