С. Г. Кривоколыско, В. Д. Дяченко, А. Н. Чернега^а, В. П. Литвинов⁶

СТЕРЕОСЕЛЕКТИВНЫЙ СИНТЕЗ И АЛКИЛИРОВАНИЕ 4,5-*транс*-6-ГИДРОКСИ-5-(2-ТЕНОИЛ)-6-ТРИФТОРМЕТИЛ-4-(2-ХЛОРФЕНИЛ)-3-ЦИАНО-1,4,5,6-ТЕТРАГИДРОПИРИДИН-2-ТИОЛАТА N-МЕТИЛМОРФОЛИНИЯ. МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 4,5-*транс*-6-ГИДРОКСИ-2-МЕТАЛЛИЛТИО-5-(2-ТЕНОИЛ)-6-ТРИ-ФТОРМЕТИЛ-4-(2-ХЛОРФЕНИЛ)-3-ЦИАНО-1,4,5,6-ТЕТРАГИДРО-ПИРИДИНА

Конденсация 2-хлорбензальдегида с цианотиоацетамидом и 2-теноилтрифторацетоном в присутствии N-метилморфолина протекает стереоселективно с образованием 4,5-*транс*-6-гидрокси-5-(2-теноил)-6-трифторметил-4-(2-хлорфенил)-3-циано-1,4,5,6-тетрагидропиридин-2-тиолата N-метилморфолиния, на основе которого синтезированы соответствующие 2-алкилтиотетрагидропиридины. С помощью РСА установлена структура 4,5-*транс*-6-гидрокси-2-металлилтио-5-(2-теноил)-6-трифторметил-4-(2-хлорфенил)-3циано-1,4,5,6-тетрагидропиридина.

Ключевые слова: 2-теноилтрифторацетон, тетрагидропиридины, 2-хлорбензальдегид, цианотиоацетамид, алкилирование, конденсация.

Для синтеза 3,4-*транс*-5-бензоил-4-(2-тиенил)-6-трифторметил-3-циано-3,4дигидропиридин-2(1H)-селенона была успешно использована реакция бензоилтрифторацетона с 2-тиенилметиленцианоселеноацетамидом [1]. Вместе с тем частично гидрированные серосодержащие пиридины с трифторметильной группой не известны [2].

Нами установлено, что взаимодействие 2-хлорбензальдегида (1), цианотиоацетамида (2) и 2-теноилтрифторацетона (3) в этаноле (~20 °C) в присутствии N-метилморфолина протекает стереоселективно с образованием 4,5-*транс*-6-гидрокси-5-(2-теноил)-6-трифторметил-4-(2-хлорфенил)-3-циано-1,4,5,6-тетрагидропиридин-2-тиолата N-метилморфолиния (4). Очевидно, что региоселективность данной реакции определяется в интермедиате 5. При алкилировании соли 4 галогенидами 6 получены соответствующие сульфиды 7.

Строение соединений **4**, **7** подтверждено результатами элементного анализа и физико-химическими методами (эксперим. часть, табл. 1, 2). Так, в спектрах ЯМР ¹Н этих соединений присутствуют сигналы протонов всех заместителей, группы NH и N-метилморфолиниевого катиона. Сигналы протонов 4-H и 5-H представлены уширенными дублетами в областях 4.80–4.92 и 3.93–4.40 м. д. с КССВ ³J = 10-14 Гц, а также уширенным сигналом в области 4.30–4.43 м. д.

