Э. Лукевиц, С. Беляков, П. Арсенян, О. Пудова

ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ РЕАКЦИИ ЦИКЛОПРИСОЕДИНЕНИЯ АЦЕТОНИТРИЛОКСИДА К *трет*-БУТИЛ-, ТРИМЕТИЛСИЛИЛ- И ТРИМЕТИЛГЕРМИЛ-ЗАМЕЩЕННЫМ ТИОФЕН-1,1-ДИОКСИДАМ

Обобщены и проанализированы результаты рентгеноструктурных исследований молекулярных упаковок *трет*-бутил-, триметилсилил- и триметилгермилтиофен-1,1-диоксидов, а также интерпретированы их экспериментальные и расчетные УФ спектры. С помощью квантовохимических расчетов исследованы теоретические аспекты реакции диполярного [2+3]-циклоприсоединения окиси ацетонитрилоксида к 2,5- и 2,4-дизамещенным сульфонам. Объяснены причины региоспецифичности циклоприсоединения и десилилирования.

Ключевые слова: тиофен, тиофен-1,1-диоксид, квантовохимический расчет, молекулярная упаковка, УФ спектр.

Незамещенный тиофен-1,1-диоксид [1, 2], его моно- [3] и более замещенные производные [4] – весьма интересные синтоны для получения различных типов органических соединений. Значительный интерес к тиофен-1,1-диоксидам, выступающим в качестве ненасыщенных циклических сульфонов, обусловлен их высокой реакционной способностью в различных химических процессах.

Введение силильных групп в тиофеновое кольцо значительно повышает активность атома серы к окислению. Кроме того, высокая лабильность силильных заместителей по отношению к электрофильным и нуклеофильным реагентам служит удобным методом для дальнейшей функционализации продуктов реакции. Некоторые химические трансформации силилзамещенных тиофен-1,1-диоксидов исследованы в последние годы.

Реакцией, протекающей с деструкцией гетероцикла, является раскрытие тиофен-1,1-диоксидного кольца под действием пиперидина. Этот процесс характеризуется высокой региоселективностью и стереоспецифичностью [5].

2,5-Бис(триметилсилил)тиофен-1,1-диоксид (2) и его 2,4-изомер (7) вступают в реакцию Дильса—Альдера с N-фениламидом малеиновой кислоты в кипящем толуоле с образованием циклоаддуктов, причем промежуточный сульфон выделить не удалось из-за отщепления двуокиси серы при комнатной температуре. Аналогичная реакция в ДМФА протекает с ароматизацией и образованием производных амидов фталевой кислоты [6].

 $2 R = Me_3Si, R' = H; 7 R = H, R' = Me_3Si$

Силильные группы 2,5-бис(триметилсилил)тиофен-1,1-диоксида можно легко заместить атомами галогена при действии на сульфон бромом или иодом в хлористом метилене в присутствии AgBF₄ при 0 °C [7].

В свою очередь, бромзамещенные тиофен-1,1-диоксиды вступают в реакцию сочетания с тиенилстаннанами в присутствии палладиевых катализаторов [(Ph₃P)₄Pd и (Ph₃As)₄Pd] с образованием олиготиофен-1,1-диоксидов. Этот метод позволяет легко и селективно ввести тиофен-1,1-диоксидный фрагмент в тер-, кватер- и квинттиофеновые цепочки [8]. Например, таким образом были получены квинттиофены с терминальными и центральными сульфоновыми группами, а также пентамер с чередующимися ароматическими и диеновыми фрагментами. Деароматизация значительно повышает электронную делокализацию и позволяет регулировать потенциалы восстановления этих материалов в зависимости от количества и положения тиофен-1,1-диоксидных групп [9, 10].

Нами установлено, что трет-бутил-, триметилсилил- и триметилгермилзамещеные тиофен-1,1-диоксиды являтся удобными модельными соединениями для изучения влияния характера заместителей МезМ (M = C, Si, Ge) на реакционную способность двойных связей C=C [11–13]. Направление реакции нуклеофильного присоединения пиперидина к сульфонам в органических растворителях определяется природой заместителя. 2,5-Бис(*трет*-бутил)тиофен-1,1-диоксид (1) не реагирует с пиперидином, присоединение одной молекулы пиперидина к симметричным силил- (2) и гермилсульфонам (3) в ТГФ и бензоле приводит к соответствующим 2,3-дигидротиофен-1,1-диоксидам, причем в случае силильного производного при хранении наблюдается десилилирование триметилсилильной группы у *sp*³-атома углерода гетероцикла. В случае несимметричного 2-триметилгермил-5-триметилсилилтиофен-1,1-диоксида (6) реакция протекает региоселективно, лишь винилсилильный фрагмент присоединяет молекулу амина. Последующее десилилирование происходит при хроматографической очистке, приводящей к 3-пиперидино-5-триметилгермил-2,3-дигидротиофен-1,1-диоксиду, строение которого подтверждено рентгеноструктурным анализом [11].

Исследовано вляние окисления атома серы в тиофенах на полосу поглощения в УФ спектрах. Величина λ_{max} для 2,5- и 2,4-дизамещенных тиофенов находится в интервалах 252–260 и 246–250 нм соответственно. Интересной особенностью спектров сульфонов **1–10** является то, что 1301

окисление приводит не к гипсохромному, а к батохромному сдвигу полосы поглощения на величину 42–59 нм по сравнению с исходными тиофенами. Спектры поглощения 2,5-дизамещенных сульфонов 1–6 характеризуются двумя максимумами: с сильной длинноволновой полосой частично перекрывается существенно менее интенсивная полоса поглощения, смещенная на 72–84 нм в коротковолновую область. В спектрах 2,4-дизамещенных тиофен-1,1-диоксидов 7–10 присутствует лишь один максимум в области 292–305 нм (табл. 1).

С целью интерпретации УФ спектров сульфонов 1–10 и соответствующих тиофенов выполнены квантовохимические расчеты их молекул в основном и возбужденных состояниях. В табл. 2 для молекул изучаемых сульфонов и тиофенов приведены потенциалы ионизации, найденые по теореме Купманса [15], а также порядки связей С–С в гетероцикле для основного и первого возбужденного состояний. Конфигурации ВЗМО и НСМО для данных молекул схематически изображены на рис. 1.

Рис. 1. Конфигурации первых возбужденных электронных состояний *S*₁ сульфонов **1–10** и соответствующих тиофенов

Как для тиофенов, так и для сульфонов первый интенсивный электронный переход $S_0 \rightarrow S_1$ относится к $\pi \rightarrow \pi^*$ типу. Как уже было отмечено, двойные связи в гетероцикле сульфонов практически изолированы; на это указывают также порядки связей в основном электронном состоянии (см. табл. 2). Первое возбужденное состояние молекул сульфонов характеризуется выравниванием порядков связей С–С в гетероцикле, что ведет к понижению энергии состояния, а следовательно, и электронного перехода. В связи с этим для соединений 1–10 полоса поглощения в электронном спектре смещается в длинноволновую область. В табл. 1 наряду с 1302

УФ спектры тиофенов и соответствующих тиофен-1,1-диоксидов 1–10 (положения длинноволновых полос поглощения в этиловом спирте и соответствующие им энергии электронных переходов)