Таблица 1

Спектры ЯМР ¹Н синтезированных соединений 7а-і

Соеди- нение	Химические сдвиги, δ, м. д., КССВ (<i>J</i>), Гц*
7a	2.52 (с, SMe); 4,25 (уш. д, ³ <i>J</i> = 11.4, 5-H _A); 4.35 (уш. с, 4-H _B и 5-H _B); 4.88 (уш. д, ³ <i>J</i> = 11.4, 4-H _A); 7.15 и 7.87 (два м, Аг и Неt); 7.43 (с, OH); 8.20 (с, NH)
7b	1.28 (т, ${}^{3}J$ = 6.5, Me); 3.01 и 3.07 (два д, ${}^{3}J$ = 6.5, SCH ₂); 4.20 (уш. д, ${}^{3}J$ = 14.0, 5-H _A); 4.33 (уш. с, 4-H _B и 5-H _B); 4.89 (уш. д, ${}^{3}J$ = 14.0, 4-H _A); 7.15 и 7.87 (два м, Ar и Het); 7.42 (с, OH); 8.27 (с, NH)
7c	3.73 (с, Me); 4.00 (с, SCH ₂); 4.22 (уш. д, ³ <i>J</i> = 11.8, 5-H _A); 4.41 (уш. с, 4-H _B и 5-H _B); 4.85 (уш. д, ³ <i>J</i> = 11.8, 4-H _A); 7.16 и 7.90 (два м, Аг и Неt); 7.51 (с, OH); 8.31 (с, NH)
7d	1.25 (т, ³ <i>J</i> = 6.6, Ме); 3.99 (с, SCH ₂); 4.18 (к, ³ <i>J</i> = 6.6, OCH ₂); 4.30 (уш. д, ³ <i>J</i> = 13.0, 5-H _A); 4.33 (уш. с, 4-H _B и 5-H _B); 4.87 (уш. д, ³ <i>J</i> = 13.0, 4-H _A); 7.13, 7.71 и 7.89 (три м, Ar и Het); 7.50 (с, OH); 8.31 (с, NH)
7e	1.85 (с, Ме); 3.62 и 3.72 (два д, ² <i>J</i> = 8.0, SCH ₂); 4.16 (уш. д, ³ <i>J</i> = 12.0, 5-H _A); 4.43 (уш. с, 4-H _B и 5-H _B); 4.86 (уш. д, ³ <i>J</i> = 12.0, 4-H _A); 4.98 (с, =CH ₂); 7.15 м, 7.65 м и 7.88 д, ³ <i>J</i> = 4.8 (Ar и Het); 7.42 (с, OH); 8.24 (с, NH)
7f	3.93 (уш. д, ³ <i>J</i> = 11.7, 5-Н _А); 4.26 и 4.34 (два д, ² <i>J</i> = 12.8, SCH ₂); 4.38 (уш. с, 4-Н _В и 5-Н _В); 4.80 (уш. д, ³ <i>J</i> = 11.7, 4-Н _А); 7.13 м, 7.41 м, 7.75 м и 7.88 д, ³ <i>J</i> = 4.7 (Аг и Неt); 7.49 (с, OH); 8.42 (с, NH)
7g	3.63 и 3.73 (два д, ² <i>J</i> = 15.4, SCH ₂); 4.38 (уш. д, ³ <i>J</i> = 12.5, 5-H _A); 4.42 (уш. с, 4-H _B и 5-H _B); 4.87 уш. д, ³ <i>J</i> = 12.5, 4-H _A); 7.12 м и 7.87 д, ³ <i>J</i> = 4.9 (Аг и Неt); 7.46 (с, OH); 7.74 и 8.05 (два уш. с, CONH ₂); 10.04 (с, NH)
7h	3.91 и 3.97 (два д, ² J = 15.5, SCH ₂); 4.40 (уш. д, ³ J = 12.0, 5-H _A); 4.43 (уш. с, 4-H _B и 5-H _B); 4.90 (уш. д, ³ J = 12.0, 4-H _A); 7.13 м, 7.58 уш. с и 7.89 м (Аг, Нет и ОН); 9.19 (с, NH); 10.69 (с, CONH)
7i	4.32 (уш. д, ${}^{3}J$ = 10.0, 5-H _A); 4.36 (уш. с, 4-H _B и 5-H _B); 4.81 (с, SCH ₂); 4.92 (уш. д, ${}^{3}J$ = 10.0, 4–H _A); 7.16, 7.66 и 7.95 (три м, Ar, Het и OH); 8.33 (с, NH)

^{*} Интегральная интенсивность сигналов протонов соединений 7 соответствует предложенным формулам и соотношению конформеров А и В.