	Me ₃ M'	Me ₃ M' S MMe ₃		Me ₃ M' SO ₂ MMe ₃			
Me ₃ M		λ _{max} , HM	ΔЕ, эВ *	соединение	λ _{max} , нм	Δ <i>E</i> , эВ *	
5–Me ₃ C	Me ₃ C	252	4.92 (4.63)	1	222, 294	5.58 (4.70), 4.42 (4.31)	
5–Me ₃ Si	Me ₃ Si	256	4.84 (4.72)	2	228, 312	5.44 (4.73), 3.97 (4.16)	
5-Me ₃ Ge	Me ₃ Ge	255	4.86 (4.88)	3	228, 312	5.44 (4.76), 3.97 (4.22)	
5–Me ₃ C	Me ₃ Si	254	4.88 (4.70)	4	222, 304	5.58 (4.67), 4.08 (4.10)	
5-Me ₃ C	Me ₃ Ge	260	4.77 (4.77)	5	222, 307	5.58 (4.69), 4.04 (4.11)	
5–Me ₃ Si	Me ₃ Ge	260	4.77 (4.81)	6	228, 312	5.44 (4.79), 3.97 (4.15)	
4–Me ₃ Si	Me ₃ Si	246	5.04 (5.08)	7	305	4.07 (4.19)	
4–Me ₃ Si	Me ₃ Ge	248	5.00 (5.11)	8	292	4.25 (4.28)	
4–Me ₃ Ge	Me ₃ Si	248	5.00 (5.09)	9	292	4.25 (4.19)	
4Me₃Ge	Me ₃ Ge	250	4.96 (5.12)	10	304	4.08 (4.21)	

* В скобках приведены расчетные значения.

Таблица 2

<i>Ι</i> ω. э Β	. М	e ₃ M'	Ae ₃	Соединение	Lan 9B	Me ₃ M' S MMe ₃			
~(1), ===		порялок связи*			-(1),	<u>10098лок связи*</u>			
	C ₍₂₎ -C ₍₃₎	C ₍₃₎ -C ₍₄₎	C ₍₄₎ C ₍₅₎			C ₍₂₎ -C ₍₃₎	C ₍₃₎ -C ₍₄₎	C ₍₄₎ -C ₍₅₎	
9,20	1.680	1.173	1.680	1	10.55	1.865	1.030	1.865	
9.50	(1.118)	1.179	(1.118) 1.682	2	10.84	(1.240)	1.012	1.896	
0.47	(1.127)	(1.593)	(1.127)		10.83	(1.205)	(1.433)	(1.205)	
2.47	(1.208)	(1.423)	(1.208)		10.85	(1.205)	(1.430)	(1.205)	
9.35	1.685	1.178	1.672	. 4	10.71	1.872 (1.237)	1.022 (1.442)	1.884	
9.33	1.688	1.176	1.674	5	10.71	1.873	1.019	1.890	
9.48	(1.140) 1.686	(1.592) 1.175	(1.107) 1.685	6	10.83	(1.243) 1.894	(1.440) 1.011	(1.148) 1.899	
9.51	(1.089) 1.696	(1.579) 1.171	(1.182) 1.684	7	10.84	(1.186) 1.892	(1.431) 1.012	(1.222) 1.913	
9.48	(1.064) 1.698	(1.544) 1.169	(1.233) 1.686	8	10.84	(1.196) 1.895	(1.423) 1.011	(1.219) 1.913	
0.40	(1.070)	(1.545)	(1.225)		10.00	(1.203)	(1.421)	(1.212)	
9.48	(1.097)	(1.540)	(1.242)	9	10.80	(1.184)	(1.420)	(1.234)	
9.46	1.698 (1.061)	1.168 (1.537)	1.689 (1.245)	10	10.79	1.894 (1.193)	1.013 (1.423)	1.914 (1.222)	

Первые потенциалы ионизации и порядки связей С–С в гетероциклах тиофен-1,1-диоксидов 1–10 и соответствующих тиофенов

* В скобках приведены значения порядков связей в первом возбужденном состоянии.

экспериментальными величинами ΔE даны рассчитанные значения энергии "вертикальных" (Франк–Кондоновских) электроиных переходов в дипольном приближении.

Учитывая приближенный характер теоретических расчетов, а также то, что спектры регистрировались для этанольных растворов, а расчеты проводились для изолированных молекул, соответствие между экспериментальными и теоретическими значениями можно считать вполне удовлетворительным.

В основном состоянии молекул сульфонов 1–10 близкую к ВЗМО энергию имеет еще одна занятая МО, относящаяся к типу b_2 либо a'. Эта орбиталь более чем на 60% локализована на атомах кислорода. Таким образом, верхний заполненный энергетический электронный уровень молекул 1–10 практически вырожден. Это приводит к появлению в длинноволновой области спектра еще одного максимума поглощения. Вычисленные значения энергий для синглет-синглетных переходов в сульфонах 1–6 находятся в интервале 4.67–4.79 эВ. И хотя такой электронный переход запрещен по симметрии, он разрешен по спину; с другой стороны, полосы поглощения таких переходов значительно менее интенсивны, что проявляется в спектрах веществ 1–6. Для сульфонов 7–10 данные переходы лежат в энергетическом интервале 4.92–5.03 эВ, т. е. соответствующие полосы поглощения находятся в более коротковолновой области, поэтому в длинноволновой части спектра зарегистрированы не были.

По данным рентгеноструктурного анализа [13-15], 5-членный гетероникл сульфонов 2-4, 6, 7-10 планарен, атомы кислорода фрагмента SO₂ находятся по разные стороны от этой плоскости примерно на одинаковом расстоянии. Из-за потери ароматичности в результате окисления атома серы фрагмент С=С-С=С в цикле тиофен-1,1-диоксида представляет собой типичную цис-бутадиеновую систему с двумя практически изолированными двойными связями. Характер заместителей и их положение в гетероцикле оказывают наиболее существенное влияние на упаковку молекул в кристалле. Кристаллы 2,5-бис(триметилсилил)- (2), 2-триметилгермил-5-триметилсилил- (6) и 2,5-бис(триметилгермил)тиофен-1,1-диоксида (3) изоморфны (ромбическая сингония) [13, 14]. Две кристаллографически независимые молекулы этих соединений лежат во взаимно перпендикулярных зеркальных плоскостях т (рис. 2). 2,5-Бис(триметилсилил)тиофен-1,1-диоксид обладает высокой эффективностью (30%) эмиссии голубой флуоресценции ($\lambda_{PI} = 381$ нм). Продолжительность эмиссии заметно удлинена (более 10 нс). Аналогичными свойствами обладает и 2,5-бис-(триметилгермил)тиофен-1,1-диоксид [14]. Данная упаковка способствует экситон-фононному взаимодействию в кристаллической решетке, что должно обусловливать флуоресценцию кристаллов 2, 3 и 2-триметилгермил-5-триметилсилилтиофен-1,1-диоксида 6.

Замена одной триметилсилильной группы в сульфоне 2 *трет*-бутильной приводит к изменению типа кристаллической решетки (рис. 3). Кристаллы 2-*трет*-бутил-5-триметилсилилтиофен-1,1-диоксида 4 являются моноклинными [15]. Молекулы 2,5-дизамещенных сульфонов 2–4, 6 находятся в частных положениях, тогда как в 2,4-дизамещенных производных 7–10 – в общем положении (рис. 4) [16].