Таблица 2

Со- еди-	со- ди- Брутто-		<u>Найдено, %</u> Вычислено, %				ИК	Вы-
не- ние	формула	С	Н	Ν	S	°C	спектр, v, см ⁻¹	ход, %
7a	$C_{19}H_{14}ClF_{3}N_{2}O_{2}S_{2}$	<u>49.93</u> 49.73	<u>3.25</u> 3.08	<u>5.77</u> 6.10	<u>13.71</u> 13.97	215–217	3250–3390 (NH, OH), 2200 (CN), 1635 (CO)	78
7b	$C_{20}H_{16}ClF_{3}N_{2}O_{2}S_{2}$	<u>50.56</u> 50.76	<u>3.68</u> 3.41	<u>5.71</u> 5.92	<u>13.74</u> 13.56	179–181	3150–3330 (NH, OH), 2205 (CN), 1635, 1655 (CO)	75
7c	$C_{21}H_{16}ClF_{3}N_{2}O_{4}S_{2}$	<u>48.95</u> 48.79	<u>3.33</u> 3.12	<u>5.11</u> 5.42	<u>12.68</u> 12.41	163–165	3210–3375 (NH, OH), 2205 (CN), 1620, 1660, 1736 (CO)	67
7d	$C_{22}H_{18}ClF_{3}N_{2}O_{4}S_{2}$	<u>49.99</u> 49.77	<u>3.13</u> 3.42	<u>5.44</u> 5.28	<u>11.78</u> 12.08	104–106	3180–3360 (NH, OH), 2195 (CN), 1635, 1665, 1740 (CO)	81
7e	$C_{22}H_{18}ClF_{3}N_{2}O_{2}S_{2}$	<u>52.73</u> 52.96	<u>3.85</u> 3.64	<u>5.78</u> 5.61	<u>12.62</u> 12.85	164–166	3210–3330 (NH, OH), 2202 (CN), 1630, 1675 (CO)	83
7f	$C_{25}H_{18}ClF_{3}N_{2}O_{2}S_{2}$	<u>56.33</u> 56.13	<u>3.52</u> 3.36	<u>5.42</u> 5.24	<u>11.71</u> 11.99	188–190	3240, 3390 (NH, OH), 2195 (CN), 1620, 1680 (CO)	67
7g	$C_{20}H_{15}ClF_{3}N_{3}O_{3}S_{2}$	<u>47.97</u> 47.86	<u>3.23</u> 3.01	<u>8.47</u> 8.37	<u>12.53</u> 12.78	239–241	3120–3360 (NH, OH), 2204 (CN), 1620, 1650, 1702 (CO)	88
7h	$C_{26}H_{18}BrClF_{3}N_{3}O_{3}S_{2}$	<u>47.82</u> 47.54	<u>2.92</u> 2.76	<u>6.19</u> 6.40	<u>9.81</u> 9.76	243–245	3210–3300 (NH, OH), 2190 (CN), 1650, 1690 (CO)	93
7i	$C_{26}H_{18}ClF_{3}N_{2}O_{3}S_{2}$	<u>55.72</u> 55.47	<u>3.29</u> 3.22	<u>5.21</u> 4.98	<u>11.53</u> 11.39	124–126	3240, 3390 (NH, OH), 2195 (CN), 1620, 1680 (CO)	77

Характеристики синтезированных соединений 7а-і

1326

Соотношение интегральной интенсивности указанных дублетов и уширенного сигнала ~2:1. Приведенные данные свидетельствуют о том, что соединения **4** и **7** представляют собой смесь конформеров (А и В), в которой преобладает конформер А с *транс*-диаксиальным расположением протонов 4-Н и 5-Н.

С целью объяснения данных ЯМР ¹Н и однозначного установления строения тетрагидропиридинов **4** и **7** проведено рентгеноструктурное исследование соединения **7e** (рис. 1, табл. 3; нумерация атомов не совпадает с используемой согласно номенклатуре ИЮПАК в названиях и приведенных в табл. 1 спектрах ЯМР ¹Н).