2

Рис. 2. Молекулярная упаковка тиофен-1,1-диоксидов 2, 3, 6

Рис.3. Молекулярная упаковка тиофен-1,1-диоксида 4

Рис. 4. Молекулярная упаковка тиофен-1,1-диоксидов 7-10

Наличие практически изолированных двойных связей в молекулах 1-10 благоприятствует реакциям циклоприсоединения. В случае [2+3]-диполярного присоединения ацетонитрилоксида к симметричным 2,5-дизамещенным тиофен-1,1-диоксидам 1-3 (M = M' = C, Si, Ge) возможно образование двух региоизомерных продуктов. В реакциях несимметричных 2,5- и 2,4-дизамещенных сульфонов 4-10 количество возможных изомеров возрастает до четырех (без учета продуктов деметаллирования). С одной стороны, строение продуктов определяется тем, к какой из двух двойных связей происходит циклоприсоединение, а с другой – каким образом ориентирован ацетонитрилоксид относительно молекулы сульфона. Результаты экспериментальных исследований [15, 16] показали, что циклоприсоединение ацетонитрилоксида к тиофен-1,1-диоксидам 2-10 протекает региоселективно с образованием лишь одного продукта присоединения. В реакциях несимметричных сульфонов 5 (M = C, M' = Ge) и 6 (M = Si, M' = Ge) с ацетонитрилоксидом изомер А является единственным продуктом, что свидетельствует о большей реакционной способности триметилгермилвинильного фрагмента по сравнению с трет-бутилвинильным и триметилсилилвинильным. В случае 2-трет-бутил-5-триметилсилилтиофен-1,1-диоксида 4 MeCNO присоединяется по винилсилильной части молекулы, однако образуется не изомер 4А, а продукт его десилилирования. Эти данные, наряду с безуспешними попытками присоединить ацетонитрилоксид к тиофен-1,1-диоксиду 1 (M = M' = C), подтверждают дезактивацию винильной связи трет-бутильной группой в реакциях диполярного присоединения.

Присоединение ко всем 2,4-дизамещенным сульфонам 7–10 протекает по двойной связи $C_{(4)}=C_{(5)}$, в результате чего образуется региоизомер A и ни в одном случае деметаллирование не наблюдалось.

7 M = M' = Si; 8 M = Si, M' = Ge; 9 M = Ge, M' = Si; 10 M = M' = Ge

Для выяснения причин высокой региоселективности проведено квантовохимическое исследование реакции циклоприсоединения ацетонитрилоксида с сульфонами 1–10. В табл. 3 представлены рассчитанные теплоты образования всех возможных региоизомерных продуктов (A–D).

Таблица З

Соеди-	Te	еплота образова	ания, кДж моле	-1	
нение	Α	В	С	D	
1 .	382.2	358.7		<u> </u>	
2	-43.6	-61.9			
3	161.6	147.5			
4	154.7	136.4	182.8	155.3	
5	254.4	240.1	287.2	261.3	
6	53.3	45.4	61.8	57.2	
7	-42.9	-54.1	-30.6	-29.5	
8	66.9	100.8	70.8	75.9	
9	63.3	48.9	77.6	73.6	
10	171.4	154.5	177.6	178.9	

Рассчитанные теплоты образования изоксазолинов

Анализ полученных данных показал, что лишь в одном случае (соединение 8A, M = Si, M' = Ge) минимальная теплота образования соответствует полученному продукту A. Таким образом, если пренебречь энтропийным вкладом, то для всех сульфонов (кроме 8) в реакции с ацетонитрилоксидом предпочтительным продуктом является изомер B. Следовательно, термодинамический фактор не является определяющим в направлении реакции.

Качественно кинетику процесса циклоприсоединения удобно рассмотреть с позиций квантовохимической теории возмущения молекулярных орбиталей [17]. Схема конфигураций граничных орбиталей ацетонитрилоксида и расположение их энергетических уровней даны на рис. 5. В табл. 4 приведены коэффициенты c_i базисных p_z -орбиталей для ВЗМО и НСМО, а также эффективные заряды атомов С в молекулах сульфонов 1–10. Как уже было отмечено, возбужденное состояние молекул 1–10 характеризуется уменьшением энергии, т. е. уровни вакантных орбиталей расположены

Рис. 5. Схема конфигураций граничных орбиталей ацетонитрилоксида и расположенние их энергетических уровней

низко; в то же время потенциалы ионизации для 1–10 (см. табл. 2) и ацетонитрилоксида близки (10.11 эВ). В этой связи взаимодействие ВЗМО ацетонитрилоксида и НСМО сульфонов 1–10 является предпочтительным. Кроме того, коэффициенты c_i разложения НСМО по АО имеют максимальную величину при $C_{(5)}$ (табл. 4). Таким образом, для 2,4-замещенных сульфонов наиболее вероятным является циклоприсоединение по связи $C_{(4)}=C_{(5)}$. По этой причине исключается образование изомеров С и D для 7–10.