Рис. 1. Общий вид молекулы 7е с нумерацией атомов. Из атомов водорода показаны лишь $H_{(1)}$ и $H_{(2)}$

Таблица З

Длины связей (d) и валентные углы (w) в молекуле соединения 7e

Связь	d, Å	Угол	ω, град.
S ₍₁₎ -C ₍₁₎	1.753(7)	$C_{(1)} - S_{(1)} - C_{(19)}$	100.7(4)
$S_{(1)}-C_{(19)}$	1.815(9)	$C_{(14)} - S_{(2)} - C_{(17)}$	91.3(5)
$S_{(2)} - C_{(14)}$	1.714(7)	$C_{(1)} - N_{(1)} - C_{(5)}$	121.5(6)
$S_{(2)} - C_{(17)}$	1.662(11)	$N_{(1)} - C_{(1)} - C_{(2)}$	121.9(6)
N ₍₁₎ -C ₍₁₎	1.361(9)	$C_{(1)} - C_{(2)} - C_{(3)}$	122.7(6)
N ₍₁₎ -C ₍₅₎	1.436(9)	$C_{(2)} - C_{(3)} - C_{(4)}$	109.3(5)
C ₍₁₎ -C ₍₂₎	1.343(9)	$C_{(3)} - C_{(4)} - C_{(5)}$	110.9(6)
C ₍₂₎ –C ₍₃₎	1.521(9)	$N_{(1)} - C_{(5)} - C_{(4)}$	109.6(6)
C(3)-C(4)	1.55(1)	$N_{(2)} - C_{(6)} - C_{(2)}$	177.1(8)
C ₍₄₎ -C ₍₅₎	1.53(1)	$S_{(2)} - C_{(14)} - C_{(15)}$	111.9(6)
C(14)-C(15)	1.383(11)	$C_{(14)}$ - $C_{(15)}$ - $C_{(16)}$	110.3(8)
C(15)-C(16)	1.422(12)	$C_{(15)}$ - $C_{(16)}$ - $C_{(17)}$	112.3(9)
C(16)-C(17)	1.345(14)	$S_{(2)} - C_{(17)} - C_{(16)}$	114.2(7)

Центральный гетероцикл $N_{(1)}C_{(1-5)}$ неплоский (отклонения атомов от среднеквадратичной плоскости 0.07–0.31 Å) и имеет конформацию полукресла: атомы $N_{(1)}C_{(1-3)}$ копланарны в пределах 0.001 Å, а атомы $C_{(4)}$ и $C_{(5)}$ выходят из этой плоскости на –0.47 и 0.23 Å. Торсионные углы в этом

гетероцикле $(N_{(1)}C_{(1)}C_{(2)}C_{(3)} \ 0.3, \ C_{(1)}C_{(2)}C_{(3)}C_{(4)} \ 18.6, \ C_{(2)}C_{(3)}C_{(4)}C_{(5)} \ -45.6, C_{(3)}C_{(4)}C_{(5)}N_{(1)} \ 55.8, \ C_{(4)}C_{(5)}N_{(1)}C_{(1)} \ -38.6, \ C_{(5)}N_{(1)}C_{(1)}C_{(2)} \ 10.5^{\circ})$ близки найденным в циклогексене и его производных [3].