Приближение изолированной молекулы не дает количественных характеристик кинетики реакций, поэтому для сульфона 7 и МеСNO был предпринят расчет координаты реакции. Реакция циклоприсоединения рассматривалась как синхронный концертный процесс. В данном случае реакция идет как супра-супрапроцесс с образованием циклического переходного состояния с топологией Хюккеля. Энергия переходного состояния в случае образования молекулы A (продукт 7A) составляет 102.7 кДж/моль, тогда как для случая образования изомера B она равна 147.5 кДж/моль. На рис. 6 изображена схема энергетического профиля данной реакции.

Рис. 6. Схема энергетического профиля реакции циклоприсоединения окиси ацетонитрила к сульфону 7

Эффективные заряды q_i и коэффициенты c_i разложения ВЗМО и НСМО по базисным p_z-орбиталям для атомов С в тиофен-1,1-диоксидах 1–10 ATOM C ATOM C

		Атом С(2)		Атом С ₍₃₎		Атом С ₍₄₎			Атом С(3)			
<u></u>	_	Ci			Ci		<i>a</i>	Ci			Ci	
Соединение	q_i	B3MO	НСМО	q_i	B3MO	НСМО	97	B3MO	HCMO		B3MO	НСМО
]	
1	0.293	0.528	0.533	-0.017	0.391	0.439	-0.017	-0.391	-0.439	0.293	-0.528	0.533
2	-0.628	0.499	0.525	+0.020	0.355	-0,455	+0.020	0.355	-0.455	-0.628	-0.499	0.525
3	0.670	0.509	0.524	+0.021	0.360	-0.454	+0.021	-0.360	-0.454	-0.670	-0.509	0.524
4	-0.288	0.513	0.522	-0.034	0.329	-0.475	+0.039	-0.422	-0.418	-0.642	-0.525	0.534
5	0.287	0.516	0.522	-0.031	0.330	0.470	+0.036	-0.428	-0.422	0.680	-0.531	0.534
6	-0.627	0.512	0.527	+0.022	0.368	0.461	+0.018	0.347	0.448	0.672	-0.499	0.529
7	-0.656	0.536	0.499	+0.061	0.384	-0.453	-0.354	-0.350	-0.440	-0.259	-0.491	0.561
8	0.698	0.540	0.499	+0.057	0.379	-0.450	-0.353	-0.361	-0.441	-0.260	-0.501	0.562
9	0.653	0.539	0.503	+0.061	0.388	-0.457	-0.405	-0.345	-0.438	-0.257	0.486	0.556
10	0.697	0.546	0.502	+0.063	0.386	-0.453	-0.402	0.357	0.439	-0.261	-0.498	0.559

1310

Таблица 4

При образовании молекулы **В** существенный вклад в энергию переходного состояния дают невалентные взаимодействия между метильной группой ацетонитрилоксида и триметилсилильной группой в сульфоне 7. Возрастание энергетического барьера при образовании изоксазолина **В** препятствует течению реакции в этом направлении.