Таблица 4

Атом	x	у	z	$U_{ m _{3KB}},{ m \AA}^2$
Cl _(1A) *	0.8697(3)	0.6176(2)	0.3717(3)	0.0898
Cl _(1E)	0.6238(8)	0.4422(7)	0.0406(7)	0.0988
S ₍₁₎	0.43073(14)	0.30844(15)	0.23798(16)	0.0590
S ₍₂₎	1.09186(17)	0.42822(19)	0.3163(2)	0.0823
F ₍₁₎	0.7779(5)	0.1584(4)	0.2213(5)	0.0884
F ₍₂₎	0.9035(4)	0.1841(4)	0.3654(5)	0.0862
F ₍₃₎	0.7660(4)	0.1078(3)	0.3744(5)	0.0943
O ₍₁₎	0.7722(5)	0.2889(4)	0.4559(4)	0.0671
O ₍₂₎	0.9340(4)	0.3890(5)	0.4285(5)	0.0740
N ₍₁₎	0.6335(5)	0.2597(5)	0.2999(5)	0.0522
N ₍₂₎	0.4729(6)	0.5657(5)	0.2201(7)	0.0739
C ₍₁₎	0.5661(5)	0.3348(5)	0.2704(5)	0.0436
C ₍₂₎	0.6012(5)	0.4237(5)	0.2641(5)	0.0431
C ₍₃₎	0.7181(5)	0.4476(5)	0.2889(5)	0.0439
C ₍₄₎	0.7809(5)	0.3553(5)	0.2829(5)	0.0443
C ₍₅₎	0.7458(6)	0.2733(5)	0.3431(6)	0.0523
C ₍₆₎	0.5281(6)	0.5011(6)	0.2399(6)	0.0546
C ₍₇₎	0.7417(5)	0.5222(5)	0.2098(5)	0.0531
C ₍₈₎	0.8107(6)	0.5961(6)	0.2434(6)	0.0834
C ₍₉₎	0.8373(7)	0.6566(6)	0.1701(9)	0.0927
C(10)	0.7892(9)	0.6428(7)	0.0631(9)	0.1196
C ₍₁₁₎	0.7193(9)	0.5709(7)	0.0265(6)	0.1115
C ₍₁₂₎	0.6988(6)	0.5127(5)	0.1009(6)	0.0991
C ₍₁₃₎	0.8984(6)	0.3792(5)	0.3292(7)	0.0547
C ₍₁₄₎	0.9644(5)	0.3900(5)	0.2599(7)	0.0527
C ₍₁₅₎	0.9420(6)	0.3741(6)	0.1496(7)	0.0663
C ₍₁₆₎	1.0325(9)	0.3935(8)	0.1149(9)	0.0914
C ₍₁₇₎	1.1151(8)	0.4238(7)	0.197(1)	0.0890
C ₍₁₈₎	0.7975(7)	0.1801(6)	0.3237(8)	0.0656
C ₍₁₉₎	0.4235(7)	0.2595(7)	0.3659(8)	0.0775
C(20)	0.4535(7)	0.3277(7)	0.4562(7)	0.0711
C ₍₂₁₎	0.546(1)	0.322(1)	0.5310(9)	0.1089
C ₍₂₂₎	0.3781(9)	0.403(1)	0.460(1)	0.1119
H ₍₁₎	0.605(7)	0.200(7)	0.306(7)	0.09(3)
H ₍₂₎	0.846(9)	0.326(8)	0.49(1)	0.13(4)

Координаты атомов и эквивалентные изотропные тепловые параметры $(U_{3 \kappa B})$ в структуре 7е

* Атом Cl₍₁₎ разупорядочен по двум позициям А и В с заселенностью 0.72 и 0.28 соответственно.

1328

Отметим, что в родственных соединениях [4] вследствие $n(N_{(1)}) - \pi^*(C_{(5)} = O)$ сопряжения центральный гетероцикл N₍₁₎C₍₁₋₅₎ заметно более уплощен по сравнению с рассматриваемым. "Угол скручивания" у (псевдоторсионный угол между связями C₍₁₎-C₍₂₎ и C₍₄₎-C₍₅₎ [3]) достигает 27.2°. В результате сопряжения между неподеленной электроннной парой атома N₍₁₎ и π-системой связи $C_{(1)}=C_{(2)}$ межатомное расстояние $N_{(1)}-C_{(1)}$ 1.361(9) Å существенно укорочено по сравнению с интервалом значений 1.43-1.45 Å, характерным для одинарных связей $N(sp^2)$ – $C(sp^2)$ [5, 6]. Атомы водорода H₍₃₎ и H₍₄₎ являются *транс*-диаксиальными (торсионный угол H₍₃₎C₍₃₎C₍₄₎H₍₄₎ -170.8°). Значения торсионного угла С₍₇₎С₍₃₎С₍₄₎С₍₁₃₎ 65 и 78°, длины связи Cl_(1A)-C₍₈₎ 1.638(7) и Cl_(1B)-C₍₁₂₎ 1.455(9) Å, валентных углов Cl_(1A)-C₍₈₎-C₍₇₎ 122.4(6) и Cl_(1B)-C₍₁₂₎-C₍₇₎ 129.2(7)°, Cl_(1A)-C₍₈₎-C₍₉₎ 115.8(6) и Cl_(1B)-C₍₁₂₎-C₍₁₁₎ 106.3(7)° подтверждают существование двух конформационных изомеров А и В исследуемого соединения, образовавшихся в результате изначального вращения бензольного кольца вокруг одинарной связи С(3)-С(7). Бензольное кольцо С(7-12) в молекуле 7е развернуто относительно среднеквадратичной плоскости цикла N₍₁₎C₍₁₋₅₎ на 73.2°, группировки S₍₂₎O₍₂₎C₍₁₃₋₁₇₎ и S₍₁₎C₍₁₎C₍₁₉₎ образуют с центральным гетероциклом двугранные углы 85.2 и 58.6°. В свою очередь, система связей С(19-22) значительно развернута относительно группировки S₍₁₎C₍₁₎C₍₁₉₎ (соответствующий двугранный угол составляет 77.3°). Длины связей S₍₁₎-C₍₁₎ 1.753(7) и S₍₁₎-C₍₁₃₎ 1.815(9) Å и валентный угол C₍₁₎-S₍₁₎-C₍₁₃₎ 100.7(4)° близки соответствующим значениям, найденным в молекулах известных тетрагидропиридинов [4]. Особенностью структуры соединения 7е является достаточно прочная [7] внутримолекулярная водородная связь О(1)-Н(2)...О(2), замыкающая шестичленный цикл C₍₄₎C₍₅₎O₍₁₎H₍₂₎O₍₂₎C₍₁₃₎. Геометрические параметры этой связи следующие: O₍₁₎…O₍₂₎ 2.668(9), O₍₁₎-H₍₂₎ 1.08(12), O₍₂₎…H₍₂₎ 1.85(12) Å, О(1)Н(2)···О(2) 130(6)° (среднестатистическое значение расстояния О···О для водородных связей типа О-H···O 2.72 Å [8]). В кристалле молекулы соединения 7е посредством относительно слабых водородных связей $N_{(1)}$ - $H_{(1)}$ - $W_{(2)}$ объединены в бесконечные цепи (рис. 2).