Образовавшиеся в результате циклоприсоединения изоксазолины A могут превращаться в продукты деметаллирования. Например, присутствие в реакционной смеси воды может вызвать следующую реакцию:

В предположении, что реакция идет по механизму нуклеофильного замещения, в ней можно выделить две стадии – образование комплекса и превращение в продукт деметаллирования:

$$R-MMe_3 \rightarrow R-MMe_3-B \rightarrow R-H$$

В конкретном случае способность к образованию комплекса R-MMe₃-В можно охарактеризовать энергией присоединения гидроксиланиона к изоксазолинам, т. е. так называемым сродством к гидроксилу. Эти величины даны в табл. 5. Как и следовало ожидать, именно продукты с триметилсилильной группой обладают наибольшей способностью к присоединению гидроксил-аниона. Дальнейшее превращение комплекса с гидроксил-анионом в продукт деметаллирования зависит от скорости (а значит, и от энергии активации) второго процесса по схеме:

Таблица 5

Сродство к гидроксилу изоксазолинов 1А-6А и теплоты образования соответствующих комплексов с гидроксил-анионом

Соеди- нение	M	М	Сродство к гидроксилу, кДж·моль ⁻¹	Теплота образования комплекса, кДж-моль ⁻¹
1	С	С	31.1	327.9
2	Si	Si	488.6	-556.3
3	Ge	Ge	430.8	-293.3
4	С	Si	491.4	-360.8
5	С	Ge	432.7	-202.4
6	Si	Ge	435.5	-403.3

При сопоставлении серии родственных соединений для качественной оценки энергии активации широко применяется принцип Бэлла–Эванса– Поляни (БЭП) [17], из которого следует правило линейности свободных энергий. На рис. 7 показана диаграмма БЭП для процесса:

Рис. 7. Диаграмма БЭП для реакции циклоприсоединения окиси ацетонитрила к сульфонам 2 и 4

В табл. 6 приведены вычисленные энтальпии реакции ΔH . Легко видеть, что реакция быстрее протекает в случае изоксазолина **4A**. По этой причине удается выделить только продукт десилилирования, а не само вещество.

Таблица б

I acacino	іс эпталын	ап реакции	1 деметалларования
Соеди-	M	M	AH KINCMOTH
нение	141	141	Дл, КДЖ МОЛВ
2	Si	Si	-1115.1
3	Ge	Ge	- 848.3
4	C	Si	- 1113.5
6	Si	Ge	- 1008.7

Расчетные энтальпии реакции деметаллирования

Для остальных продуктов энергия активации процесса выше, чем и объясняется их относительная устойчивость к деметаллированию. Это тем более касается соединений 7А–10А – продуктов циклоприсоединения к 2,4-дизамещенным сульфонам. Энергия молекул 7А–10А, как и их комплексов с гидроксиланионом, существенно ниже (например, для комплекса 7А теплота образования –776.9 кДж моль⁻¹), чем соответствующих продуктов присоединения к 2,5-дизамещенным тиофен-1,1-диоксидам, где заметный вклад в энергию дают стерические эффекты. В соответствии с принципом БЭП уменьшение энергии реагента ведет к возрастанию энергии активации. По этой же причине не наблюдается деметаллирования в положении 2 соединений А, ибо в этом случае продукты реакции уже должны будут иметь высокую энергию, что также ведет к росту энергии активации процесса.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Ультрафиолетовый спектр тиофенов и тиофен-1,1-диоксидов снят на спектрометре Hitachi UV U 3200.

Квантовохимические расчеты электронной структуры изучаемых систем проводили по методу молекулярных орбиталей в рамках теории самосогласованного поля в приближении МПДП [18]. Применение подхода Халгрена–Липскомба [19] для автоматической локализации переходного состояния оказалось затруднительным, поэтому использовалась процедура Мак-Ивера–Коморницкого [20]. При поиске переходного состояния геометрия оптимизировалась в предположении, что все атомы С, О и N, образующие изоксазолиновый цикл, лежат в одной плоскости; зафиксированы длины связей, валентные углы в метильной и триметилсилильных группах, а также торсионные углы тиофенового цикла. Для расчета возбужденных состояний использовали метод конфигурационного взаимодействия (КВ). При учете ограниченного КВ использовали только однократно возбужденные конфигурации. Все расчеты выполнялись с помощью программного комплекса МОРАС [21] и модифицированной программы [22]. Процедура оптимизации и методика остальных вычислений аналогична работам [23, 24].