Рис. 2. Проекция bc кристаллической структуры 7е (пунктирными линиями показаны водородные связи)

1329

Основные геометрические параметры этих H-связей: $N_{(1)}$ -H₍₁₎ 0.93(9), $N_{(1)}$ ···N₍₂₎ 3.043(9), $N_{(2)}$ ···H₍₁₎ 2.13(9) Å, $N_{(1)}$ H₍₁₎···O₍₁₎ 167(6)° (типичное значение расстояния N···N для H-связей типа N-H···N составляет 2.98 Å [8]).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на спектрофотометре ИКС-29 в вазелиновом масле. Спектры ЯМР записывали на приборах Bruker AM-300 (300 МГц) (для соединений **7а-с,h,i**) и Bruker WP-100 SY (100 МГц) (для **4**, **7d-g**) в ДМСО-d₆ (внутренний стандарт ТМС). Контроль за ходом реакции и индивидуальностью веществ осуществляли с помощью TCX на пластинках Silufol UV-254 (элюент ацетон–гексан, 3 : 5).

4,5-*тетрагидр*опиридин-2-тиолат N-метилморфолиния (4). К смеси 2.25 мл (20 ммоль) 2-хлорбензальдегида **1** и 3 капель N-метилморфолина в 30 мл этанола при 20 °С и перемешивании последовательно добавляют 2 г (20 ммоль) цианотиоацетамида **2**, через 5 мин – 4.44 г (20 ммоль) 2-теноилтрифторацегона **3** и еще 2.52 мл (25 ммоль) N-метилморфолина. Через 2 ч образовавшийся осадок отфильтровывают, промывают ацетоном. Получают 9.94 г (91 %) соли **4**, т. пл. 168–170 °С. ИК спектр, v, см⁻¹: 3195, 3330–3420 (N⁺H, NH, OH), 2175 (CN), 1620 (CO). Спектр ЯМР ¹H, 8, м. д., J (Гц): 2.69 (3H, с, NMe); 3.03 (4H, м, CH₂NCH₂); 3.76 (4H, м, CH₂OCH₂); 4.20 (2/3H, уш. д. ³J = 12.2, 5-H_A); 4.50 (2/3H, уш. с, 4-H_B и 5-H_B); 4.81 (2/3H, уш. д. ³J = 12.2, 4-H_A); 7.10, 7.67 и 7.89 (9H, три м, Ar, Het, OH и NH) (сигнал N⁺H не проявляется в результате дейтерообмена). Найдено, %: C 50.82; H 4.11; N 7.94; S 11.92. C₂₃H₂₃ClF₃N₃O₃S₂. Вычислено, %: C 50.59; H 4.25; N 7.70; S 11.74.