Авторы выражают благодарность Латвийскому совету по науке (грант No. 187) и фонду Taiho Latvia (проект No. T-99-P) за финансовую поддержку.

СПИСОК ЛИТЕРАТУРЫ

- 1. J. Nakayama, H. Nagasawa, Y. Sugihara, A. Ishii, J. Am. Chem. Soc., 119, 9077 (1997).
- 2. H. Nagasawa, Y. Sugihara, A. Ishii, J. Nakayama, Bull. Chem. Soc. Jpn., 72, 1919 (1999).
- 3. J. Nakayama, H. Nagasawa, Y. Sugihara, A. Ishii, Heterocycles, 52, 365 (2000).
- 4. H. Nagasawa, Y. Sugihara, Top. Curr. Chem., 205, 131 (1999).

3

- 5. S. Gronowitz, A.-B. Hörnfeldt, E. Lukevics, O. Pudova, Synthesis, 40 (1994).
- 6. A. R. M. O'Donovan, M. K. Shepherd, Tetrah. Lett., 35, 4425 (1994).
- N. Furukawa, H. Hoshiai, T. Shibutani, M. Higaki, F. Iwasaki, H. Fujihara, *Heterocycles*, 34, 1085 (1992).
- G. Barbarella, L. Favaretto, G. Sotgiu, M. Zambianchi, L. Antolini, O. Pudova, A. Bongini, J. Org. Chem., 63, 5497 (1998).
- G. Barbarella, L. Favaretto, M. Zambianchi, O. Pudova, C. Arbizzani, A. Bongini, M. Mastragostino, Adv. Mater., 10, 551 (1998).

- G. Barbarella, O. Pudova, C. Arbizzani, M. Mastragostino, A. Bongini, J. Org. Chem., 63, 1742 (1998).
- 11. E. Lukevics, P. Arsenyan, S. Belyakov, J. Popelis, O. Pudova, Eur. J. Org. Chem., 3139 (2000).
- 12. T. Koopmans, Phys., 1, 104 (1934).
- 13. E. Lukevics, P. Arsenyan, S. Belyakov, J. Popelis, O. Pudova, Tetrah. Lett., 42, 2039 (2001).
- E. Tedesco, B. M. Kariuki, K. D. M. Harris, R. L. Johnston, O. Pudova, G. Barbarella, E. A. Marseglia, G. Gigli, R. Cingolani, J. Solid State Chem., in press (2001).
- E. Lukevics, P. Arsenyan, S. Belyakov, J. Popelis, O. Pudova, Organometallics, 18, 3187 (1999).
- E. Lukevics, P. Arsenyan, S. Belyakov, J. Popelis, O. Pudova, Organometallics, 20, 2487 (2001).
- 17. M. J. S. Dewar, R. C. Dougherty, *The PMO Theory of Organic Chemistry*, Plenum Press, New York, 1975.
- 18. M. J. S. Dewar, W. Thiel, J. Am. Chem. Soc., 94, 4899 (1977).
- 19. T. A. Halgren, W. Lipscomb, Chem. Phys. Lett., 49, 225 (1977).
- 20. J. W. McIver, A. Komornicki, J. Am. Chem. Soc., 94, 2625 (1977).
- 21. J. J. P. Stewart, *Program package MOPAC. Version 6.00*, US Air Force Academy, Colorado, 1990.
- 22. W. Thiel, Molecular Orbitals by the SCF-MNDO Method. QCPE-353, Indiana University, Bloomington, 1987.
- 23. A. Levina, S. Belyakov, Oxidation Commun., 16, 205 (1993).
- 24. S. Belyakov, L. Ignatovich, E. Lukevics, J. Organomet. Chem., 577, 205 (1999).

Латвийский институт органического синтеза, Рига LV-1006 e-mail: olga@osi.lv, serg@osi.lv Поступило в редакцию 25.05.2001