4,5-*транс***-6-Гидрокси-2-R-метилтио-5-(2-теноил)-6-трифторметил-4-(2-хлорфенил)-3**циано-1,4,5,6-тетрагидропиридины (7а–і). К суспензии 2.73 г (5 ммоль) соли **4** в 30 мл 80% этанола при перемешивании добавляют 2.8 мл (5 ммоль) 10% раствора КОН и через 5 мин 5 ммоль соответствующего галогенида 6. Через 3 ч образовавшийся осадок отфильтровывают, промывают этанолом и гексаном. Характеристики соединений 7 представлены в табл. 1, 2.

Рентгеноструктурное исследование монокристалла соединения 7e (0.21×0.33×0.38 мм) проведено при 18 °C на автоматическом четырехкружном дифрактометре Enraf-Nonius САD-4 (Сu K_{α} -излучение, отношение скоростей сканирования $\omega/2\theta = 1.2$, $\theta_{max} = 60^{\circ}$, сегмент сферы $0 \le h \le 14$, $0 \le k \le 15$, $-14 \le l \le 14$). Всего собрано 3741 отражений, из которых 3406 являются симметрически независимыми. Кристаллы соединения 7е моноклинные, $a = 13.218(2), b = 14.047(5), c = 12.894(7) \text{ Å}, \beta = 107.10(3)^{\circ}, V = 2288.2 \text{ Å}^3, M = 498.97, Z = 4,$ $d_{\text{выч}} = 1.45 \text{ г/см}^3$, $\mu = 35.97 \text{ см}^{-1}$, пространственная группа P2₁/с. Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [9]. В уточнении использовано 2195 отражений с I > 4(I) (306 уточняемых параметра, число отражений на параметр 7.2). Положения большинства атомов Н рассчитаны геометрически, в расчет эти атомы были включены с фиксированными позиционными и тепловыми параметрами. Только атомы H₍₁₎ и H₍₂₎, связанные соответственно с атомами N₍₁₎ и O₍₁₎, были выявлены объективно из разностного синтеза и уточнены изотропно. Учет поглощения в кристалле выполнен по методу азимутального сканирования [10]. При уточнении использована весовая схема Чебышева [11] с параметрами 2.50, -1.70, 1.07 и -1.30. Окончательные значения факторов расходимости R = 0.076 и $R_w = 0.085$, G0F = 1.079. Остаточная электронная плотность из разностного ряда Фурье 0.74 и -0.92 e/Å³. Координаты атомов приведены в табл. 4.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 99-03-32965).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. П. Литвинов, В. Д. Дяченко, *ДАН*, **352**, 636 (1997).
- 2. В. П. Литвинов, Изв. АН, Сер. хим., 2123 (1998).
- 3. А. Н. Верещагин, Успехи химии, **52**, 1879 (1983).
- С. Г. Кривоколыско, В. Д. Дяченко, Э. Б. Русанов, В. Б. Литвинов, *XTC*, 1076 (2001).
 R. W. Alder, N. C. Goode, T. J. King, J. M. Mellor, B. W. Miller, *J. Chem. Soc. Chem.* Commun., No. 5, 173 (1976).
- 6. M. Burke-Laing, M. Laing, Acta crystallogr. (B), 32, 3216 (1976).
- 7. P. Gilli, V. Bertolasi, V. Ferretti, G. Gilli, J. Am. Chem. Soc., 116, 909 (1994).
- 8. L. N. Kuleshova, P. M. Zorkii, Acta crystallogr. (B), 37, 1363 (1981).
- 9. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, Crystals. Issue 10, Chemical Crystallography Laboratory, Univ. of Oxford, 1996.
- 10. A. C. T. North, D. C. Phillips, F. Scott, F. S. Mathews, Acta crystallogr. (A), 24, 351 (1968).
- 11. J. R. Carruthers, D. J. Watkin, Acta crystallogr. (A), 35, 698 (1979).

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail: kgb@lgpi.lugans.ua

Поступило в редакцию 18.05.99 После переработки 07.01.2000

^аИнститут органической химии НАН Украины, Киев 253660

^бИнститут органической химии им. Н. Д. Зелинского РАН, Москва 117913 e-mail: vpl@cacr.ioc.ac.ru